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Abstract
The main purpose of this paper is to derive some criteria for concave conformal
mappings.
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1 Introduction
A conformal, meromorphic function f on the punctured unit disk

U
∗ :=

{
z ∈C :  < |z| < 

}
=: U\{}

is said to be a concave mapping if f (U∗) is the complement of a compact, convex set.
Let � denote the class of analytic functions of the form

f (z) =

z

+
∞∑

k=

bkzk (
z ∈U

∗), (.)

then the necessary and sufficient condition for f to be a concave mapping is

 + �
(

zf ′′(z)
f ′(z)

)
<  (z ∈U), (.)

where

zf ′′(z)
f ′(z)

= – – bz – bz –
(
b + b


)
z – · · · .

Recently, Bhowmik et al. [], Chuaqui et al. [], Ibrahim and Sokół [] derived some
interesting properties of concave conformal mappings. In this paper, we aim at proving
several criteria for the function f ∈ � to be a concave mapping.

To prove our main results, we need the following two lemmas.

Lemma . (Jack’s lemma []) Let h(z) = anzn + an+zn+ + · · · be a non-constant analytic
function in U. If |h(z)| attains its maximum value on the circle |z| = r < , then

zh′(z) = kh(z),

where k is a real number with k ≥ n.
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Lemma . (See []) Let � be a set in the complex planeC and suppose that � is a mapping
from C

 × U to C which satisfies �(ix, y; z) /∈ � for z ∈ U and for all real x, y such that
y ≤ – +x

 . If the function p(z) =  + cz + cz + · · · is analytic in U and �(p(z), zp′(z); z) ∈ �

for all z ∈ U, then �(p(z)) > .

2 Main results
We first give the following result.

Theorem . Suppose that f ∈ � with (zf ′(z))′ 	= . If f satisfies the condition

∣∣∣∣
zf ′′(z)
f ′(z)

–
z(f ′′(z) + zf ′′′(z))

f ′(z) + zf ′′(z)

∣∣∣∣ < λ

(
 < λ ≤ 



)
, (.)

then f is concave in U
∗.

Proof Assume that

φ(z) :=
( – λ) f ′(z)

f ′(z)+zf ′′(z) + 
λ

– 
(

 < λ ≤ 


; z ∈U

)
. (.)

Then the function φ is analytic in U with φ() = . From (.), we know that

f ′(z)
f ′(z) + zf ′′(z)

=
λφ(z) + λ – 

 – λ
. (.)

By differentiating both sides of (.) with respect to z logarithmically, we get

zf ′′(z)
f ′(z)

–
z(f ′′(z) + zf ′′′(z))

f ′(z) + zf ′′(z)
=

λzφ′(z)
λφ(z) + λ – 

. (.)

From (.) and (.), we find that

∣∣∣∣
zf ′′(z)
f ′(z)

–
z(f ′′(z) + zf ′′′(z))

f ′(z) + zf ′′(z)

∣∣∣∣ = λ

∣∣∣∣
λzφ′(z)

λφ(z) + λ – 

∣∣∣∣ < λ. (.)

Now, we can claim that |φ(z)| < . If not, there exists a point z ∈U such that

max
|z|≤|z|

∣∣φ(z)
∣∣ =

∣∣φ(z)
∣∣ = .

By Lemma ., we know that

zφ
′(z) = kφ(z) = keiθ ( ≤ θ < π ; k ≥ ). (.)

For z = z, we find from (.) and (.) that

∣∣∣∣
zf ′′(z)

f ′(z)
–

z(f ′′(z) + zf ′′′(z))
f ′(z) + zf ′′(z)

∣∣∣∣ = λ

∣∣∣∣
k

λ + (λ – )e–iθ

∣∣∣∣ ≥ λ. (.)



Wang and Li Journal of Inequalities and Applications  (2015) 2015:119 Page 3 of 6

But (.) contradicts (.). Thus, we deduce that |φ(z)| < , which implies that

∣∣∣∣
( – λ) f ′(z)

f ′(z)+zf ′′(z) + 
λ

– 
∣∣∣∣ < , (.)

or equivalently,

∣∣∣∣
f ′(z)

f ′(z) + zf ′′(z)
+ 

∣∣∣∣ <
λ

 – λ
. (.)

From (.), we get

�
(

 +
zf ′′(z)
f ′(z)

)
< λ –  < 

(
 < λ ≤ 



)
,

which shows that the function f is concave in U
∗. �

Theorem . Suppose that f ∈ � with f ′(z) 	= . If f satisfies the inequality

�
(

z[(f ′′(z) + zf ′′′(z))f ′(z) – z(f ′′(z))]
f ′(z)(zf ′′(z) + f ′(z))

)
< , (.)

then f is concave in U
∗.

Proof Define the function ϕ(z) by

ϕ(z) :=
zf ′′(z)
f ′(z)

+  (z ∈U). (.)

It is easy to see that

ϕ(z) = –bz – bz –
(
b + b


)
z – · · ·

is analytic in U with ϕ() = ϕ′() = . From (.), we obtain

zf ′′(z)
f ′(z)

+  =  + ϕ(z) (z ∈U). (.)

Taking logarithmical derivatives of both sides of (.) with respect to z, we get

z[(f ′′(z) + zf ′′′(z))f ′(z) – z(f ′′(z))]
f ′(z)(zf ′′(z) + f ′(z))

=
zϕ′(z)

 + ϕ(z)
. (.)

We now show that |ϕ(z)| < . If not, there exists a point z ∈U such that

max
|z|≤|z|

∣∣ϕ(z)
∣∣ =

∣∣ϕ(z)
∣
∣ = .

By Jack’s lemma, we know that

zϕ
′(z) = kϕ(z) = keiθ ( ≤ θ < π ; k ≥ ). (.)
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For z = z, we have

�
(

z[(f ′′(z) + zf ′′′(z))f ′(z) – z(f ′′(z))]
f ′(z)(zf ′′(z) + f ′(z))

)

= �
(

zϕ
′(z)

 + ϕ(z)

)
= �

(
keiθ

 + eiθ

)
≥ k


≥ . (.)

But (.) is a contradiction to condition (.), which implies that |ϕ(z)| < . Conse-
quently, we deduce from (.) that

�
(

 +
zf ′′(z)
f ′(z)

)
= �(

ϕ(z)
)

–  ≤ ∣∣ϕ(z)
∣∣ –  < ,

which implies that f is concave in U
∗. �

Theorem . Suppose that f ∈ � with f ′(z) 	= . If f satisfies the condition

�
(

zf ′(z)
(zf ′(z))′

(
(zf ′(z))′

f ′(z)

)′)
>

{
δ

(δ–) ( � δ � 
 ),

δ–
δ

( 
 � δ < ),

(.)

then f is concave in U
∗.

Proof Suppose that

ψ(z) =
– zf ′′(z)

f ′(z) –  – δ

 – δ
( ≤ δ < ; z ∈U). (.)

Then ψ is analytic in U. From (.), we find that

zf ′(z)
(zf ′(z))′

(
(zf ′(z))′

f ′(z)

)′
=

( – δ)zψ ′(z)
δ + ( – δ)ψ(z)

= �
(
ψ(z), zψ ′(z); z

)
, (.)

where

�(r, s; t) =
( – δ)s

δ + ( – δ)r
.

For the real numbers x and y satisfying the condition y ≤ – +x

 , we know that

�(
�(ix, y; z)

)
=

( – δ)δy
δ + ( – δ)x

≤ –
( – δ)δ


·  + x

δ + ( – δ)x

≤
{

δ
(δ–) ( � δ � 

 ),
δ–
δ

( 
 � δ < ).

(.)

Now, we take

� =

{

ξ : �(ξ ) >

{
δ

(δ–) ( � δ � 
 )

δ–
δ

( 
 � δ < )

}

,
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then �(ix, y; z) /∈ � for all real x, y such that y ≤ – +x

 . Furthermore, by virtue of (.), we
know that �(ψ(z), zψ ′(z); z) ∈ �. Thus, by Lemma ., we get �(ψ(z)) > , which shows
that f is concave in U

∗. �

Finally, we correct an error of Theorem . in [], the condition

�
(

zf ′′′(z)
f ′′(z)

)
<  (z ∈U)

in it should be changed into

�
(

zf ′′′(z)
f ′′(z)

)
> – (z ∈U).

Theorem . Suppose that f ∈ � with f ′(z) 	= . If f satisfies the inequality

�
(

zf ′′′(z)
f ′′(z)

)
> – (z ∈U), (.)

then f is concave in U
∗.

Proof Define the function ω(z) by

– –
zf ′′(z)
f ′(z)

=
 + ω(z)
 – ω(z)

. (.)

Then ω is analytic in U with ω() = ω′() = . From (.), we get

zf ′′(z)
f ′(z)

=
–

 – ω(z)
. (.)

Differentiating both sides of (.) logarithmically, we get

zf ′′′(z)
f ′′(z)

=
zω′(z)

 – ω(z)
+

zf ′′(z)
f ′(z)

– . (.)

Now, we show that |ω(z)| < . If not, there exists a point z ∈U such that

max
|z|≤|z|

∣∣ω(z)
∣∣ =

∣∣ω(z)
∣∣ = .

By Jack’s lemma, we know that

�
(

zf ′′′(z)
f ′′(z)

)
= �

(
(k + )ω(z) – 

 – ω(z)

)

= �
(

(k + )(cos θ + i sin θ ) – 
 – cos θ – i sin θ

)

=
(k + ) cos θ – (k + )
( – cos θ ) + sin θ

=
(k + )(cos θ – )

( – cos θ ) + sin θ
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= –
k + 



≤ –,

where k ≥ , but this contradicts (.), which implies that |ω(z)| < . Thus, f is concave
in U

∗. �
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