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Abstract
Let H be a Hilbert space. Let (Wn)n∈N be a suitable family of mappings. Let S be a
nonexpansive mapping and D be a strongly monotone operator. We study the
convergence of the general scheme xn+1 =Wn(αnSxn + (1 – αn)(I –μnD)xn) in
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1 Introduction and motivations
The approximation of fixed points of nonlinear mappings is a wide and active research
area and its applications occur more and more widely in the calculus of variations and
optimization. The starting point of many papers is a modification of Mann’s iterative
method [],

xn+ = αnxn + ( – αn)Txn,

in order to obtain strong convergence results.
Many of these modified Mann schemes yield approximation sequences by suitable con-

vex combinations like

xn+ = αng(xn) + ( – αn)Vyn,

where g , V , and (yn)n∈N are opportunely chosen (see, for instance, Halpern [], Ishikawa
[], Moudafi [], Nakajo and Takahashi []).

In this paper, we instead focus on the following iterative method:

xn+ = Wn
(
αnSxn + ( – αn)(I – μnD)xn

)
.

This method is very different from most of existing methods in literature and immediately
we discuss on some motivations.
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Let H be a Hilbert space and f : H → R be a convex and lower semicontinuous. Our
interest is focused on the minimization problem

min
x∈C

f (x), (.)

where C is a constraint closed and convex subset of H .
The following theorem is proved in [].

Theorem . Let H be a Hilbert space and f : H →R be a convex functional. Then
(a) f (x) = minH f (x) if and only if  ∈ ∂f (x).
(b) Let C ⊂ H . Then f (x) = minC f (x) if and only if (–∂f (x) ∩ ∂δC(x)) �= ∅, where δC is

the indicator function of C.

Denote by � the set of solutions of (.). Let us start by the simple case in which f : H →
R is a convex and continuously Fréchet differentiable functional.

By the definition of an indicator function we recall that (see [])

∂δC(x) =

⎧
⎪⎨

⎪⎩

∅, x ∈ H \ C,
, x ∈ C̊,
{x∗ ∈ H : supC〈x∗, x〉 = 〈x∗, x〉}, x ∈ C \ C̊.

(.)

f (·) being Fréchet differentiable, ∂f (x) is a singleton, ∇f (x); hence Theorem .(b) of []
ensures that x ∈ C is a solution of (.) if and only if –∇f (x) ∈ ∂δC(x), i.e.

〈∇f (x), x
〉 ≤ 〈∇f (x), x

〉
, ∀x ∈ C.

In other words x ∈ C is a solution of (.) if and only if

〈∇f (x), x – x
〉 ≥ , ∀x ∈ C. (.)

From (.), for every γ > , x is a solution for (.) if and only if

〈
x –

(
x – γ∇f (x)

)
, x – x

〉 ≥ , ∀x ∈ C, (.)

and, in view of Browder’s characterization of the metric projections PC , to solve (.) is
equivalent to finding x such that

x = PC(I – γ∇f )x.

Therefore, to solve problem (.) (respectively to approximate solutions of (.)) is equiv-
alent to solving (resp. to approximate the solutions of ) a fixed point problem which in-
volves the operator ∇f .

It is well known, by the convexity of the functional f , that the operator ∇f is a monotone
operator; indeed since

f (x) ≥ f (y) +
〈∇f (y), y – x

〉
, ∀x ∈ H ,

f (y) ≥ f (x) +
〈∇f (x), x – y

〉
, ∀y ∈ H ,
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it easily follows that

〈∇f (y) – ∇f (x), y – x
〉 ≥ , ∀x, y ∈ H .

If we assume that ∇f is Lf -lipschitzian then, by Baillon-Haddad’s results [], we have

〈∇f (y) – ∇f (x), y – x
〉 ≥ 

Lf

∥∥∇f (x) – ∇fy
∥∥, ∀x, y ∈ H ,

i.e. ∇f is 
Lf

-inverse strongly monotone.
Under such a hypothesis on ∇f , Takahashi and Toyoda in [] proved that PC(I – 

Lf
∇f )

is a nonexpansive mapping, hence to solve (resp. to approximate a solution of (.)) is
equivalent to finding (resp. to approximate) a fixed point of the nonexpansive mapping
PC(I – 

Lf
∇f ). Xu in  [] showed that, even if � �= ∅, it is not guaranteed that the

natural iteration

xn+ = PC

(
I –


Lf

∇f
)

xn =
(

PC

(
I –


Lf

∇f
))n

x, (.)

strongly converges to a solution of �. An example is given in the following.

Example . [] Following Hundal [], there exist in H = l two closed and convex subset
C and C such that: (i) C ∩ C �= ∅, and (ii) the sequence generated by x ∈ C and the
formula xn = (PC PC )nx weakly converges but it does not strongly converge.

Let f (x) = 
‖x – PC x‖. We deal with minimized f (x) on C. It follows that ∇f (x) =

(I – PC )x. Since PC is firmly nonexpansive, i.e., -inverse strongly monotone, iteration
(.) becomes

xn+ = PC (I – ∇f )xn = PC PC xn,

that is, the sequence generated by (ii).

If we add to the lipschitzianity of ∇f also the (stronger) assumption that ∇f is a σf -
strongly monotone operator, i.e.

〈∇f (y) – ∇f (x), y – x
〉 ≥ σf ‖x – y‖, ∀x, y ∈ H ,

then the mapping PC(I – σf
L

f
∇f ) is a contraction; therefore the contraction principle ensures

that problem (.) has a unique solution x∗ and the iterative sequence

xn+ = PC

(
I –

σf

L
f
∇f

)
xn (.)

strongly converges to x∗.
Notice that, if C = H , PC = I , then the iteration

xn+ =
(

I –
σf

L
f
∇f

)
xn

strongly converges to a zero of ∇f .
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Hence a natural question is how to use the good properties of strongly monotone operators
to find a solution of (.) if ∇f is only lipschitzian.

A well-known approach is to consider a regularized problem; an example is to appeal to
Tikhonov’s regularized problem:

min
x∈C

[
f (x) +

ε


‖x‖

]
,

where ε >  is given.
This approach arises by the following idea: if ∇f is only lipschitzian (for instance non-

expansive), we can perturb problem (.) by a convex and differentiable functional g such
that ∇g is a σg -strongly monotone and Lg -lipschizian operator in such a way that

min
x∈C

f (x) + εg(x). (.)

The operator (∇f + ε∇g) is a lipschizian and a strongly monotone operator, the minu-
mum problem (.) has a unique solution and, for a suitable λ > ,

xn+ = PC
(
I – λ(∇f + ε∇g)

)
xn

strongly converges to this solution.
Let us observe that

xn+ = PC
(
I – λ(∇f + ε∇g)

)
xn = PC(I – λ∇f – λε∇g)xn

= PC

(
λ(I – ∇f ) + ( – λ)

(
I –

λε

( – λ)
∇g

))
xn

= PC
(
λ(I – ∇f ) + ( – λ)(I – γ ε∇g)

)
xn,

i.e. (xn)n∈N is generated by the composition of the projection PC and the convex combina-
tion of two maps: the first is a nonexpansive mapping; the second is a strongly monotone
operator. In fact for an opportune choice of λ (and γ := λ

–λ
), we find the results that

• (I – ∇f ) is a nonexpansive mapping;
• the mapping (I – γ ε∇g) is a contraction.
For these reasons we are interested in the iteration

xn+ = Wn
(
αnSxn + ( – αn)(I – μnD)xn

)
, (.)

under the following hypotheses:
Hypotheses (H)
• (αn)n∈N is a sequence in [, ).
• S : H → H is a nonexpansive mapping not necessarily with fixed points.
• D : H → H is a σ -strongly monotone operator and L-lipschitzian.
•  < μn ≤ μ with μ < σ

L , ρ = σ–μL

 .
• (Wn)n∈N is a sequence of mappings defined on H such that F :=

⋂
n∈N Fix(Wn) �= ∅ and
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(h) Wn : H → H are nonexpansive mappings, uniformly asymptotically regular on
bounded subsets B ⊂ H , i.e.

lim
n→∞ sup

x∈B
‖Wn+x – Wnx‖ = ,

(h) it is possible to define a nonexpansive mapping W : H → H , with
Wx := limn→∞ Wnx such that Fix(W ) = F .

An interesting example of sequence (Wn)n∈N satisfying our hypotheses is the following.

Example . Let f (x) be functional on H convex and lower semicontinuous. We recall
that the proximal operator of f on H is defined as

proxλf (x) := argmin
v∈H

{
f (x) +


λ

‖x – v‖
}

,

where λ > .
The proximal operator obeys:
() it is a single-value firmly nonexpansive mapping (hence nonexpansive);
() it coincides with PC if f (x) = δC(x);
() proxλf = (I + λ∂f )– i.e. it is the resolvent of the subdifferential of f ;
() proxλf x = proxνf ( ν

λ
x + ( – ν

λ
) proxλf x);

()
x∗ = proxλf

(
x∗) ⇔  ∈ ∂f

(
x∗).

If (λn)n∈N converges to λ >  then Wn := proxλnf (x) satisfied (h) and (h) where W :=
proxλf (x). In fact, the set of fixed point coincides by () and (). Moreover, by (),

‖Wn+ – Wnx‖ =
∥∥proxλn+f (x) – proxλnf (x)

∥∥ =

=
∥
∥∥
∥proxλnf

(
λn

λn+
x +

(
 –

λn

λn+

)
proxλn+f x

)
– proxλnf (x)

∥
∥∥
∥

≤
∥∥
∥∥

(
λn

λn+
x +

(
 –

λn

λn+

)
proxλn+f x

)
– x

∥∥
∥∥

=
∣∣
∣∣ –

λn

λn+

∣∣
∣∣‖x – proxλn+f x‖,

so if x lies in a bounded subset, the uniform asymptotical regularity follows.

In any case we have the following.

Remark . If C =
⋂

n∈N Cn, where Cn ⊂ H are closed and convex for all n ∈ N, we can
always suppose that C =

⋂
n∈N Fix(Wn) where (Wn)n∈N is a sequence of nonexpansive

mappings satisfying (h) and (h). Indeed starting by the sequence of nonexpansive map-
pings Tn = PCn we can always construct a sequence (Wn)n∈N such that C =

⋂
n∈N Cn =

⋂
n∈N Fix(Tn) =

⋂
n∈N Fix(Wn) and it satisfies (h) and (h) (see for details [–]).

Moreover, regarding the strongly monotone operator D we note that the sequence of
operators Bnx := (I – μnD)x is a sequence of contractions when the sequence (μn)n∈N lies
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in an opportune interval. Such an interval can be detected by the following lemma, proved
by Kim and Xu.

Lemma . [] Let D : H → H be σ -strongly monotone and L-lipschitzian. If μ < σ

L ,
ρ = σ–μL

 , and (μn)n∈N ⊂ (,μ], then

∥∥(I – μnD)x – (I – μnD)y
∥∥ ≤ ( – μnρ)‖x – y‖,

i.e. (I – μnD) is a ( – μnρ)-contraction.

In this paper we study some asymptotic behaviors of the sequence generated by iteration
(.), supposing that there exists (finite or infinite)

τ := lim
n→∞

αn

μn
.

We will be able to show that (.) strongly converges to a solution of the variational in-
equality

〈
τ (I – S)x + Dx, y – x

〉 ≥ , ∀y ∈ F ,

when τ ∈ [, +∞), and to a special solution of

〈
(I – S)x, y – x

〉 ≥ , ∀y ∈ F ,

if τ = +∞.
Our research is not far from the research area studied by Moudafi and Maingé and also

known as the hierarchical fixed point approach (see [–]).

2 Some asymptotic behaviors of the iterative scheme
To study the asymptotic behavior of our method

xn+ = Wn
(
αnSxn + ( – αn)(I – μnD)xn

)
(.)

we suppose that there exists

τ := lim
n→∞

αn

μn
.

The method can be equivalently written as

xn+ = Wnyn,

where yn := αnSxn + ( – αn)Bnxn and Bn = (I – μnD). We will use the following convenient
notations:

• We say that ζn = o(ηn) if ζn
ηn

→  as n → ∞.
• We say that ζn = O(ηn) if there exist K , N >  such that N ≤ | ζn

ηn
| ≤ K .
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A central role in proving the convergence results is played by the boundedness of the
sequence (xn)n∈N. We want to put its role in evidence. An expected case occurs when there
are common fixed points between S and (Wn)n∈N.

Proposition . Suppose that (.) satisfies Hypotheses (H).
If Fix(S) ∩ F �= ∅ then (xn)n∈N is bounded.

Proof If z ∈ Fix(S) ∩ F

‖xn+ – z‖ ≤ ∥
∥αnSxn + ( – αn)Bnxn – z

∥
∥

≤ αn‖Sxn – z‖ + ( – αn)‖Bnxn – Bnz‖ + ( – αn)‖Bnz – z‖
≤ αn‖xn – z‖ + ( – αn)( – μnρ)‖xn – z‖ + ( – αn)μn‖Dz‖
≤ (

 – ( – αn)μnρ
)‖xn – z‖ + ( – αn)μnρ

‖Dz‖
ρ

. (.)

Calling βn := ( – αn)μnρ we have

‖xn+ – z‖ ≤ ( – βn)‖xn – z‖ + βn
‖Dz‖

ρ
≤ max

{
‖xn – z‖,

‖Dz‖
ρ

}
.

Since, by an inductive process, one can see that

‖xn – z‖ ≤ max

{
‖x – z‖,

‖Dz‖
ρ

}
,

the claim follows. �

Notice that, in this case, boundedness does not depend by any hypotheses on (αn)n∈N,
(μn)n∈N, sequences in [, ].

On the contrary, in the following proposition the boundeness of the sequence is guar-
anteed by the assumption on the coefficients.

Proposition . Let us suppose that (.) satisfies Hypotheses (H). Let (αn)n∈N be a se-
quence in [, ] and let (μn)n∈N be a sequence in (,μ). Assume that

(B) either αn = O(μn) or αn = o(μn) (a sufficient condition is that there exists
limn→∞ αn

μn
= τ ∈ [, +∞)).

Then (xn)n∈N is bounded.

Proof Let z ∈ F . Then for every n ∈N,

‖xn+ – z‖ ≤ ∥∥αnSxn + ( – αn)Bnxn – z
∥∥

≤ αn‖Sxn – Sz‖ + αn‖Sz – z‖ + ( – αn)‖Bnxn – Bnz‖ + ( – αn)‖Bnz – z‖
≤ αn‖xn – z‖ + αn‖Sz – z‖ + ( – αn)( – μnρ)‖xn – z‖ + ( – αn)μn‖Dz‖
≤ (

 – ( – αn)μnρ
)‖xn – z‖ + αn‖Sz – z‖ + ( – αn)μnρ

‖Dz‖
ρ

. (.)
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Since (B) holds, there exist γ >  and N such that, for all n > N, αn ≤ γ ( – αn)μn; hence

‖xn+ – z‖ ≤ (
 – ( – αn)μnρ

)‖xn – z‖ + γ ( – αn)μn‖Sz – z‖ + ( – αn)μnρ
‖Dz‖

ρ

≤ (
 – ( – αn)μnρ

)‖xn – z‖ + ( – αn)μnρ
γ ‖Sz – z‖ + ‖Dz‖

ρ
.

Calling βn := ( – αn)μnρ we have

‖xn+ – z‖ ≤ ( – βn)‖xn – z‖ + βn
γ ‖Sz – z‖ + ‖Dz‖

ρ

≤ max

{
‖xn – z‖,

γ ‖Sz – z‖ + ‖Dz‖
ρ

}
.

Since, by an inductive process, one can see that

‖xn – z‖ ≤ max

{
‖xi – z‖,

‖Dz‖ + γ ‖Sz – z‖
ρ

: i = , . . . , N

}
,

the claim follows. �

It is remarkable that, by boundedness, we can deduce the asymptotical regularity of the
iterative sequence, i.e. that

‖xn+ – xn‖ → , as n → ∞,

which is often a key to prove convergent results when the mappings involved are contin-
uous.

To prove it, we use the Xu lemma.

Lemma . [] Assume (an)n∈N is a sequence of nonnegative numbers such that

an+ ≤ ( – γn)an + δn, n ≥ ,

where (γn)n is a sequence in (, ) and (δn)n is a sequence in R such that:
()

∑∞
n= γn = ∞;

() lim supn→∞ δn/γn ≤  or
∑∞

n= |δn| < ∞.
Then limn→∞ an = .

Proposition . Let Hypotheses (H) be satisfied. We suppose that limn→∞ αn
μn

= τ ∈
[, +∞) and that:

(H)
∑∞

n= μn = ∞ and |μn – μn–| = o(μn);
(H) |αn – αn–| = o(μn);
(H) supz∈B ‖Wnz – Wn–z‖ = o(μn), with B ⊂ H bounded.

Then (xn)n∈N is asymptotically regular.

Remark . Note that, for (Wn)n∈N as in Example ., hypothesis (H) reduces to an hy-
pothesis on (λn)n∈N since

lim
n→∞

‖Wn+x – Wnx‖
μn

= lim
n→∞

|λn+ – λn|
μn

.
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Proof of Proposition . First of all, from Proposition ., (xn)n∈N is bounded.
If we denote by yn = αnSxn + ( – αn)Bnxn then

xn+ – xn = Wnyn – Wn–yn– = Wnyn – Wnyn– + Wnyn– – Wn–yn–,

so, passing to the norm and by using the nonexpansivity of (Wn)n∈N,

‖xn+ – xn‖ ≤ ‖yn – yn–‖ + ‖Wnyn– – Wn–yn–‖. (.)

Now let us observe that

yn – yn– = αn(Sxn – Sxn–) + (αn – αn–)Sxn– + ( – αn)(Bnxn – Bn–xn–)

+ ( – αn)Bn–xn– – ( – αn–)Bn–xn–

= αn(Sxn – Sxn–) + (αn – αn–)(Sxn– – Bn–xn–)

+ ( – αn)(Bnxn – Bn–xn–).

Therefore replacing the last equality in (.) and by using the boundedness of (xn)n∈N, we
obtain

‖xn+ – xn‖ ≤ αn‖Sxn – Sxn–‖ + |αn – αn–|O() + ( – αn)‖Bnxn – Bn–xn–‖
+ ‖Wnyn– – Wn–yn–‖

≤ αn‖xn – xn–‖ + |αn – αn–|O() + ( – αn)‖Bnxn – Bnxn–‖
+ ( – αn)‖Bnxn– – Bn–xn–‖ + ‖Wnyn– – Wn–yn–‖

≤ αn‖xn – xn–‖ + |αn – αn–|O() + ( – αn)( – μnρ)‖xn – xn–‖
+ ( – αn)|μn– – μn|‖Dxn–‖ + ‖Wnyn– – Wn–yn–‖

≤ (
 – ( – αn)ρμn

)‖xn – xn–‖ + ‖Wnyn– – Wn–yn–‖
+

(|αn – αn–| + ( – αn)|μn– – μn|
)
O(). (.)

Denoting

an := ‖xn – xn–‖, γn := ( – αn)ρμn,

δn := ‖Wnyn– + Wn–yn–‖ +
(|αn – αn–| + ( – αn)|μn– – μn|

)
O(),

(.) becomes

an+ ≤ ( – γn)an + δn.

Thus, our hypotheses (H), (H), and (H), are enough to ensure, by Lemma ., that
(xn)n∈N is asymptotically regular. �

Remark . By the previous proof, it is clear that the hypothesis τ ∈ [, +∞) is needed
only to ensure the boundedness of (xn)n∈N. So, more in general, boundedness, (H), (H),
and (H) are enough to prove asymptotical regularity.
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From now on we will suppose that μn → , as n → ∞; then, since τ is nonnegative,
either αn → , as n → ∞, or αn = .

Since we are searching for solutions of variational inequalities on fixed points sets, we
show some sufficient condition for which the set of weak limits of (xn)n∈N lies in F .

Proposition . Let Hypotheses (H) satisfied. Let us suppose that limn→∞ αn =
limn→∞ μn = . Let us suppose limn→∞ αn

μn
= τ ∈ [, +∞) and let (xn)n∈N defined by (.)

be asymptotically regular. Then ωw(xn) ⊂ F .

Proof The proof is based on Opial’s condition. The condition on τ gives the boundedness
of our sequence by Proposition ..

Let thus z ∈ ωw(xn) and let (xnk )k∈N be a subsequence weak convergent to z. If z /∈ F then
z �= Wz and

lim inf
k→∞

‖xnk – z‖ < lim inf
k→∞

‖xnk – Wz‖

≤ lim inf
k→∞

[‖xnk – xnk +‖ + ‖xnk + – Wz‖]

≤ (
by asymptotical regularity of (xn)n∈N

)

≤ lim inf
k→∞

[‖Wnk ynk – Wnk z‖ + ‖Wnk z – Wz‖]

(
by condition (h) on (Wn)n∈N

) ≤ lim inf
k→∞

‖ynk – z‖
(since αn → ) ≤ lim inf

k→∞
( – αnk )‖Bnk xnk – z‖

= lim inf
k→∞

( – αnk )‖xnk – μnk Dxnk – z‖

≤ lim inf
k→∞

[‖xnk – z‖ + μnk ‖Dxnk ‖
]
.

Therefore, the boundedness of (xn)n∈N, along with the hypothesis μn → , produces the
contradiction

lim inf
k→∞

‖xnk – z‖ < lim inf
k→∞

‖xnk – Wz‖ ≤ lim inf
k→∞

‖xnk – z‖. �

Now we are able to prove our first convergence result.

Theorem . Let Hypotheses (H) be satisfied. Let us suppose that μn →  and there exists

lim
n→∞

αn

μn
= τ ∈ [, +∞).

Moreover, suppose that
(H)

∑∞
n= μn = ∞ and |μn – μn–| = o(μn);

(H) |αn – αn–| = o(μn);
(H) supz∈B ‖Wnz – Wn–z‖ = o(μn), with B ⊂ H bounded.

Then (xn)n∈N defined by (.) strongly converges in F to x∗, that is, the unique solution of
the variational inequality problem

〈
τ (I – S)x + Dx, y – x

〉 ≥ , ∀y ∈ F . (.)
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Proof Recall that, since S is nonexpansive, (I – S) is 
 -inverse strongly monotone, so the

operator (τ (I – S) + D) is a strongly monotone operator. Since F is closed and convex,
problem (.) has a unique solution in F , which we indicate by x∗.

The hypotheses on τ furnish, by Proposition ., the boundedness of (xn)n∈N. Then, in
view of hypotheses (H), (H), and (H), we can apply Proposition . to obtain asymptot-
ical regularity. This allows one to apply Proposition . to get ωw(xn) ⊂ F . So, let x∗ ∈ F ,
the unique solution of (.); by using the convexity of the norm and the subdifferential
inequality

‖x + y‖ ≤ ‖x‖ + 〈y, x + y〉, ∀x, y ∈ H ,

we have, denoting again Bn = (I – μnD),

∥∥xn+ – x∗∥∥ ≤ ∥∥αn
(
Sxn – x∗) + ( – αn)

(
Bnxn – x∗)∥∥

=
∥
∥αn

(
Sxn – Sx∗) + αn

(
Sx∗ – x∗) + ( – αn)

(
Bnxn – Bnx∗)

+ ( – αn)
(
Bnx∗ – x∗)∥∥

=
∥∥αn

(
Sxn – Sx∗) + ( – αn)

(
Bnxn – Bnx∗)

–
(
αn(I – S)x∗ + ( – αn)μnDx∗)∥∥

≤ αn
∥∥xn – x∗∥∥ + ( – αn)( – μnρ)

∥∥xn – x∗∥∥

– 
〈(
αn(I – S)x∗ + ( – αn)μnDx∗), xn+ – x∗〉

=
(
 – ( – αn)μnρ

)∥∥xn – x∗∥∥

– ( – αn)μn

〈
αn

( – αn)μn
(I – S)x∗ + Dx∗, xn+ – x∗

〉
. (.)

Denoting by

an =
∥
∥xn – x∗∥∥, γn = ( – αn)μnρ,

δn = –

ρ

〈
αn

( – αn)μn
(I – S)x∗ + Dx∗, xn+ – x∗

〉
,

(.) can be written an+ ≤ ( – γn)an + γnδn.
To invoke the Xu Lemma ., since

∑
n γn = ∞ from (H), we need to prove only that

lim supn→∞ δn ≤ .
There exists a subsequence (xnk )k∈N of (xn)n∈N such that

lim sup
n→∞

δn = lim sup
n→∞

〈
αn

( – αn)μn
(I – S)x∗ + Dx∗, x∗ – xn+

〉

= lim
k→∞

〈
αnk

( – αnk )μnk

(I – S)x∗ + Dx∗, x∗ – xnk +

〉
.

Since (xnk )k∈N is bounded, we can suppose that (xnk )k∈N weakly converges to p. Proposi-
tion . gives p ∈ F . By using the asymptotical regularity of (xn)n∈N we have
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lim sup
n→∞

〈
αn

( – αn)μn
(I – S)x∗ + Dx∗, x∗ – xn+

〉

= lim
k→∞

〈
αnk

( – αnk )μnk

(I – S)x∗ + Dx∗, x∗ – xnk +

〉

= lim
k→∞

[〈
αnk

( – αnk )μnk

(I – S)x∗ + Dx∗, x∗ – xnk

〉

+
〈

αnk

( – αnk )μnk

(I – S)x∗ + Dx∗, xnk – xnk +

〉]

= lim
k→∞

〈
αnk

( – αnk )μnk

(I – S)x∗ + Dx∗, x∗ – xnk

〉

=
〈
τ (I – S)x∗ + Dx∗, x∗ – p

〉 ≤ 
(
since x∗ is the solution of (.)

)
. �

Remark . Let us remark that, in the study of the behavior of (xn)n∈N for τ ∈ [, +∞), the
set of fixed points of S never appears; all the properties, including the strong convergence,
have been proved only by the hypotheses on the control sequences.

Let us now suppose limn→∞ αn
μn

= τ = +∞. In this case, necessarily μn →  as n → ∞.
Therefore either αn → α >  or αn →  too and μn = o(αn).

By Proposition ., if Fix(S) ∩ F is nonempty, the boundedness of (xn)n∈N follows. On
the contrary, if there are no common fixed points, the boundedness is not guaranteed as
shown by the following counterexample.

Example . Let us consider H = R, x = , Wnx = Dx = x, Sx = x+, αn = √
n , and μn = 

n .
Our method gives the positive number sequence:

xn+ =
√
n

(xn + ) +
(

 –
√
n

)(
 –


n

)
xn.

If there exists M >  such that xn < M then we note that, for every k,

xk+ – xk =
xk√

k
+

√
k

+
(

 –
√
k

)(
 –


k

)
xk – xk

=
√
k

–
xk

k

(
 –

√
k

)
� √

k
–

M
k

>
√
k

(
 –

M√
k

)
=

√
k

,

and this is in contradiction with the boundedness of (xn)n∈N.

Nevertheless, we explicitly note that if Wn = PC and there exist solutions of the varia-
tional inequality problem

〈
(I – S)x, y – x

〉 ≥ , ∀y ∈ C,

then the boundedness is ensured even if F ∩ Fix(S) = ∅. This is shown in the following
proposition.
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Proposition . Let C be a closed and convex subset of H . Let us suppose that the varia-
tional inequality problem

〈
(I – S)x, y – x

〉 ≥ , ∀y ∈ C,

has at least a solution x∗. Then the sequence defined by

xn+ = PC
(
αnSxn + ( – αn)Bnxn

)

is bounded.

Proof We know that, for all η ∈ (, ], we have

x∗ = PC
(
ηSx∗ + ( – η)x∗). (.)

Taking Wn = PC , we have

∥∥xn+ – x∗∥∥ ≤ ∥∥PC
(
αnSxn + ( – αn)Bnxn

)
– PC

(
αnSx∗ + ( – αn)Bnx∗)∥∥

+
∥∥PC

(
αnSx∗ + ( – αn)Bnx∗) – x∗∥∥ (

as in Proposition . in (.)
)

≤ (
 – ( – αn)μnρ

)∥∥xn – x∗∥∥

+
∥
∥PC

(
αnSx∗ + ( – αn)Bnx∗) – x∗∥∥ (

taking η = αn in (.)
)

≤ (
 – ( – αn)μnρ

)∥∥xn – x∗∥∥

+
∥
∥PC

(
αnSx∗ + ( – αn)Bnx∗) – PC

(
αnSx∗ + ( – αn)x∗)∥∥

≤ (
 – ( – αn)μnρ

)∥∥xn – x∗∥∥ + ( – αn)μnρ
‖Dx∗‖

ρ
.

So the boundedness follows as in Proposition .. �

Therefore it is meaningful to prove convergence results if Fix(S) ∩ F �= ∅.

Theorem . Let Hypotheses (H) satisfied. Let us suppose that

lim
n→∞μn = , lim

n→∞αn = α ∈ [, ), lim
n→∞

αn

μn
= τ = +∞,

and Fix(S) ∩ F �= ∅. Moreover, suppose that:
(Hs)

∑∞
n= μn = ∞ and |μn – μn–| = o(αnμn);

(Hs) |αn – αn–| = o(αnμn);
(Hs) supz∈B ‖Wnz – Wn–z‖ = o(αnμn), with B ⊂ H bounded.
(H) | 

αn
– 

αn–
| = O(μn).

(Note that (Hs), (Hs), (Hs) are stronger than (H), (H), (H) of Theorem ..)
Then (xn)n∈N defined by (.) strongly converges to x̄ ∈ F ∩ Fix(S), that is, the unique

solution of the variational inequality problem

〈Dx, y – x〉 ≥ , ∀y ∈ F ∩ Fix(S). (.)
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Remark . Note that, if αn → α > , the requirements (Hs), (Hs), (Hs) reduce to
(H), (H), (H).

Proof If Fix(S)∩F �= ∅, (xn)n∈N is bounded by Proposition .. Since (Hs)-(Hs)-(Hs) im-
ply (H)-(H)-(H), by using Proposition ., we see that (xn)n∈N is asymptotically regular.
Let us divide the proof in steps.

Step . ‖xn+ – xn‖ = o(αn).

Proof of Step  We need to prove that

lim
n→∞

‖xn+ – xn‖
αn

= .

If αn → α >  we do not need to prove anything; so let α = . Dividing by αn in (.) of
Proposition . we have

‖xn+ – xn‖
αn

≤ (
 – ( – αn)ρμn

)‖xn – xn–‖
αn

+
‖Wnyn– + Wn–yn–‖

αn

+
(|αn – αn–| + ( – αn)|μn– – μn|)

αn
O()

=
(
 – ( – αn)ρμn

)‖xn – xn–‖
αn

± (
 – ( – αn)ρμn

)‖xn – xn–‖
αn–

+
‖Wnyn– + Wn–yn–‖

αn
+

(|αn – αn–| + ( – αn)|μn– – μn|)
αn

O()

≤ (
 – ( – αn)ρμn

)‖xn – xn–‖
αn–

+
∣∣
∣∣


αn

–


αn–

∣∣
∣∣‖xn – xn–‖

+
‖Wnyn– + Wn–yn–‖

αn
+

(|αn – αn–| + ( – αn)|μn– – μn|)
αn

O().

The boundedness of (xn)n∈N and (H) give

‖xn – xn+‖
αn

≤ (
 – ( – αn)ρμn

)‖xn – xn–‖
αn–

+ O(μn)‖xn– – xn‖

+
‖Wnyn– + Wn–yn–‖

αn
+

(|αn – αn–| + |μn– – μn|)
αn

O(),

so denoting

an =
‖xn – xn–‖

αn–
, γn = ( – αn)μnρ,

δn =
[

O(μn)‖xn– – xn‖ +
‖Wnyn– + Wn–yn–‖

αn
+

(|αn – αn–| + |μn– – μn|)
αn

]
O(),

our inequality can be written as an+ ≤ ( – γn)an + δn. In view of (Hs), (Hs), and (Hs),
we can apply the Xu Lemma . to conclude that ‖xn+ – xn‖ = o(αn). �
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Step . ωw(xn) ⊂ F ∩ Fix(S).

Proof of Step  Let z ∈ F ∩ Fix(S); then by the boundedness and the subdifferential in-
equality

‖xn+ – z‖ ≤ ∥∥αn(Sxn – z) + ( – αn)(Bnxn – z)
∥∥

≤ ∥∥αn(Sxn – z) + ( – αn)(xn – z)
∥∥ – μn〈Dxn, xn+ – z〉

≤ αn‖Sxn – z‖ + ( – αn)‖xn – z‖ – αn( – αn)‖Sxn – xn‖

+ μn〈Dxn, z – xn+〉
≤ ‖xn – z‖ – αn( – αn)‖Sxn – xn‖ + μnO(),

we have

αn( – αn)‖Sxn – xn‖ ≤ ‖xn – z‖ – ‖xn+ – z‖ + μnO()

≤ ‖xn – xn+‖O() + μnO().

Dividing by αn we obtain

( – αn)‖Sxn – xn‖ ≤ ‖xn – xn+‖
αn

O() + 
μn

αn
O().

Since τ = +∞ and by using Step , ‖xn –Sxn‖ → , as n → ∞, the demiclosedness principle
for nonexpansive mappings guarantees that ωw(xn) ⊂ Fix(S). By Opial’s condition, if z ∈
ωw(xn) ⊂ Fix(S), (xnk )k∈N weakly converges to z and z /∈ F then

lim inf
k→∞

‖xnk – z‖ < lim inf
k→∞

‖xnk – Wz‖

≤ lim inf
k→∞

[‖xnk – xnk +‖ + ‖xnk + – Wz‖]

≤ lim inf
k→∞

[‖xnk – xnk +‖ + ‖Wnk ynk – Wnz‖ + ‖Wnk z – Wz‖]

≤ lim inf
k→∞

[‖xnk – xnk +‖ + ‖ynk – z‖ + ‖Wnk z – Wz‖]

≤ lim inf
k→∞

[‖xnk – xnk +‖ + αnk ‖xnk – z‖

+ ( – αnk )‖Bnk xnk – z‖ + ‖Wnk z – Wz‖]

≤ lim inf
k→∞

[‖xnk – xnk +‖ + ‖xnk – z‖

+ ( – αnk )μnk ‖Dxnk ‖ + ‖Wnk z – Wz‖]

≤ lim inf
k→∞

‖xnk – z‖,

which is absurd. So we have ωw(xn) ⊂ F ∩ Fix(S). �

Finally we conclude our proof, showing the convergence of the sequence.
Step . (xn)n∈N strongly converges to x̄ satisfying (.).
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Proof of Step  Let x̄ the unique solution of the variational inequality problem (.). Since
x̄ ∈ F ∩ Fix(S), we have

‖xn+ – x̄‖ ≤ ∥
∥αn(Sxn – x̄) + ( – αn)(Bnxn – x̄)

∥
∥

=
∥∥αn(Sxn – x̄) + ( – αn)(Bnxn – Bnx̄) + ( – αn)(Bnx̄ – x̄)

∥∥

=
∥
∥αn(Sxn – x̄) + ( – αn)(Bnxn – Bnx̄) – ( – αn)μnDx̄

∥
∥

≤ αn‖xn – x̄‖ + ( – αn)( – μnρ)‖xn – x̄‖ – 
〈
( – αn)μnDx̄, xn+ – x̄

〉

=
(
 – ( – αn)μnρ

)‖xn – x̄‖ – ( – αn)μn〈Dx̄, xn+ – x̄〉.

Denoting

an = ‖xn – x̄‖, γn = ( – αn)μnρ, δn = 〈Dx̄, x̄ – xn+〉,

our inequality can be written as

an+ ≤ ( – γn)an +

ρ

γnδn.

To invoke the Xu Lemma . we need to prove that lim supn→∞ δn ≤ .
There exists a subsequence (xnk )k∈N of (xn)n∈N such that

lim sup
n→∞

〈Dx̄, x̄ – xn+〉 = lim
k→∞

〈Dx̄, x̄ – xnk +〉.

Since (xnk )k∈N is bounded, we suppose that (xnk )k∈N weakly converges to p. Step  guaran-
tees that p ∈ F ∩ Fix(S). By using the asymptotical regularity of (xnk )k∈N we have

lim sup
n→∞

〈Dx̄, x̄ – xn+〉 = lim
k→∞

〈Dx̄, x̄ – xnk +〉

= lim
k→∞

[〈Dx̄, x̄ – xnk 〉 + 〈Dx̄, xnk – xnk +〉
]

= lim
k→∞

〈Dx̄, x̄ – xnk 〉

= 〈Dx̄, x̄ – p〉 ≤ . �
�

Theorem . Let Hypotheses (H). Let us suppose that

lim
n→∞μn = lim

n→∞αn =  and τ = lim
n→∞

αn

μn
= +∞.

Let us suppose that (xn)n∈N is bounded. Moreover, suppose that
(Hs)

∑∞
n= μn = ∞ and |μn – μn–| = o(αnμn);

(Hs) |αn – αn–| = o(αnμn);
(Hs) supz∈B ‖Wnz – Wn–z‖ = o(αnμn), with B ⊂ H bounded;
(H) | 

αn
– 

αn–
| = O(μn).

Let �̄ be the set of solutions of the variational inequality problem

〈
(I – S)x, y – x

〉 ≥ , ∀y ∈ F , (.)

and let us suppose that �̄ �= ∅.
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Then (xn)n∈N defined by (.) strongly converges to x̃, that is, the unique solution of the
variational inequality problem

〈Dx, y – x〉 ≥ , ∀y ∈ �̄. (.)

Proof Since �̄ coincides with the set of fixed point of the nonexpansive mapping PF S, it
is closed and convex. So (.) has a unique solution.

Let us note that (Hs)-(Hs)-(Hs) imply (H)-(H)-(H); hence, by using Proposi-
tion ., (xn)n∈N is asymptotically regular. We divide the proof in steps.

Step . ‖xn+ – xn‖ = o(αn).

Proof As for Step  of Theorem .. �

Step . ωw(xn) ⊂ �̄.

Proof of Step  Denoting by yn = αnSxn + ( – αn)Bnxn, we have

xn – yn = xn – αnSxn – ( – αn)(xn – μnDxn)

= xn – αnSxn – ( – αn)xn + ( – αn)μnDxn)

= αn(I – S)xn + ( – αn)μnDxn. (.)

Hypotheses αn →  and μn →  allow one to conclude that ‖xn – yn‖ → . As a rule

‖yn – Wnyn‖ ≤ ‖yn – xn‖ + ‖xn – Wnyn‖ = ‖yn – xn‖ + ‖xn – xn+‖ → ,

as n → ∞. Moreover,

xn – xn+ = xn – Wnyn = (xn – yn) + (yn – Wnyn)

= αn(I – S)xn + ( – αn)(xn – Bnxn) + (I – Wn)yn

= αn(I – S)xn + ( – αn)μnDxn + (I – Wn)yn.

Dividing by αn we have

wn :=
xn – xn+

αn
= (I – S)xn +

( – αn)μn

αn
Dxn +


αn

(I – Wn)yn.

For all z ∈ F ,

〈wn, xn – z〉 =
〈
(I – S)xn, xn – z

〉
+

( – αn)μn

αn
〈Dxn, xn – z〉

+

αn

〈
(I – Wn)yn, xn – z

〉 (
by monotonicity of (I – S)

)

≥ 〈
(I – S)z, xn – z

〉
+

( – αn)μn

αn
〈Dxn, xn – z〉

+

αn

〈
(I – Wn)yn, xn – yn

〉
+


αn

〈
(I – Wn)yn, yn – z

〉
.
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Since z ∈ F , z = Wnz for all n ∈N, and (I – Wn) is monotone:

〈wn, xn – z〉 ≥ 〈
(I – S)z, xn – z

〉
+

( – αn)μn

αn
〈Dxn, xn – z〉

+

αn

〈
(I – Wn)yn, xn – yn

〉
+


αn

〈
(I – Wn)yn + (I – Wn)z, yn – z

〉

≥ 〈
(I – S)z, xn – z

〉
+

( – αn)μn

αn
〈Dxn, xn – z〉 +


αn

〈
(I – Wn)yn, xn – yn

〉
.

By using (.)

〈wn, xn – z〉 ≥ 〈
(I – S)z, xn – z

〉
+

( – αn)μn

αn
〈Dxn, xn – z〉

+
〈
(I – Wn)yn, (I – S)xn

〉
+

( – αn)μn

αn

〈
(I – Wn)yn, Dxn

〉
.

Let us denote by (xnk )k∈N a subsequence weakly converging to p; by the same proof as
Proposition . one can see that the boundedness of (xn), combined with the assumptions
μn →  and αn → , is enough to guarantee that p ∈ F . We have

〈wnk , xn – z〉 ≥ 〈
(I – S)z, xnk – z

〉
+

( – αnk )μnk

αnk

〈Dxnk , xnk – z〉

+
〈
(I – Wnk )ynk , (I – S)xnk

〉
+

( – αnk )μnk

αnk

〈
(I – Wnk )ynk , Dxnk

〉
.

Passing k → ∞, since wn →  by Step , ‖(I – Wn)yn‖ →  and τ = +∞, we have

 ≥ 〈
(I – S)z, p – z

〉
, ∀z ∈ F .

If we replace z by p + η(z – p), η ∈ (, ), we have

〈
(I – S)

(
p + η(z – p)

)
, p – z

〉 ≤ .

Letting η → , finally,

〈
(I – S)p, p – z

〉 ≤ , ∀z ∈ F ,

i.e. the claim follows. �

Step . Convergence of the sequence.

Proof of Step  Let x̃ be the unique solution of the variational inequality problem (.).
As in Theorem . we have

‖xn+ – x̃‖ ≤ (
 – ( – αn)μnρ

)‖xn – x̃‖

– ( – αn)μn

〈
αn

( – αn)μn
(I – S)x̃ + Dx̃, xn+ – x̃

〉
.
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Denoting

an = ‖xn – x̃‖, γn = ( – αn)μnρ,

δn =

ρ

〈
αn

( – αn)μn
(I – S)x̃ + Dx̃, x̃ – xn+

〉
,

our inequality can be written as

an+ ≤ ( – γn)an +

ρ

γnδn.

To invoke the Xu Lemma . we need to prove that lim supn→∞ δn ≤ .
There exists a subsequence (xnk )k∈N of (xn)n∈N such that

lim sup
n→∞

〈
αn

( – αn)μn
(I – S)x̃ + Dx̃, x̃ – xn+

〉
= lim

k→∞

〈
αnk

( – αnk )μnk

(I – S)x̃ + Dx̃, x̃ – xnk +

〉
.

Since (xnk )k∈N is bounded, we can suppose that (xnk )k∈N weakly converges to p. We know,
by Step , that p ∈ � ⊂ F . By using the asymptotical regularity of (xn)n∈N we have

lim sup
n→∞

〈
αn

( – αn)μn
(I – S)x̃ + Dx̃, x̃ – xn+

〉

= lim
k→∞

〈
αnk

( – αnk )μnk

(I – S)x̃ + Dx̃, x̃ – xnk +

〉

= lim
k→∞

[〈
αnk

( – αnk )μnk

(I – S)x̃ + Dx̃, x̃ – xnk

〉

+
〈

αnk

( – αnk )μnk

(I – S)x̃ + Dx̃, xnk – xnk +

〉]

= lim
k→∞

〈
αnk

( – αnk )μnk

(I – S)x̃ + Dx̃, x̃ – xnk

〉
.

Since τ = ∞, p ∈ F , and x̃ ∈ �,

〈
(I – S)x̃, x̃ – xnk

〉 → 〈
(I – S)x̃, x̃ – p

〉 ≤ .

Moreover, since p ∈ � and x̃ is the solution of (.)

〈Dx̃, x̃ – xnk 〉 → 〈Dx̃, x̃ – p〉 ≤ ,

so we have

lim
k→∞

〈
αnk

( – αnk )μnk

(I – S)x̃ + Dx̃, x̃ – xnk

〉
≤ ,

and the claim is proved. �
�

Before we show some applications, we would like to focus on some open questions.
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Open Question  Since F ∩ Fix(S) ⊂ �̄, we conjecture that the solution of (.) is a solu-
tion of (.) too, i.e. if F ∩ Fix(S) �= ∅, x̄ of Theorem . coincides with x̃ of Theorem ..

Open Question  As we have seen in the above, Proposition ., the existence of solu-
tions of the variational inequality problem

〈
(I – S)x, y – x

〉 ≥ , ∀y ∈ C,

implies the boundedness of the sequence generated by

xn+ = PC

(
I – αn

(
(I – S) +

( – αn)μn

αn
D

))
xn.

By Proposition ., if Fix(S) ∩ F �= ∅, our method

xn+ = Wn
(
αnSxn + ( – αn)(I – μnD)xn

)

is bounded. We do not know if the existence of solutions of

〈
(I – S)x, y – x

〉 ≥ , ∀y ∈ F ,

implies the boundedness of the sequence generated by

xn+ = Wn
(
αnSxn + ( – αn)(I – μnD)xn

)

(i.e., in general, when Wn replaces PC).

3 Applications
Let f (x) and g(x) be functionals convex and Fréchet differentiable. Let ∇f be Lf -lipschitzian
and let ∇g be σg -strongly monotone and Lg -lipschitzian. Let us consider

min
C

(
f (x) + εg(x)

)
,

where ε >  is given and C is a closed and convex subset of H . Without loss of generality we
can suppose that C =

⋂
n∈N Fix(Wn) with (Wn)n∈N is an opportune nonexpansive mapping,

We have the following.

Theorem . Pick two sequences such that (μn)n∈N ⊂ (, σg
L

g
) and

lim
n→∞

αn

μn
=


ε

,

where μn → , as n → ∞, and
(H)

∑∞
n= μn = ∞ and |μn – μn–| = o(μn);

(H) |αn – αn–| = o(μn);
(H) supz∈B ‖Wnz – Wn–z‖ = o(μn), with B ⊂ H bounded.
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Then (xn)n∈N generated by

xn+ = Wn

(
αn

(
I –


Lf

∇f
)

(xn) + ( – αn)
(

I –
μn

Lf
∇g

)
(xn)

)

strongly converges to x∗, that is, the unique solution of the variational inequality problem

〈∇f (x) + ε∇g(x), y – x
〉 ≥ , ∀y ∈ C. (.)

Proof The proof follows by Theorem . since (I – 
Lf

∇f ) is nonexpansive and ( 
Lf

∇g) is a
strongly monotone and lipschitzian operator. �

Choosing μn = 
n we immediately obtain the following.

Corollary . The sequence generated by

xn+ = Wn

(
I –


nLf

(
∇f (xn) +

(
 –


n

)∇g(xn)
ε

))

strongly converges to x∗, that is, the unique solution of the variational inequality problem

〈∇f (x) + ε∇g(x), y – x
〉 ≥ , ∀y ∈ C. (.)

Following [], let f (x) = 
‖Ax–b‖ where A is a linear and bounded operator and b ∈ H .

Let g(x) = 
‖x‖. The next corollary easily follows.

Corollary . The (xn)n∈N generated by

xn+ = Wn

(
I –


n‖A‖

(
A∗Axn + A∗b +

(
 –


n

)
xn

ε

))
,

strongly converges to x∗, that is, the unique solution of the variational inequality problem

〈
A∗Ax + A∗b + εx, y – x

〉 ≥ , ∀y ∈ C, (.)

i.e. x∗ is the unique solution of

min
C



‖Ax – b‖ +



ε‖x‖.

Let us consider a least absolute shrinkage and selection operator, called briefly the lasso
problem. Let H = R

n; the lasso problem is the minimization problem defined as

min
C



‖Ax – b‖

 +


‖x‖,

where A is a m×n matrix, x ∈R
n, b ∈R

m []. We consider a lasso problem with solutions.
This ill-posed problem can be regularized as

min
Rn



‖Ax – b‖

 + γ ‖x‖ +


ε‖x‖

 + δC(x).

This regularization, called an elastic net, is studied in [].
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Taking in account Example . the proximal operator of ‖ · ‖ on R
n is defined as

proxγ ‖·‖ (x) := argmin
v∈Rn

{
γ ‖x‖ +



‖x – v‖

}
.

In [] the author proved the following.

Proposition . [] If g is a convex and Fréchet differentiable functional on H , a point
x∗ is a solution of the lasso problem if and only if

x∗ = proxλf (I – λ∇g)x∗.

Thus, by Theorem ., we have the following.

Theorem . Pick two sequences such that

lim
n→∞

αn

μn
= 

and μn → , as n → ∞. Moreover, suppose that
(H)

∑∞
n= μn = ∞ and |μn – μn–| = o(μn);

(H) |αn – αn–| = o(μn).
Then (xn)n∈N generated by

xn+ = PC
(
αn proxγ ‖·‖

(
I – A∗A + A∗b

)
xn + ( – αn)( – μn)xn

)

strongly converges to x∗ ∈ C, that is, the unique solution of

〈x, y – x〉 ≥ , ∀y ∈ Fix
(
proxγ ‖·‖

(
I – A∗A + A∗b

)) ∩ C,

i.e. the solution of the lasso problem with minimum ‖ · ‖-norm solution.

Proof It is enough to choose S = proxγ ‖·‖ (I – A∗A + A∗b), PC . �

By Theorem ., one can prove the following.

Theorem . Pick u ∈ H . Let μn = 
n and αn = α > . Let (Wn)n∈N such that supz∈B ‖Wnz –

Wn–z‖ = o( 
n ), with B ⊂ H bounded. Then (xn)n∈N generated by

xn+ = Wn
(
α proxγ ‖·‖

(
I – A∗A + A∗b

)
xn + ( – α)

(
μnu + ( – μn)xn

))

strongly converges to x∗, that is, the unique solution of the variational inequality problem

〈x – u, y – x〉 ≥ , ∀y ∈ F ∩ Fix
(
proxγ ‖·‖

(
I – A∗A + A∗b

))
, (.)

i.e. the solution of the lasso problem nearest to u.
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