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1 Introduction
Let {Xni,  ≤ i ≤ n, n ≥ } be an array of rowwise random variables defined on a fixed prob-
ability space (�,F , P) and {bni,  ≤ i ≤ n, n ≥ } be an array of real numbers. As we know,
the limiting behavior for the maximum of weighted sums max≤m≤n

∑m
i= bniXni is very use-

ful in many probabilistic derivations and stochastic models. There exist several versions
available in the literature for independent random variables with assumption of control
on their moments. If the independent case is classical in the literature, the treatment of
dependent variables is more recent.

One of the dependence structures that has attracted the interest of probabilists and
statisticians is negative association. The concept of negatively associated random vari-
ables was introduced by Alam and Saxena [] and carefully studied by Joag-Dev and
Proschan [].

A finite family of random variables {Xi,  ≤ i ≤ n} is said to be negatively associated (NA,
in short) if for every pair of disjoint subsets A, B ⊂ {, , . . . , n},

Cov
(
f (Xi, i ∈ A), g(Xj, j ∈ B)

) ≤ ,

whenever f and g are coordinatewise nondecreasing such that this covariance exists. An
infinite family of random variables is negatively associated if every finite subfamily is neg-
atively associated.

The next dependence notion is negatively superadditive dependence, which is weaker
than negative association. The concept of negatively superadditive dependent random
variables was introduced by Hu [] as follows.
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Definition . (cf. Kemperman []) A function φ : Rn →R is called superadditive if φ(x∨
y) + φ(x ∧ y) ≥ φ(x) + φ(y) for all x, y ∈ Rn, where ∨ stands for componentwise maximum
and ∧ stands for componentwise minimum.

Definition . (cf. Hu []) A random vector X = (X, X, . . . , Xn) is said to be negatively
superadditive dependent (NSD) if

Eφ(X, X, . . . , Xn) ≤ Eφ
(
X∗

 , X∗
 , . . . , X∗

n
)
, (.)

where X∗
 , X∗

 , . . . , X∗
n are independent such that X∗

i and Xi have the same distribution
for each i and φ is a superadditive function such that the expectations in (.) ex-
ist.

A sequence {Xn, n ≥ } of random variables is said to be NSD if for all n ≥ , (X, X,
. . . , Xn) is NSD.

An array {Xni, i ≥ , n ≥ } of random variables is said to be rowwise NSD if for all n ≥ ,
{Xni, i ≥ } is NSD.

The concept of NSD random variables was introduced by Hu [], which was based on
the class of superadditive functions. Hu [] gave an example illustrating that NSD does
not imply NA, and he posed an open problem whether NA implies NSD. In addition, Hu
[] provided some basic properties and three structural theorems of NSD. Christofides
and Vaggelatou [] solved this open problem and indicated that NA implies NSD. NSD
structure is an extension of negatively associated structure and sometimes more useful
than it and can be used to get many important probability inequalities. Eghbal et al. []
derived two maximal inequalities and strong law of large numbers of quadratic forms of
NSD random variables under the assumption that {Xi, i ≥ } is a sequence of nonneg-
ative NSD random variables with EXr

i < ∞ for all i ≥  and some r > . Shen et al. []
established the strong limit theorems for NSD random variables. Wang et al. [] inves-
tigated the complete convergence for arrays of rowwise NSD random variables and gave
its applications to nonparametric regression model. Wang et al. [] obtained the com-
plete convergence for weighted sums of NSD random variables and its application in the
EV regression model. The main purpose of this work is to further study the complete
convergence for weighted sums of arrays of rowwise NSD random variables without iden-
tical distribution, which generalizes and improves some known results of random vari-
ables.

Definition . A sequence of random variables {Un, n ≥ } is said to converge completely
to a constant a if for any ε > ,

∞∑

n=

P
(|Un – a| > ε

)
< ∞.

In this case, we write Un → a completely. This notion was given first by Hsu and Robbins
[].
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Definition . Let {Zn, n ≥ } be a sequence of random variables and an > , bn > , q > .
If

∞∑

n=

anE
{

b–
n |Zn| – ε

}q
+ < ∞ for all ε > ,

then the above result was called the complete moment convergence by Chow [].

Let {Xnk , k ≥ , n ≥ } be a sequence of NSD random variables, {an, n ≥ } be a sequence
of positive real numbers such that an ↑ ∞ and {�k(t), k ≥ } be a sequence of positive even
functions such that

�k(|t|)
|t|q ↑ and

�k(|t|)
|t|p ↓ as |t| ↑ (.)

for some  ≤ q < p and each k ≥ . In order to prove our results, we mention the following
conditions:

EXnk = , k ≥ , n ≥ , (.)
∞∑

n=

n∑

k=

E
�k(Xnk)
�k(an)

< ∞, (.)

∞∑

n=

( n∑

k=

E
(

Xnk

an

)
)v/

< ∞, (.)

where v ≥ p is a positive integer.
The following examples of function �k(t) satisfying assumption (.): �k(t) = |t|β for

some q < β < p or �k(t) = |t|q log( + |t|p–q) for t ∈ (–∞, +∞). Note that these functions
are nonmonotone on t ∈ (–∞, +∞), while it is simple to show that, under condition (.),
the function �k(t) is an increasing function for t > . In fact, �k(t) = �k (t)

|t|q · |t|q, t > , and
|t|q ↑ as |t| ↑, then we have �k(t) ↑.

Recently Shen et al. [] obtained the following complete convergence for weighted sums
of NSD random variables.

Theorem A Let {Xn, n ≥ } be a sequence of NSD random variables. Assume that
{gn(x), n ≥ } is a sequence of even functions defined of R, positive and nondecreasing on
the half-line x > . Suppose that one or the other of the following conditions is satisfied for
every n ≥ :

(i) for some  < r ≤ , xr/gn(x) is a nondecreasing function of x on the half-line x > ;
(ii) for some  < r ≤ , x/gn(x) and gn(x)/xr are nonincreasing functions of x on the

half-line x > , EXn = .
For any positive sequence {an, n ≥ } with an ↑ ∞, if we assume that

∞∑

n=

Egn(Xn)
gn(an)

< ∞, (.)

then
∑∞

n=
Xn
an

converges almost surely and therefore limn→∞ 
an

∑n
i= Xi = , a.s.
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For more details about this type of complete convergence, one can refer to Wu [, ],
Gan and Chen [], Yang [], Shao [], Wu [, ], Chen and Sung [], and so on.
The purpose of this paper is extending Theorem A to the complete moment convergence,
which is a more general version of the complete convergence. In this work, the symbol C
always stands for a generic positive constant, which may vary from one place to another.

2 Preliminary lemmas
In this section, we give the following lemmas which will be used to prove our main results.

Lemma . (cf. Hu []) If (X, X, . . . , Xn) is NSD and g, g, . . . , gn are nondecreasing func-
tions, then (g(X), g(X), . . . , gn(Xn)) is NSD.

Lemma . (cf. Wang et al. []) Let p > . Let {Xn, n ≥ } be a sequence of NSD random
variables with E|Xi|p < ∞ for each i ≥ . Then, for all n ≥ ,

E

(

max
≤k≤n

∣
∣
∣
∣
∣

k∑

i=

Xi

∣
∣
∣
∣
∣

p)

≤ –p
n∑

i=

E|Xi|p for  < p ≤  (.)

and

E

(

max
≤k≤n

∣
∣
∣
∣
∣

k∑

i=

Xi

∣
∣
∣
∣
∣

p)

≤ 
(

p
ln p

)p
[ n∑

i=

E|Xi|p +

( n∑

i=

EX
i

)p/]

for p > . (.)

Lemma . Let {Xnk , k ≥ , n ≥ } be a sequence of NSD random variables, and let {an, n ≥
} be a sequence of positive real numbers such that an ↑ ∞. Also, let {�k(t), k ≥ } be a posi-
tive even function satisfying (.) for  ≤ q < p. Then (.) implies the following statements:

(i) for r ≥ ,  < u ≤ q,

∞∑

n=

( n∑

k=

E|Xnk|uI(|Xnk| > an)
au

n

)r

< ∞; (.)

(ii) for v ≥ p,

∞∑

n=

n∑

k=

E|Xnk|vI(|Xnk| ≤ an)
av

n
< ∞. (.)

Proof From (.) and (.), we get

∞∑

n=

( n∑

k=

E|Xnk|uI(|Xnk| > an)
au

n

)r

≤
∞∑

n=

( n∑

k=

E|Xnk|qI(|Xnk| > an)
aq

n

)r

≤
∞∑

n=

( n∑

k=

E
�k(Xnk)
�k(an)

)r

≤
( ∞∑

n=

n∑

k=

E
�k(Xnk)
�k(an)

)r

< ∞
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and

∞∑

n=

n∑

k=

E|Xnk|vI(|Xnk| ≤ an)
av

n

≤
∞∑

n=

n∑

k=

E|Xnk|pI(|Xnk| ≤ an)
ap

n

≤
∞∑

n=

n∑

k=

E
�k(Xnk)
�k(an)

< ∞,

where r ≥ ,  < u ≤ q and v ≥ p. The proof is complete. �

3 Main results and their proofs
Theorem . Let {Xnk , k ≥ , n ≥ } be a sequence of NSD random variables, and let
{an, n ≥ } be a sequence of positive real numbers such that an ↑ ∞. Also, let {�k(t), k ≥ }
be a positive even function satisfying (.) for  ≤ q < p ≤ . Then, under conditions (.)
and (.), we have

∞∑

n=

a–q
n E

{

max
≤j≤n

∣
∣
∣
∣
∣

j∑

k=

Xnk

∣
∣
∣
∣
∣

– εan

}q

+

< ∞, ∀ε > . (.)

Proof For n ≥ , denote Mn(X) = max≤j≤n |∑j
k= Xnk|. It is easy to check that

∞∑

n=

a–q
n E

{
Mn(X) – εan

}q
+

=
∞∑

n=

a–q
n

∫ ∞


P
{

Mn(X) – εan > t/q}dt

=
∞∑

n=

a–q
n

(∫ aq
n


P
{

Mn(X) > εan + t/q}dt +
∫ ∞

aq
n

P
{

Mn(X) > εan + t/q}dt
)

≤
∞∑

n=

P
{

Mn(X) > εan
}

+
∞∑

n=

a–q
n

∫ ∞

aq
n

P
{

Mn(X) > t/q}dt .= I + I.

To prove (.), it suffices to prove that I < ∞ and I < ∞. Now let us prove them step by
step. Firstly, we prove that I < ∞.

For all n ≥ , define

X(n)
k = XnkI

(|Xnk| ≤ an
)
, T (n)

j =


an

j∑

k=

(
X(n)

k – EX(n)
k

)
,

then for all ε > , it is easy to have

P

(

max
≤j≤n

∣
∣
∣
∣
∣


an

j∑

k=

Xnk

∣
∣
∣
∣
∣

> ε

)

≤ P
(

max
≤j≤n

|Xnk| > an

)
+ P

(

max
≤j≤n

∣
∣T (n)

j
∣
∣ > ε – max

≤j≤n

∣
∣
∣
∣
∣


an

j∑

k=

EX(n)
k

∣
∣
∣
∣
∣

)

. (.)
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By (.), (.), (.) and Lemma ., we have

max
≤j≤n

∣
∣
∣
∣
∣


an

j∑

k=

EX(n)
k

∣
∣
∣
∣
∣

= max
≤j≤n

∣
∣
∣
∣
∣


an

j∑

k=

EXnkI
(|Xnk| ≤ an

)
∣
∣
∣
∣
∣

= max
≤j≤n

∣
∣
∣
∣
∣


an

j∑

k=

EXnkI
(|Xnk| > an

)
∣
∣
∣
∣
∣

≤
n∑

k=

E|Xnk|I(|Xnk| > an)
an

→  as n → ∞. (.)

From (.) and (.), it follows that for n large enough,

P

(

max
≤j≤n

∣
∣
∣
∣
∣


an

j∑

k=

Xnk

∣
∣
∣
∣
∣

> ε

)

≤
n∑

k=

P
(|Xnk| > an

)
+ P

(

max
≤j≤n

∣
∣T (n)

j
∣
∣ >

ε



)

.

Hence we only need to prove that

I .=
∞∑

n=

n∑

k=

P
(|Xnk| > an

)
< ∞, (.)

II .=
∞∑

n=

P
(

max
≤j≤n

∣
∣T (n)

j
∣
∣ >

ε



)

< ∞. (.)

For I , it follows by Lemma . that

I =
∞∑

n=

n∑

k=

EI
(|Xnk| > an

) ≤
∞∑

n=

n∑

k=

E|Xnk|qI(|Xnk| > an)
aq

n
< ∞.

For II , taking r ≥ . Since p ≤ , r ≥ p, we have by Markov’s inequality, Lemma .,
Cr-inequality, and Lemma . that

II ≤
∞∑

n=

(
ε



)–r

E max
≤j≤n

∣
∣T (n)

j
∣
∣r

≤ C
∞∑

n=

(
ε



)–r 
ar

n

[ n∑

k=

E
∣
∣X(n)

k
∣
∣r +

( n∑

k=

E
∣
∣X(n)

k
∣
∣

)r/]

≤ C
∞∑

n=

n∑

k=

E|X(n)
k |r

ar
n

+ C
∞∑

n=

( n∑

k=

E|X(n)
k |

a
n

)r/

≤ C
∞∑

n=

n∑

k=

E|Xnk|pI(|Xnk| ≤ an)
ap

n
+ C

∞∑

n=

( n∑

k=

E|Xnk|pI(|Xnk| ≤ an)
ap

n

)r/

≤ C
∞∑

n=

n∑

k=

E|Xnk|pI(|Xnk| ≤ an)
ap

n
+ C

( ∞∑

n=

n∑

k=

E|Xnk|pI(|Xnk| ≤ an)
ap

n

)r/

< ∞.
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Next we prove that I < ∞. Denote Ynk = XnkI(|Xnk| ≤ t/q), Znk = Xnk – Ynk , and Mn(Y ) =
max≤j≤n |∑j

k= Ynk|. Obviously,

P
{

Mn(X) > t/q} ≤
n∑

k=

P
{|Xnk| > t/q} + P

{
Mn(Y ) > t/q}.

Hence,

I ≤
∞∑

n=

n∑

k=

a–q
n

∫ ∞

aq
n

P
{|Xnk| > t/q}dt +

∞∑

n=

a–q
n

∫ ∞

aq
n

P
{

Mn(Y ) > t/q}dt

.= I + I.

For I, by Lemma ., we have

I =
∞∑

n=

n∑

k=

a–q
n

∫ ∞

aq
n

P
{|Xnk|I

(|Xnk| > an
)

> t/q}dt

≤
∞∑

n=

n∑

k=

a–q
n

∫ ∞


P
{|Xnk|I

(|Xnk| > an
)

> t/q}dt

=
∞∑

n=

n∑

k=

E|Xnk|qI(|Xnk| > an)
aq

n
< ∞.

Now let us prove that I < ∞. Firstly, it follows by (.) and Lemma . that

max
t≥aq

n

max
≤j≤n

t–/q

∣
∣
∣
∣
∣

j∑

k=

EYnk

∣
∣
∣
∣
∣

= max
t≥aq

n

max
≤j≤n

t–/q

∣
∣
∣
∣
∣

j∑

k=

EZnk

∣
∣
∣
∣
∣

≤ max
t≥aq

n

t–/q
n∑

k=

E|Xnk|I
(|Xnk| > t/q)

≤
n∑

k=

a–
n E|Xnk|I

(|Xnk| > an
)

≤
n∑

k=

E|Xnk|qI(|Xnk| > an)
aq

n
→  as n → ∞.

Therefore, for n sufficiently large,

max
≤j≤n

∣
∣
∣
∣
∣

j∑

k=

EYnk

∣
∣
∣
∣
∣
≤ t/q


, t ≥ aq

n.

Then, for n sufficiently large,

P
{

Mn(Y ) > t/q} ≤ P

{

max
≤j≤n

∣
∣
∣
∣
∣

j∑

k=

(Ynk – EYnk)

∣
∣
∣
∣
∣

>
t/q



}

, t ≥ aq
n. (.)
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Let dn = [an] + . By (.), Lemma ., and Cr-inequality, we can see that

I ≤ C
∞∑

n=

a–q
n

∫ ∞

aq
n

t–/qE

(

max
≤j≤n

∣
∣
∣
∣
∣

j∑

k=

(Ynk – EYnk)

∣
∣
∣
∣
∣

)

dt

≤ C
∞∑

n=

a–q
n

∫ ∞

aq
n

t–/q
n∑

k=

E(Ynk – EYnk) dt

≤ C
∞∑

n=

n∑

k=

a–q
n

∫ ∞

aq
n

t–/qEY 
nk dt

= C
∞∑

n=

n∑

k=

a–q
n

∫ ∞

aq
n

t–/qEX
nkI

(|Xnk| ≤ dn
)

dt

+ C
∞∑

n=

n∑

k=

a–q
n

∫ ∞

dq
n

t–/qEX
nkI

(
dn < |Xnk| ≤ t/q)dt

.= I + I.

For I, since q < , we have

I = C
∞∑

n=

n∑

k=

a–q
n EX

nkI
(|Xnk| ≤ dn

)
∫ ∞

aq
n

t–/q dt

≤ C
∞∑

n=

n∑

k=

EX
nkI(|Xnk| ≤ dn)

a
n

= C
∞∑

n=

n∑

k=

EX
nkI(|Xnk| ≤ an)

a
n

+ C
∞∑

n=

n∑

k=

EX
nkI(an < |Xnk| ≤ dn)

a
n

.= I ′
 + I ′′

.

Since p ≤ , by Lemma ., it implies I ′
 < ∞. Now we prove that I ′′

 < ∞. Since q <  and
(an + )/an →  as n → ∞, by Lemma . we have

I ′′
 ≤ C

∞∑

n=

n∑

k=

dn
–q

a
n

E|Xnk|qI
(
an < |Xnk| ≤ dn

)

≤ C
∞∑

n=

n∑

k=

(
an + 

an

)–q E|Xnk|qI(|Xnk| > an)
aq

n

≤ C
∞∑

n=

n∑

k=

E|Xnk|qI(|Xnk| > an)
aq

n
< ∞.

Let t = uq in I. Note that for q < ,

∫ ∞

dn

uq–EX
nkI

(
dn < |Xnk| ≤ u

)
du

=
∫ ∞

dn

uq–EX
nkI

(|Xnk| > dn
) · I

(|Xnk| ≤ u
)

du
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= E
[

X
nkI

(|Xnk| > dn
)
∫ ∞

|Xnk |
uq–I

(|Xnk| ≤ u
)

du
]

= E
[

X
nkI

(|Xnk| > dn
)
∫ ∞

|Xnk |
uq– du

]

≤ CE|Xnk|qI
(|Xnk| > dn

)
.

Then, by Lemma . and dn > an, we have

I = C
∞∑

n=

n∑

k=

a–q
n

∫ ∞

dn

uq–EX
nkI

(
dn < |Xnk| ≤ u

)
du

≤ C
∞∑

n=

n∑

k=

a–q
n E|Xnk|qI

(|Xnk| > an
)

< ∞.

This completes the proof of Theorem .. �

Theorem . Let {Xnk , k ≥ , n ≥ } be a sequence of NSD random variables, and let
{an, n ≥ } be a sequence of positive real numbers such that an ↑ ∞. Also, let {�k(t), k ≥ }
be a positive even function satisfying (.) for  ≤ q < p and p > . Then conditions (.)-(.)
imply (.).

Proof Following the notation, by a similar argument as in the proof of Theorem ., we
can easily prove that I < ∞, I < ∞, and that (.) and (.) hold. To complete the proof,
we only need to prove that I < ∞.

Let δ ≥ p and dn = [an] + . By (.), Markov’s inequality, Lemma ., and Cr-inequality,
we can get

I ≤ C
∞∑

n=

a–q
n

∫ ∞

aq
n

t–δ/qE max
≤j≤n

∣
∣
∣
∣
∣

j∑

k=

(Ynk – EYnk)

∣
∣
∣
∣
∣

δ

dt

≤ C
∞∑

n=

a–q
n

∫ ∞

aq
n

t–δ/q

[ n∑

k=

E|Ynk|δ +

( n∑

k=

EY 
nk

)δ/]

dt

= C
∞∑

n=

n∑

k=

a–q
n

∫ ∞

aq
n

t–δ/qE|Ynk|δ dt + C
∞∑

n=

a–q
n

∫ ∞

aq
n

t–δ/q

( n∑

k=

EY 
nk

)δ/

dt

.= I + I.

For I, we have

I = C
∞∑

n=

n∑

k=

a–q
n

∫ ∞

aq
n

t–δ/qE|Xnk|δI
(|Xnk| ≤ dn

)
dt

+ C
∞∑

n=

n∑

k=

a–q
n

∫ ∞

dq
n

t–δ/qE|Xnk|δI
(
dn < |Xnk| ≤ t/q)dt

.= I ′
 + I ′′

.

By a similar argument as in the proof of I < ∞ and I < ∞ (replacing the exponent  by
δ), we can get I ′

 < ∞, I ′′
 < ∞.
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For I, since δ > , we can see that

I = C
∞∑

n=

a–q
n

∫ ∞

aq
n

t–δ/q

( n∑

k=

EX
nkI

(|Xnk| ≤ an
)

+
n∑

k=

EX
nkI

(
an < |Xnk| ≤ t/q)

)
δ/

dt

≤ C
∞∑

n=

a–q
n

∫ ∞

aq
n

t–δ/q

( n∑

k=

EX
nkI

(|Xnk| ≤ an
)
)δ/

dt

+ C
∞∑

n=

a–q
n

∫ ∞

aq
n

(

t–/q
n∑

k=

EX
nkI

(
an < |Xnk| ≤ t/q)

)δ/

dt

.= I ′
 + I ′′

.

Since δ ≥ p > q, from (.) we have

I ′
 = C

∞∑

n=

a–q
n

( n∑

k=

EX
nkI

(|Xnk| ≤ an
)
)δ/ ∫ ∞

aq
n

t–δ/q dt

≤ C
∞∑

n=

( n∑

k=

EX
nkI(|Xnk| ≤ an)

a
n

)δ/

≤ C
∞∑

n=

( n∑

k=

EX
nk

a
n

)δ/

< ∞.

Next we prove that I ′′
 < ∞. To start with, we consider the case  ≤ q ≤ . Since δ > , by

Lemma . we have

I ′′
 ≤ C

∞∑

n=

a–q
n

∫ ∞

aq
n

(

t–
n∑

k=

E|Xnk|qI
(
an < |Xnk| ≤ t/q)

)δ/

dt

≤ C
∞∑

n=

a–q
n

∫ ∞

aq
n

(

t–
n∑

k=

E|Xnk|qI
(|Xnk| > an

)
)δ/

dt

= C
∞∑

n=

a–q
n

( n∑

k=

E|Xnk|qI
(|Xnk| > an

)
)δ/ ∫ ∞

aq
n

t–δ/ dt

≤ C
∞∑

n=

( n∑

k=

E|Xnk|qI(|Xnk| > an)
aq

n

)δ/

< ∞.

Finally, we prove that I ′′
 < ∞ in the case  < q < p. Since δ > q and δ > , we have by

Lemma . that

I ′′
 ≤ C

∞∑

n=

a–q
n

∫ ∞

aq
n

(

t–/q
n∑

k=

EX
nkI

(|Xnk| > an
)
)δ/

dt

= C
∞∑

n=

a–q
n

( n∑

k=

EX
nkI

(|Xnk| > an
)
)δ/ ∫ ∞

aq
n

t–δ/q dt
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≤ C
∞∑

n=

( n∑

k=

EX
nkI(|Xnk| > an)

a
n

)δ/

< ∞.

Thus we get the desired result immediately. The proof is completed. �

Corollary . Let {Xnk , k ≥ , n ≥ } be a sequence of NSD random variables with mean
zero. If for some α >  and v ≥ ,

max
≤k≤n

E|Xnk|v = O
(
nα

)
, (.)

where v
q – α > max{ v

 , }, v ≥ , then for any ε > ,

∞∑

n=

n–E

{

max
≤j≤n

∣
∣
∣
∣
∣

j∑

k=

Xnk

∣
∣
∣
∣
∣

– εn

q

}q

+

< ∞. (.)

Proof Put �k(|t|) = |t|v, p = v + δ, δ > , an = n/q.
Since v ≥ , v

q – α > max{ v
r , }, then

�k(|t|)
|t|q = |t|v–q ↑,

�k(|t|)
|t|p =

|t|v
|t|p =


|t|δ ↓ as |t| ↑ ∞.

It follows by (.) and v
q – α >  that

∞∑

n=

n∑

k=

E�k(Xnk)
�k(an)

=
∞∑

n=

n∑

k=

E|Xnk|v
n

v
q

≤ C
∞∑

n=



n
v
q –α–

< ∞. (.)

Since v ≥ , by Jensen’s inequality it follows that

n∑

k=

E|Xk|
n


q

≤
n∑

k=

(E|Xk|v) 
v

n

q

≤ C


n

q – α

v –
.

Clearly 
q – α

v –  > . Take s > p such that s
 ( 

q – α
v – ) > . Therefore,

∞∑

n=

[ n∑

k=

E|Xk|
n


q

]s/

< ∞. (.)

Combining Theorem . and (.) and (.), we can prove Corollary . immediately.
�

Remark . Noting that, in this paper we consider the case  ≤ q ≤ p, which is a wider
scope than the case q =  in Shen et al. []. In addition, compared with NSD random vari-
ables, the arrays of NSD random variables not only have many related properties, but they
also have a wide range of application. So it is very significant to study it.
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Remark . Under the condition of Theorem ., we have

∞ >
∞∑

n=

a–q
n E

{

max
≤j≤n

∣
∣
∣
∣
∣

j∑

k=

Xnk

∣
∣
∣
∣
∣

– εan

}q

+

=
∞∑

n=

a–q
n

∫ ∞


P

{

max
≤j≤n

∣
∣
∣
∣
∣

j∑

k=

Xnk

∣
∣
∣
∣
∣

– εan > t/q

}

dt

≥
∞∑

n=

a–q
n

∫ εqaq
n


P

{

max
≤j≤n

∣
∣
∣
∣
∣

j∑

k=

Xnk

∣
∣
∣
∣
∣

– εan > εan

}

dt

= εq
∞∑

n=

P

{

max
≤j≤n

∣
∣
∣
∣
∣

j∑

k=

Xnk

∣
∣
∣
∣
∣

> εan

}

.

Then 
an

max≤j≤n |∑j
k= Xnk| n→∞→ , the result of Theorem A is obtained directly. So the

result of Theorem . implies Theorem A, it generalizes the corresponding result of The-
orem A.
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