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Abstract
Let Q(x) = Q(x1, x2, . . . , xn) be a nonsingular quadratic form with integer coefficients,
n be even and p be an odd prime. In Hakami (J. Inequal. Appl. 2014:290, 2014,
doi:10.1186/1029-242X-2014-290) we obtained an upper bound on the number of
integer solutions of the congruence Q(x) ≡ 0 (modp2) in small boxes of the type
{x ∈ Z

n
p2

|ai ≤ xi < ai +mi , 1 ≤ i ≤ n}, centered about the origin, where ai ,mi ∈ Z,

0 <mi ≤ p2, 1≤ i ≤ n. In this paper, we shall drop the hypothesis of ‘centered about
the origin’ and generalize the result of paper Hakami (J. Inequal. Appl. 2014:290, 2014,
doi:10.1186/1029-242X-2014-290) to boxes of arbitrary size and position.
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1 Introduction
Let Q(x) = Q(x, x, . . . , xn) =

∑
≤i≤j≤n aijxixj be a quadratic form with integer coefficients

in n-variables, p be an odd prime, Zp = Z/(p), and Vp = Vp (Q) be the algebraic subset
of Zn

p defined by the equation

Q(x) = Q(x, x, . . . , xn) = . (.)

When n is even, we let �p(Q) = ((–)n/ det AQ/p) if p � det AQ and �p(Q) =  if p|det AQ,
where (·/p) denotes the Legendre-Jacobi symbol and AQ is the n × n defining matrix for
Q(x). We call Q a nonsingular form (mod p) if p � det AQ. As usual, we let |S| denote the
cardinality of a set S.

Our first interest in this paper is obtaining an estimate for the number of solutions of
(.) in a box of the type

B =
{

x ∈ Z
n|ai ≤ xi < ai + mi,  ≤ i ≤ n

}
, (.)

viewed as a subset of Zn
p , where ai, mi ∈ Z,  < mi ≤ p,  ≤ i ≤ n.

Theorem  Suppose that n is even, Q is a nonsingular form (mod p) and that Vp (Q) is the
set of solutions of (.). Then, for any box B of type (.) (viewed as a subset of Zn

p ) with
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 < mi ≤ p,  ≤ i ≤ n, we have

∣
∣B ∩ Vp (Q)

∣
∣ ≤ γn

( |B|
p + pn

)

, (.)

where

γn = n( + n). (.)

We conjecture that the following upper bound holds:

∣
∣B ∩ Vp (Q)

∣
∣ ≤ |B|

p + Oε

(
pn–+ε

)
,

which would be the best possible estimate. Indeed, for the form Q(x) = xx – xx, the ε

factor cannot be removed altogether. For this form it is known [], Theorem , that the
number of solutions of the equation Q(x) =  in integers x with  ≤ xi ≤ B is asymptotic to

π B log B. Thus, for any B, the number of solutions of the congruence Q(x) ≡  (mod p)
with  ≤ xi ≤ B is at least 

π B log B. Letting B ≈ p demonstrates the optimality of the
conjectured upper bound. In Section  we establish the asymptotic estimate

∣
∣B ∩ Vp (Q)

∣
∣ =

|B|
p + O

(
p


 n– logn p

)
.

The error term pn in the upper bound (.) greatly improves on the error term p 
 n– logn p

in the asymptotic estimate at the expense of having to place a constant larger than  on
the main term. We would expect that the error term in the asymptotic estimate can be
improved at least to the value pn appearing in our upper bound.

In the next theorem the same type of bound as Theorem  is given for boxes with sides
of unrestricted lengths. In this case, we let Vp,Z denote the set of integer solutions of the
congruence

Q(x) ≡ 
(
mod p), (.)

and regard B as a set of points in Z
n.

Theorem  Suppose that n is even, Q is nonsingular (mod p) and Vp,Z = Vp,Z(Q) is the
set of integer solutions of the congruence (.). Then, for any box B of type (.) (allowing
mi > p), we have

|B ∩ Vp,Z| ≤ γn

( |B|
p + NBpn

)

,

where γn is as in (.), and

NB =
n∏

i=

⌈
mi

p

⌉

.

We devote Section  and Section  respectively to the proofs of Theorem  and Theo-
rem .



Hakami Journal of Inequalities and Applications  (2015) 2015:110 Page 3 of 11

2 Preliminary lemmas
For any x, y in Z

n
p , we let x ·y denote the ordinary dot product x ·y =

∑n
i= xiyi. For any x ∈

Zp , let ep (x) = eπ ix/p . We use the abbreviation
∑

x =
∑

x∈Zn
p

for complete sums. For y ∈
Z

n
p , we write p|y if p|yi,  ≤ i ≤ n (where the yi are regarded as integer representatives for

the residue classes). In this case 
p y is a well-defined element of Zn

p . Let Q be a nonsingular
quadratic form (mod p), and Vp = Vp (Q) be the set of solutions of (.). For y ∈ Zn

p we
define

φ(Vp , y) :=

⎧
⎨

⎩

∑
x∈V ep (x · y) for y �= ,

|Vp | – p(n–) for y = .

The following lemma was established in [].

Lemma  ([], Lemma .) Suppose that n is even, Q is nonsingular modulo p and � =
�p(Q). Then, for any y ∈ Z

n
p ,

φ(Vp , y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

pn – pn– if p � yi for some i and p|Q∗(y),

–pn– if p � yi for some i and p|Q∗(y),

 if p � yi for some i and p � Q∗(y),

–�p(n/)– + pn–(p – ) if p|yi for all i and p � Q∗(y′),

�(p – )p(n/)– + pn–(p – ) if p|yi for all i and p|Q∗(y′),

where Q∗ is the quadratic form associated with the inverse of the matrix for Q mod p.

In [] we established the basic identity

∑

x∈Vp

α(x) = pn–a() +
∑

y
a(y)φ(Vp , y) (.)

for any complex valued function α(x) defined on Zp with Fourier expansion

α(x) =
∑

y
a(y)ep (y · x).

Inserting the value of φ(Vp , y) from Lemma  into the basic identity (.) yields the fol-
lowing (see []).

Lemma  (The fundamental identity) For any complex valued α(x) on Z
n
p ,

∑

x∈V

α(x) = p–
∑

x
α(x) + pn

∑

p|Q∗(y)

a(y) – pn–
∑

p|Q∗(y)

a(y)

– �p(n/)–
∑

y′(mod p)

a
(
py′) + �p(n/)–

∑

p|Q∗(y′)
y′(mod p)

a
(
py′).
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3 Asymptotic estimate of |B ∩ Vp2|
To obtain an asymptotic estimate for the number of solutions of (.) in a box B with sides
of length mi ≤ p, we let α = χB , the characteristic function for the box. For such α, it is
well known that the Fourier coefficients aB(y) have magnitude

∣
∣aB(y)

∣
∣ = p–n

n∏

i=

∣
∣
∣
∣
sinπmiyi/p

sinπyi/p

∣
∣
∣
∣,

where the term in the product is taken to be mi if yi = . Henceforth, we choose represen-
tatives y for Zn

p with – p–
 ≤ yi ≤ p–

 ,  ≤ i ≤ n. With this convention we can say

∣
∣aB(y)

∣
∣ ≤ p–n

n∏

i=

min

{

mi,
p

yi

}

,

from which one readily obtains the well-known inequality

∑

y

∣
∣aB(y)

∣
∣ 
 logn p.

Also, by Lemma  one has uniformly |φ(Vp , y)| ≤ p 
 n– + pn. The asymptotic formula in

(.) is now an immediate consequence of the basic identity (.), and the fact that aB() =
|B|/pn.

4 Proof of Theorem 1
We turn now to the proof of Theorem . Let B be a box of point of the type (.), with
 < mi ≤ p,  ≤ i ≤ n, and let χB be its characteristic function with Fourier expansion

χB(x) =
∑

y
aB(y)ep (x · y).

As usual, we define the convolution of two functions α, β defined on Zp by

α ∗ β(x) =
∑

u
α(u)β(x – u) =

∑

u+v=x
α(u)β(v).

Lemma  Let α = χB ∗ χB′ , where B is a box as in (.), B′ = B – c, with c chosen so that
B′ is ‘nearly’ centered at the origin,

ci = ai +
[

mi – 


]

.

Then, for any subset S of Zn
p , we have

∑

x∈S

α(x) ≥ 
n |B||S ∩B|.

Proof Let

I = {ai, ai + , . . . , ai + mi – }.
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Then if mi is odd, ci = ai + mi–
 , and hence

I ′ = I – ci =
{

–
mi – 


, . . . ,

mi – 


}

.

Thus, for any x ∈ I ,

∑

u∈I

∑

v∈I′


u+v=x

≥ mi + 


≥ mi


.

If mi is even, so that ci = ai + mi
 – , then

I ′ = I – ci =
{

–
mi


+ , . . . ,

mi



}

,

and so for any x ∈ I ,

∑

u∈I

∑

v∈I′


u+v=x

≥ mi


.

Thus, for any x ∈ B, we have

α(x) ≥
n∏

i=

mi


= –n|B|,

and so for any subset S of Zn
p ,

∑

x∈S

α(x) ≥
∑

x∈S∩B
α(x) ≥ |S ∩B|–n|B|. �

With α as given in Lemma , we have by the fundamental identity, Lemma , that

∑

x∈Vp

α(x) = p–
∑

x
α(x)+ pn

p
∑

yi=
p|Q∗(y)

a(y)

︸ ︷︷ ︸
E

– pn–
p

∑

yi=
p|Q∗(y)

a(y)

︸ ︷︷ ︸
E

– �p(n/)–
p∑

y′
i=

a
(
py′)

︸ ︷︷ ︸
E

+�p(n/)–
p

∑

y′
i=

p|Q∗(y′)

a
(
py′)

︸ ︷︷ ︸
E

.

Also,

∑

x
α(x) = |B|∣∣B′∣∣ = |B|,

α() =
∑

u∈B

∑

v∈B′


u+v=

≤ |B|,
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and

a(y) = pnaB(y)aB′ (y).

It follows that

∑

x∈Vp

α(x) ≤ |B|
p + |E – E| + |E – E|. (.)

By the Cauchy-Schwarz inequality and Parseval’s identity (see, for example, [, ]), we
get

∑

y

∣
∣a(y)

∣
∣ = pn

∑

y

∣
∣aB(y)aB′ (y)

∣
∣

≤ pn
(∑

y

∣
∣aB(y)

∣
∣

)/(∑

y′

∣
∣aB′

(
y′)∣∣

)/

≤ pn
(


pn

∑

y
χ
B(x)

)/( 
pn

∑

y
χ
B′ (x)

)/

= |B|/∣∣B′∣∣/ = |B|. (.)

Next

|E – E| =

∣
∣
∣
∣
∣
pn

p
∑

yi=
p|Q∗(y)

a(y) – pn–
p

∑

yi=
p|Q∗(y)

a(y)

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

p
∑

yi=

ψ(y)a(y)

∣
∣
∣
∣
∣
, (.)

where

ψ(y) =

⎧
⎨

⎩

pn – pn–, p|Q∗(y),

–pn–, p‖Q∗(y).

Continuing from (.) and using (.), we obtain

|E – E| ≤
(
pn – pn–)

∑

y

∣
∣a(y)

∣
∣ ≤ (

pn – pn–)|B|. (.)

Also,

|E – E| =

∣
∣
∣
∣
∣
–�p(n/)–

p∑

y′
i=

a
(
py′) + �p(n/)–

p∑

y′
i=

p|Q∗(y′)

a
(
py′)

∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣

p∑

y′
i=

θ
(
y′)a

(
py′)

∣
∣
∣
∣
∣
, (.)
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where

θ (y) =

⎧
⎨

⎩

p(n/)– – p(n/)–, p|Q∗(y),

p(n/)–, p � Q∗(y).

Continuing from (.),

|E – E| ≤
(
pn/– – pn/–)

p∑

y′
i=

∣
∣a

(
py′)∣∣. (.)

We are left with estimating
∑

|yi|<p/ |ai(pyi)|. Say a(y) =
∏n

i= ai(yi). Since the Fourier
coefficients are given by a(y) = pnaB(y)aB′ (y), we have

∣
∣ai(yi)

∣
∣ = p∣∣aB,i(yi)aB′ ,i(yi)

∣
∣ =


p

sin(πmiyi/p)
sin(πyi/p)

,

and so

∣
∣ai(pyi)

∣
∣ ≤ min

{
m

i
p ,


y

i

}

for |yi| < p/. (.)

Lemma 

∑

|yi|<p/

∣
∣ai(pyi)

∣
∣ ≤

⎧
⎨

⎩

 mi
p if mi ≤ p,

 m
i

p if mi > p.

Proof We begin by establishing the inequality

∑

|yi|>p/mi


y

i
≤

⎧
⎨

⎩

 mi
p if mi ≤ p/,

 if mi > p/.
(.)

We split the proof of the inequality into two cases.
Case (I): If p

mi
≥ , then

L =
[

p
mi

]

≥ 


p
mi

=
p

mi
.

Thus,

∞∑

y=L


y =




∞∑

y=L


y ≤ 

L +



∫ ∞

L

dx
x

=


L +


L
=


L

(

 +

L

)

≤ 
L

=


L
≤ mi

p
= 

mi

p
,
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and so

∑

|yi|>p/mi


y

i
≤ 

mi

p
.

Case (II): If p
mi

< , then

∑

|yi|>p/mi


y

i
≤ 



∞∑

y=


y ≤ π


≤ .

Returning to the proof of the lemma, we consider four cases as follows.
Case (i): If mi ≤ p

 , then by (.) and (.) we have

∑

|yi|<p/

∣
∣ai(pyi)

∣
∣ ≤

∑

|yi|≤p/mi

m
i

p +
∑

|yi|>p/mi


y

i

≤ m
i

p

(
p

mi
+ 

)

+
mi

p
=

mi

p
+

m
i

p ≤ 
mi

p
.

Case (ii): If mi > p
 , then by (.) and (.)

∑

|yi|<p/

∣
∣ai(pyi)

∣
∣ ≤

∑

|yi|≤p/mi

m
i

p +
∑

|yi|>p/mi


y

i
≤ m

i
p

(
p

mi
+ 

)

+  =
mi

p
+

m
i

p + .

Case (iii): If p
 < mi < p, then continuing from Case (ii) we have

∑

|yi|<p/

∣
∣ai(pyi)

∣
∣ ≤ mi

p
+

m
i

p +  ≤ 
mi

p
+  ≤ 

mi

p
.

Case (iv): If mi > p, then continuing from Case (ii) we get

∑

|yi|<p/

∣
∣ai(pyi)

∣
∣ ≤ 

(
mi

p

)

+  ≤ 
m

i
p ,

completing the proof of Lemma . �

We return to the proof of Theorem . Suppose that

m ≤ m ≤ ml ≤ p < ml+ ≤ · · · ≤ mn.

By Lemma , we obtain

∑

|y|<p/

∣
∣ai(py)

∣
∣ =

n∏

i=

∑

|yi|<p/

∣
∣ai(pyi)

∣
∣ =

∏

mi≤p


mi

p
∏

mi>p


m
i

p

≤ nl |B|
pn

∏

mi>p

mi

p
= nl |B|

pn

∏
mi>p mi

pn–l . (.)
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Using (.), then continuing from (.), we have

|E – E| ≤ p(n/)–(p – ) · nlpl–n|B|
n∏

i=l+

mi < nlpl– n
 –|B|

n∏

i=

mi.

By (.) and (.), we then obtain

∑

x∈Vp

α(x) ≤ |B|
p + |E – E| + |E – E|

≤ |B|
p +

(
pn – pn–)|B| + nlpl– n

 –|B|
n∏

i=

mi

≤ |B|
p + pn|B| + nlpl–(n/)–|B|

n∏

i=l+

mi. (.)

The task now is to determine which of the terms |B|/p, pn|B| and nlpl–(n/)–|B| ×
∏n

i=l+ mi in (.) is the dominant term. We consider two cases as follows.
Case (i): Suppose l ≤ n

 – . Then, comparing the first and third terms, we get

nlpl–(n/)–|B|∏n
i=l+ mi

|B|/p =


|B|pl–(n/)+nl
n∏

i=l+

mi

≤ pl–(n/)+nl

∏l
i= mi

≤ nlpl–(n/)+ ≤ nl.

This leads to

nlpl–(n/)–|B|
n∏

i=l+

mi ≤ nl |B|
p .

Case (ii): Suppose l ≥ n
 . Then, comparing the second and third terms, we have

nlpl–(n/)–|B|∏n
i=l+ mi

pn|B| = nlpl–(n/)–
n∏

i=l+

mi

≤ nlpl–(n/)–p(n–l) = nlp(n/)––l ≤ nl

p
.

This gives that

nlpl–(n/)–|B|
n∏

i=l+

mi ≤ nl

p
pn|B|.

So for any l, we always have

nlpl–(n/)–|B|
n∏

i=l+

mi ≤ nl |B|
p +

nl

p
pn|B|.



Hakami Journal of Inequalities and Applications  (2015) 2015:110 Page 10 of 11

Returning to (.), we now can write

∑

x∈Vp

α(x) ≤ |B|
p + pn|B| + nlpl–(n/)–|B|

n∏

i=l+

mi

≤ |B|
p + pn|B| + nl |B|

p +
nl

p
pn|B|

=
(
 + nl) |B|

p +
(

 +
nl

p

)

pn|B|

≤ γ ′
n

( |B|
p + pn|B|

)

, (.)

where γ ′
n =  + nl . On the other hand, using Lemma , we have

∑

x∈Vp

α(x) ≥ 
n |B||Vp ∩B|. (.)

Combining the last two inequalities ((.) and (.)) yields

|B ∩ Vp | ≤ nγ ′
n

( |B|
p + pn

)

≤ γn

( |B|
p + pn

)

,

where γn =  + n. Theorem  is proved.

5 Proof of Theorem 2
Let B be a box of points in Z

n as given in (.). Partition B into N = NB smaller boxes Bi,

B = B ∪ B ∪ · · · ∪ BN ,

where each Bi has all of its edge lengths ≤ p. Plainly,

NB =
n∏

i=

⌈
mi

p

⌉

.

Applying Theorem  to each Bi, we get

|B ∩ Vp,Z| =
N∑

i=

|Bi ∩ Vp,Z|

≤
N∑

i=

γn

( |Bi|
p + pn

)

=
γn

p

N∑

i=

|Bi| + Nγnpn

= γn

( |B|
p + NBpn

)

.

The proof of Theorem  is complete.
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