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1 Introduction
We begin by stating some notions needed. Let E be a linear vector space over K = R,C
and let C be a nonempty subset of E. Consider the two following statements:

(i) C is such that u ∈ C and t ≥  ⇒ tu ∈ C; C is then called a cone of E.
(ii) C is such that u ∈ C and λ ∈K ⇒ λu ∈ C; C is sometimes called a generalized cone

of E. Clearly, every generalized cone of E is a cone.
Let f : C → K be a map. If C is a generalized cone, we say that f is homogeneous of

degree p if f (λu) = |λ|pf (u) for all u ∈ C and λ ∈ K. If C is a cone, f is called positively
homogeneous of degree p if f (tu) = tpf (u) for all u ∈ C and t ≥ . Clearly, every homo-
geneous map of degree p (on a generalized cone) is positively homogeneous of the same
degree p. The reverse is not always true.

Now, let C be a convex cone of E. A map � : C → R is called sub-additive if �(u + v) ≤
�(u) + �(v) holds for all u, v ∈ C. If C is equipped with an order ≺, the map � is said to
be monotone if for all u, v ∈ C such that u ≺ v we have �(u) ≤ �(v).

Let E and F be two linear vector spaces over K, C and C be two nonempty subsets of
E and F , respectively, and h : C × C →K be a given map. If C is a cone, we say that h is
positively homogeneous of degree r, with respect to the first variable, if h(tu, v) = trh(u, v)
for all u ∈ C, v ∈ C and t ≥ . If C and C are generalized cones, we say that h is a
semi-inner product if and only if

h(u, v) = h(v, u), h(λu, v) = λh(u, v) and h(u,λv) = λh(u, v)

hold for all λ ∈ C, u ∈ C and v ∈ C. Clearly, every semi-inner product map is positively
homogeneous of degree  with respect to its two variables. The reverse is, in general, false.

The remainder of this paper is organized as follows: Section  is devoted to the presen-
tation of our main results together with some related consequences. Section  displays a
lot of examples illustrating the above theoretical results. In Section , we investigate some
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operator inequalities as applications of our main results. Section  is focused on another
application for inequalities in convex analysis.

2 The main results
We use the same notations as previously. We start this section by stating the following
lemma, which will be needed in the sequel.

Lemma . Let a, b ≥  and p, q >  be real numbers. Then we have

inf
t>

(
atp + bt–q) = (p + q)

(
b
p

) p
p+q

(
a
q

) q
p+q

.

Proof If a =  or b = , it is easy to see that inft>(atp + bt–q) =  and the desired equality
holds. Assume that a, b >  and set φ(t) = atp + bt–q for t > . It is easy to see that

φ′(t) = patp– – qbt–q–

for all t > , with φ′(t) =  if and only if

t = t = (qb/pa)/(p+q).

Further, simple computation leads to

φ(t) = (p + q)
(

b
p

) p
p+q

(
a
q

) q
p+q

.

This, with the fact that

lim
t→

φ(t) = lim
t→∞φ(t) = ∞,

yields the desired result. �

Now, our first main result may be presented.

Theorem . Let E and F be two linear vector spaces over K, C is a cone of E and C is
a nonempty subset of F . Let f : C → [,∞), g : C → [,∞), and h : C × C →R be three
maps such that

∀(u, v) ∈ C × C, h(u, v) ≤ f (u) + g(v). ()

Assume that f is positively homogeneous of degrees p and h is positively homogeneous, with
respect to the first variable, of degree r, with min(p, ) < r < max(p, ). Then the inequality

h(u, v) ≤
(

p
r

f (u)
)r/p( p

p – r
g(v)

)(p–r)/p

()

holds true for all (u, v) ∈ C × C.
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Proof We present the proof for p >  ( < r < p), and that of the case p <  (p < r < ) can
be stated in a similar manner. Replacing u ∈ C by tu ∈ C, with t > , in () and using the
positive homogeneity assumed in our statement, we obtain

trh(u, v) ≤ tpf (u) + g(v),

or equivalently

h(u, v) ≤ tp–rf (u) + t–rg(v).

This means that the map t �→ tp–rf (u) + t–rg(v), for t > , is bounded below and so we can
write

h(u, v) ≤ inf
t>

(
tp–rf (u) + t–rg(v)

)
.

Following Lemma ., with a = f (u) ≥  and b = g(v) ≥ , we immediately deduce, after a
simple manipulation, the desired inequality. We then finished the proof. �

Remark . (i) With the assumptions of Theorem . the inequalities () and () are in
fact equivalent. The implication ‘() ⇒ ()’ follows by a simple application of the Young
inequality. Similar statements can be made for the analog situation in the following results.

(ii) If the map h comes with positive values then () can be written in the following
equivalent form:

(

p

h(u, v)
)p

≤
(


r

f (u)
)r( 

p – r
g(v)

)p–r

if p > 

and
(


–p

h(u, v)
)p

≥
(


–r

f (u)
)r( 

r – p
g(v)

)p–r

if p < .

(iii) It is worth noticing that the functions f and g in the previous theorem, as well as in
the following results, are not necessarily continuous.

Theorem . has many consequences whose certain of them are recited in what follows.

Corollary . Let E, F be two linear vector spaces and C, C be two generalized cones of
E and F , respectively. Let f : C → [,∞), g : C → [,∞) and h : C × C → C be three
maps such that

∀(u, v) ∈ C × C, Re
(
h(u, v)

) ≤ f (u) + g(v). ()

Assume that f is homogeneous of degree p > , g is homogeneous of degree p∗ > , with
/p + /p∗ = , and h is a semi-inner product. Then the inequality

∣
∣h(u, v)

∣
∣ ≤ (

pf (u)
)/p(p∗g(v)

)/p∗
()

holds for all (u, v) ∈ C × C.
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Proof Under our assumptions, we can apply the above theorem (with r = ) for obtaining,
from (),

Re
(
h(u, v)

) ≤ (
pf (u)

)/p(p∗g(v)
)/p∗

for all (u, v) ∈ C ×C, with p∗ = p/(p – ). If in this inequality we replace u by (h(v, u))/u ∈
C and v by (h(u, v))/v ∈ C and we use the fact that f and g are homogeneous of degree
p and p∗, respectively, h being a semi-inner product, we obtain after elementary manipu-
lation

∣
∣h(u, v)

∣
∣ ≤ ∣

∣h(u, v)
∣
∣(pf (u)

)/p(p∗g(v)
)/p∗

.

We can assume that h(u, v) = , since for h(u, v) =  the inequality () is obviously satisfied.
We then deduce the desired result and this completes the proof. �

Remark . In Corollary ., if E is a locally convex space, we can take F = E∗ algebraic (or
topological) dual of E and h the duality map between E and E∗. As an example explaining
this situation, see Theorem . in Section .

Another corollary of Theorem . may be stated as well.

Corollary . Let f , g , and h be as in Theorem .. Then

n∑

i=

h(ui, vi) ≤
(

p
r

n∑

i=

f (ui)

)r/p(
p

p – r

n∑

i=

g(vi)

)(p–r)/p

()

holds true for all u, u, . . . , un ∈ C and v, v, . . . , vn ∈ C.

Proof Condition () implies that

h̃(u, v) :=
n∑

i=

h(ui, vi) ≤
n∑

i=

f (ui) +
n∑

i=

g(vi) := f̃ (u) + g̃(v)

for all u = (u, u, . . . , un) ∈ Cn
 and v = (v, v, . . . , vn) ∈ Cn

 . It is easy to see that f̃ : Cn
 →

[,∞) is positively homogeneous of degree p and h̃ : Cn
 × Cn

 → R is positively homo-
geneous, with respect to the first variable u, of degree r. Theorem . yields the desired
inequality (), and this completes the proof. �

We now state the following result.

Theorem . Let E and F be as above, C be a cone of E and C be a nonempty subset of F .
Let f , g : C × C → [,∞) and h : C × C → [,∞) be three maps such that

∀(u, v) ∈ C × C, h(u, v) ≤ f (u, v) + g(u, v).
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Assume that further f , g , and h are positively homogeneous, with respect to the first variable,
of degrees p, q, and r, respectively, with p < r < q. Then the inequality

(


q – p
h(u, v)

)q–p

≤
(


q – r

f (u, v)
)q–r( 

r – p
g(u, v)

)r–p

()

holds true for all (u, v) ∈ C × C.

Proof Analogously to the proof of Theorem ., we show that

h(u, v) ≤ inf
t>

(
tp–rf (u, v) + tq–rg(u, v)

)
.

The desired inequality () follows by application of Lemma . in a similar manner as
previous. The details are simple and are omitted here. �

We end this section by stating the two following results, which extend Theorem . and
Theorem ., respectively.

Theorem . Let C, C be as in Theorem . and (C,≺) be an ordered cone of a certain
linear space. Let f : C → C, g : C → C, and h : C × C → C be such that

∀(u, v) ∈ C × C, h(u, v) ≺ f (u) + g(v). ()

Assume that f and h are as in Theorem .. If � : C → [,∞) is monotone sub-additive
and homogeneous of degree s > , then the inequality

�
(
h(u, v)

) ≤
(

p
r
�

(
f (u)

))r/p( p
p – r

�
(
g(v)

))(p–r)/p

()

holds true for all (u, v) ∈ C × C.

Proof With the fact that � is monotone and sub-additive, () implies that

�
(
h(u, v)

) ≤ �
(
f (u)

)
+ �

(
g(v)

)
,

with � ◦ f : C → [,∞) homogeneous (with respect to the first variable) of degree ps
and � ◦ h : C × C → [,∞) homogeneous of degree rs, with min(ps, ) < rs < max(ps, )
since s > . We can then use Theorem . and the desired inequality follows after a simple
manipulation. �

The statement of Corollary . can be included in the situation of the previous theorem.
We omit all details of this point, leaving them for the reader.

Theorem . Let C, C, and C be as in Theorem .. Let f : C ×C → C, g : C ×C → C,
and h : C × C → C be such that

∀(u, v) ∈ C × C, h(u, v) ≺ f (u, v) + g(u, v). ()
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Assume that f and h are as in Theorem .. If � : C → [,∞) is monotone sub-additive
and homogeneous of degree s > , then the inequality

(


q – p
�

(
h(u, v)

)
)q–p

≤
(


q – r

�
(
f (u, v)

)
)q–r( 

r – p
�

(
g(u, v)

)
)r–p

()

holds true for all (u, v) ∈ C × C.

Proof It is similar to that of Theorem .. We omit all details leaving them to the reader.
�

For an application of the previous theorem, see Section  below.

3 Some examples
This section is devoted to the presentation of some examples illustrating the above the-
oretical results. We need more notations. In what follows, H denotes a complex Hilbert
space with its inner product 〈·, ·〉 and its associate norm ‖ · ‖. The notation B(H) refers
to the algebra of linear bounded operators defined from H into itself. A self-adjoint op-
erator T ∈ B(H) is positive (in short, T ≥ ) if 〈Tu, u〉 ≥  for all u ∈ H . We denote by
B+(H) (resp. B+∗(H)) the convex cone of all self-adjoint positive (resp. invertible) opera-
tors T ∈ B(H). As usual, for T , S ∈ B(H) we write T ≤ S if and only if T , S are self-adjoint
and S – T ∈ B+(H). The space B(H) is endowed with the classical operator norm, namely

‖T‖ = sup
‖u‖=

‖Tu‖.

It is well known that if T is positive then

‖T‖ = sup
‖u‖=

〈Tu, u〉.

A norm ‖| ·‖| onB(H) is said to be unitarily invariant if it satisfies the invariance property
‖|UTV‖| = ‖|T‖| for all T ∈ B(H) and for all unitary operators U and V .

Now we are in a position to state the following list of examples.

Example . Let T , S ∈ B(H). Then we have

 ≤ ‖Tu – Sv‖ =
〈(

T∗T
)
u, u

〉
–  Re〈Tu, Sv〉 +

〈(
S∗S

)
v, v

〉
,

which, by Corollary . with p = p∗ = , yields

∣∣〈Tu, Sv〉∣∣ ≤ 〈|T |u, u
〉〈|S|v, v

〉
,

where as usual |T | = (T∗T)/. If S = T∗ then

∣∣〈Tu, v
〉∣∣ ≤ 〈|T |u, u

〉〈∣∣T∗∣∣v, v
〉
,

see []. If T is positive (self-adjoint) then

∣
∣〈Tu, v〉∣∣ ≤ 〈Tu, u〉〈Tv, v〉,

which is a well-known extension of the Cauchy-Schwarz inequality.
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Example . Let T , S, X ∈ B(H) be three operators. Then we have

M :=

(
T X∗

X S

)

is positive in B(H ⊕ H)

⇔ ∀u, v ∈ H ,
∣∣〈Xu, v〉∣∣ ≤ 〈Tu, u〉〈Sv, v〉.

See [], p., for a direct method. Here, we simply proceed as follows. By definition, M
is positive in B(H ⊕ H) if and only if

〈Tu, u〉 +  Re〈Xu, v〉 + 〈Sv, v〉 ≥ 

for all u, v ∈ H . According to Corollary ., with Remark ., we immediately deduce the
desired aim.

Now, let us observe the two following examples illustrating, particularly, the situation of
Corollary ..

Example . Let a, b be complex numbers and p, p∗ >  with /p + /p∗ = . The inequality

|a||b| ≤ 
p
|a|p +


p∗ |b|p∗

is known as the Young inequality. We are in the situation of Corollary . with r = . We
then immediately deduce the following Hölder inequality (in C

n):

n∑

i=

|ai||bi| ≤
( n∑

i=

|ai|p
)/p( n∑

i=

|bi|p∗
)/p∗

,

valid for all complex numbers ai and bi,  ≤ i ≤ n.

Example . Let � be a nonempty open subset of Rn and f , g : � → C. The Young in-
equality asserts that

∀s ∈ �,
∣∣f (s)

∣∣∣∣g(s)
∣∣ ≤ 

p
∣∣f (s)

∣∣p +


p∗
∣∣g(s)

∣∣p∗
.

The map � defined by �(ψ) =
∫
�

ψ(s) ds, for ψ Lebesgue-integrable on �, is linear and
monotone. It follows that if f ∈ Lp(�) and g ∈ Lp∗ (�) then we have

∫

�

∣∣(fg)(s)
∣∣ds ≤

∫

�

∣∣f (s)
∣∣p ds +

∫

�

∣∣g(s)
∣∣p∗

ds.

By Theorem ., we then deduce the Hölder inequality in integration:

∫

�

∣
∣(fg)(s)

∣
∣ds ≤

(∫

�

∣
∣f (s)

∣
∣p ds

)/p(∫

�

∣
∣g(s)

∣
∣p∗

ds
)/p∗

.

See also Example . (Section  below) for another point of view for proving this inequality.
We leave to the reader the routine task of obtaining the Hölder inequality in lp, the space
of p-convergent series.
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Example . For all (Hermitian) positive definite matrices A and B and every p ∈ (,∞),
with p∗ = p/(p – ), we have []

tr(AB) ≤ 
p

trAp +


p∗ tr Bp∗
.

According to Corollary ., we deduce that for all Ai, Bi, i = , , . . . , m (Hermitian) positive
definite matrices, we have

tr
m∑

i=

AiBi ≤
( m∑

i=

tr Ap
i

)/p( m∑

i=

tr Bp∗
i

)/p∗

. ()

See [], Theorem ., pp.-, for a direct (but long) proof of () by using the spectral
mapping theorem and some existing lemmas.

Example . Let ‖| · ‖| be a unitarily invariant norm. The inequality [–]

‖|TXS‖| ≤ 
p
∥
∥
∣
∣TpX

∥
∥
∣
∣ +


p∗

∥
∥
∣
∣XSp∗∥∥

∣
∣ ()

holds for all T , S ∈ B+(H), X ∈ B(H), with /p+/p∗ = . By Corollary ., () is equivalent
to

‖|TXS‖| ≤ ∥
∥
∣
∣TpX

∥
∥
∣
∣/p∥∥

∣
∣XSp∗∥∥

∣
∣/p∗

,

which is stronger than (). According to Corollary ., () implies that

n∑

i=

‖|TiXSi‖| ≤
( n∑

i=

∥
∥
∣
∣Tp

i X
∥
∥
∣
∣
)/p( n∑

i=

∥
∥
∣
∣XSp∗

i
∥
∥
∣
∣
)/p∗

for all Ti, Si ∈ B+(H), i = , , . . . , n, and X ∈ B(H).

4 Application to operator inequalities
We preserve the same notation as in the previous section. The following result, which is
an operator version of Theorem ., may be stated.

Theorem . Let C be a cone of B+(H) and f , g, h : C × C → C be three operator maps
such that

∀T , S ∈ C, h(T , S) ≤ f (T , S) + g(T , S). ()

Assume that further f , g , and h are positively homogeneous, with respect to the first variable,
of degrees p, q, and r, respectively, with p < r < q. Then the inequality

(


q – p
〈
h(T , S)u, u

〉
)q–p

≤
(


q – r

〈
f (T , S)u, u

〉
)q–r( 

r – p
〈
g(T , S)u, u

〉
)r–p

()

holds true for all T , S ∈ C.



Raïssouli and Zine Journal of Inequalities and Applications  (2015) 2015:93 Page 9 of 13

Proof By definition, the operator inequality () is equivalent to

∀u ∈ H ,
〈
h(T , S)u, u

〉 ≤ 〈
f (T , S)u, u

〉
+

〈
g(T , S)u, u

〉
. ()

The inequality () is true for u = . Now, fixing  = u ∈ E, this inequality can be written
as

hu(T , S) ≤ fu(T , S) + gu(T , S),

where hu, fu, gu : B+(H) × B+(H) → (,∞) are the three quadratic forms of (), respec-
tively. Obviously, we can then apply Theorem . here for obtaining the desired result
after a simple manipulation, and this completes the proof. �

From the above theorem, we immediately deduce the following corollary.

Corollary . With the same hypotheses as in Theorem . we have

(


q – p
∥
∥h(T , S)

∥
∥
)q–p

≤
(


q – r

∥
∥f (T , S)

∥
∥
)q–r( 

r – p
∥
∥g(T , S)

∥
∥
)r–p

. ()

Now, we will illustrate the above theorem with some applications.
• Let λ be a real number such that  ≤ λ ≤  and T , S ∈ B+∗(H). The power geometric

mean T �λ S of T and S is defined by

T �λ S = S/(S–/TS–/)–λS/ = T /(T–/ST–/)λT / = S �–λ T ,

while their weighted arithmetic mean is

T ⊕λ S = ( – λ)T + λS = S ⊕–λ T .

For λ = /, we simply write T �S and T ⊕ S, respectively.
The Heinz operator mean of T and S is defined by

Hλ(T , S) =
T �λ S + T �–λ S


.

This operator mean interpolates T �S and T ⊕ S [], in the sense that

T �S ≤ Hλ(T , S) ≤ T ⊕ S ()

holds true for all λ ∈ [, ] and T , S ∈ B+∗(H).
The first result of application here may be stated as well.

Theorem . With the above, the inequalities

(〈
(T �S)u, u

〉) ≤ 〈
(T �λ S)u, u

〉〈
(T �–λ S)u, u

〉 ≤ (〈
(T ⊕ S)u, u

〉) ()

hold true for all u ∈ H .
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Proof Let us set

h(T , S) = T �S, f (T , S) = T �λ S, g(T , S) = T �–λ S.

It is easy to see that h, f , and g are positively homogeneous, with respect to the first variable
T , of degrees r = /, p =  – λ, and q = λ, respectively. If λ = /, the left side of () is an
equality. Now, considering the two cases  ≤ λ < / and / < λ ≤ , Theorem . yields

(


|λ – |
〈
(T �S)u, u

〉)|λ–|

≤
(


|λ – |

〈
(T �λ S)u, u

〉
)|λ–/|( 

|λ – |
〈
(T �–λ S)u, u

〉
)|λ–/|

,

which after simple reduction yields the left side of (). The right side of () follows by a
simple application of the arithmetic-geometric mean inequality with (), and this com-
pletes the proof. �

From the above theorem, we immediately deduce the following inequality:

‖T �S‖ ≤ ‖T �λ S‖‖T �–λ S‖ ≤ ‖T ⊕ S‖.

Remark . The above inequalities can be written, respectively, in the following forms:

〈
(T �S)u, u

〉 ≤ 〈
(T �λ S)u, u

〉
�
〈
(T �–λ S)u, u

〉 ≤ 〈
(T ⊕ S)u, u

〉
,

‖T �S‖ ≤ ‖T �λ S‖ �‖T �–λ S‖ ≤ ‖T ⊕ S‖,

where for two real numbers a, b > , a �b =
√

ab is the geometric mean of a and b.

• A second application here is stated as follows. Let T , S, and T �λ S be as above,  ≤
λ ≤ . The inequality

( + λ)T ≤ λTS–T + T �λ S ()

is known as the operator entropy inequality; see [] for instance. The following result may
be stated.

Theorem . With the above, for all u ∈ H we have

(〈Tu, u〉)+λ ≤ (〈
TS–Tu, u

〉)λ〈(T �λ S)u, u
〉
,

‖T‖+λ ≤ ∥∥TS–T
∥∥λ‖T �λ S‖.

Proof Setting h(T , S) = ( +λ)T , f (T , S) = λTS–T , and g(T , S) = T �λ S, it is easy to see that
h, f , and g are homogeneous, with respect to the first variable T , of degrees , , and  – λ.
The remainder of the proof is similar to that of Theorem .. The details are simple and
are omitted here. �
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5 An application in convex analysis
We need here more notions. Let E be a locally convex space and E∗ its topological dual
with the bracket duality 〈·, ·〉. Let f : E → R̃ := R∪{∞} be a functional not identically equal
to ∞. The effective domain of f is dom f = {u ∈ E, f (u) < ∞}, and the conjugate of f is the
functional f ∗ : E∗ → R̃ defined through []

∀u∗ ∈ E, f ∗(u∗) = sup
u∈E

(
Re

〈
u, u∗〉 – f (u)

)
. ()

Later, we shall need the following lemma.

Lemma . Let f : E → R̃ be a functional not identically equal to ∞.
(i) If f () ≤  then f ∗ is a positive functional.

(ii) If f is homogeneous of degree p >  then f ∗ is homogeneous of degree p∗ > , with
p∗ = p/(p – ).

Proof (i) From () we immediately deduce that f ∗(u∗) ≥ Re〈u∗, u〉 – f (u) for all u ∈ E and
u∗ ∈ E∗. Taking u =  in this inequality we obtain f ∗(u∗) ≥  for all u∗ ∈ E∗.

(ii) Let  = λ ∈R,C be fixed. By definition we have

f ∗(λu∗) = sup
u∈E

(
Re

〈
u,λu∗〉 – f (u)

)

= sup
u∈E

(
Re

〈
λ|λ|p∗–u,λu∗〉 – f

(
λ|λ|p∗–u

))

= sup
u∈E

(|λ|p∗
Re

〈
u, u∗〉 – |λ|(p∗–)pf (u)

)
.

It is easy to verify that (p∗ – )p = p∗ and so

f ∗(λu∗) = |λ|p∗
sup
u∈E

(
Re

〈
u, u∗〉 – f (u)

)
= |λ|p∗

f ∗(u∗).

Summarizing, we have shown that

∀u∗ ∈ dom f ∗,∀λ = , f ∗(λu∗) = |λ|p∗
f ∗(u∗). ()

From this equality, with the fact that f ∗ is always lower semi-continuous, we deduce

∀u∗ ∈ dom f ∗, f ∗() ≤ lim inf
λ→

f ∗(λu∗) = lim inf
λ→

(|λ|p∗
f ∗(u∗)) = . ()

We then have f ∗() ≤ . Since f is homogeneous, f () =  and, by (i) we have f ∗() ≥ .
This, with (), implies that f ∗() =  and () is also satisfied for λ = , and this completes
the proof. �

Our main result of application in this section is the following.

Theorem . Let f : E → R̃ be a positive functional such that f ∗ is positive, too. Assume
that f is homogeneous of degree p > . Then, for all u ∈ E and u∗ ∈ E∗, we have

∣
∣〈u, u∗〉∣∣ ≤ (

pf (u)
)/p(p∗f ∗(u∗))/p∗

. ()
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Proof From () we immediately deduce that

Re
〈
u, u∗〉 – f (u) ≤ f ∗(u∗) ()

for all u ∈ E and u∗ ∈ E∗. If f (u) < ∞ then () is equivalent to

Re
〈
u, u∗〉 ≤ f (u) + f ∗(u∗). ()

If f (u) = ∞ then f (u) + f ∗(u∗) = ∞ and so () is also satisfied. In all cases we have

∀u ∈ E,∀u∗ ∈ E∗, Re
〈
u, u∗〉 ≤ f (u) + f ∗(u∗).

We can apply Corollary . with h(u, u∗) = 〈u, u∗〉 and g = f ∗. The desired result follows.
�

Now, we will illustrate the above result with the following example.

Example . Let p >  and E = Lp(�) be equipped with the classical norm

∀u ∈ Lp(�), ‖u‖p =
(∫

�

∣
∣u(t)

∣
∣p dt

)/p

.

The topological dual of E is E∗ = Lp∗ (�), with /p+/p∗ = . Take f (u) = 
p‖u‖p

p for which we

have f ∗(u∗) = 
p∗ ‖u∗‖p∗

p∗ []. According to (), we immediately obtain the classical Hölder
inequality in Lp(�), namely: |〈u, u∗〉| ≤ ‖u‖p‖u∗‖p∗ for all u ∈ Lp(�) and u∗ ∈ Lp∗ (�). Sim-
ilarly we can obtain the Hölder inequality in C

n and in lp, the space of p-convergent series.
For p = , the above is reduced to the Cauchy-Schwarz inequality.

The following example is also of interest.

Example . Let E be a Hilbert space and T be a (self-adjoint) positive operator from E
into itself. Take f = fT defined by

∀u ∈ E, f (u) = fT (u) := (/)〈Tu, u〉 = (/)
∥
∥T /u

∥
∥.

We know that []

(fT )∗
(
u∗) = (/)

∥∥(
T /)+u∗∥∥ if u∗ ∈ ran T /, (fT )∗

(
u∗) = ∞ otherwise, ()

where T+ denotes the pseudo-inverse of T . This, with (), implies that

∣∣〈u, u∗〉∣∣ ≤ ∥∥T /u
∥∥∥∥(

T /)+u∗∥∥

holds for all u ∈ E and u∗ ∈ ran T /. In particular, if, moreover, T is invertible then

∣
∣〈u, u∗〉∣∣ ≤ 〈Tu, u〉〈T–u∗, u∗〉

holds for all u, u∗ ∈ E.
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