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Abstract
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1 Introduction
For a positive integer n, N denotes the set {, , . . . , n}, and R

n×n(Cn×n) denotes the set of
all n × n real (complex) matrices throughout.

It is well known that a matrix A = [aij] ∈R
n×n is called a nonsingular M-matrix if aij ≤ ,

i, j ∈ N , i �= j, A is nonsingular and A– ≥  (see [, ]). Denote by Mn the set of all n × n
nonsingular M-matrices.

If A is a nonsingular M-matrix, then there exists a positive eigenvalue of A equal to
τ (A) ≡ [ρ(A–)]–, where ρ(A–) is the Perron eigenvalue of the nonnegative matrix A–.
It is easy to prove that τ (A) = min{|λ| : λ ∈ σ (A)}, where σ (A) denotes the spectrum of A
(see []).

A matrix A is called reducible if there exists a nonempty proper subset I ⊂ N such that
aij = , ∀i ∈ I , ∀j /∈ I . If A is not reducible, then we call A irreducible (see []).

For two real matrices A = [aij] and B = [bij] of the same size, the Hadamard product of A
and B is defined as the matrix A ◦ B = [aijbij]. If A and B are two nonsingular M-matrices,
then it was proved in [] that A ◦ B– is also a nonsingular M-matrix.

Let A = [aij] be an n × n matrix with all diagonal entries being nonzero throughout. For
i, j, k ∈ N , j �= i, denote

Ri =
∑

j �=i

|aij|, di =
Ri

|aii| ; sji =
|aji| +

∑
k �=j,i |ajk|dk

|ajj| , si = max
j �=i

{sij};

rji =
|aji|

|ajj| –
∑

k �=j,i |ajk| , ri = max
j �=i

{rji};
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mji =
|aji| +

∑
k �=j,i |ajk|ri

|ajj| , mi = max
j �=i

{mij};

uji =
|aji| +

∑
k �=j,i |ajk|mki

|ajj| , ui = max
j �=i

{uij}.

In , Zhou et al. [] gave the following result: If A = [aij] ∈Mn is a strictly row diag-
onally dominant matrix, B = [bij] ∈Mn and A– = [αij], then

τ
(
B ◦ A–) ≥ min

i∈N

{bii – mi
∑

j �=i |bji|
aii

}
. ()

In , Cheng et al. [] obtained the following result: If A = [aij] ∈ Mn and A– = [αij]
is a doubly stochastic matrix, then

τ
(
A ◦ A–) ≥ min

i∈N

{
aii – uiRi

 +
∑

j �=i uji

}
. ()

In this paper, we present several convergent sequences of the lower bounds of τ (B ◦A–)
and τ (A◦A–), which improve () and (). Numerical examples show that these sequences
could reach the true value of τ (A ◦ A–) in some cases.

2 Some lemmas and notations
In this section, we first give the following notations; these will be useful in the following
proofs.

Let A = [aij] ∈R
n×n. For i, j, k ∈ N , j �= i, t = , , . . . , denote

qji = min{sji, mji}, hi = max
j �=i

{ |aji|
|ajj|qji –

∑
k �=j,i |ajk|qki

}
,

v()
ji =

|aji| +
∑

k �=j,i |ajk|qkihi

|ajj| , p(t)
ji =

|aji| +
∑

k �=j,i |ajk|v(t–)
ki

|ajj| ,

p(t)
i = max

j �=i

{
p(t)

ij
}

, h(t)
i = max

j �=i

{ |aji|
|ajj|p(t)

ji –
∑

k �=j,i |ajk|p(t)
ki

}
,

v(t)
ji =

|aji| +
∑

k �=j,i |ajk|p(t)
ki h(t)

i

|ajj| .

Lemma  If A = [aij] ∈ Mn is strictly row diagonally dominant, then, for all i, j ∈ N , j �= i,
t = , , . . . ,

(a)  > qji ≥ v()
ji ≥ p()

ji ≥ v()
ji ≥ p()

ji ≥ v()
ji ≥ · · · ≥ p(t)

ji ≥ v(t)
ji ≥ · · · ≥ ;

(b)  ≥ hi ≥ ,  ≥ h(t)
i ≥ .

Proof Since A is a strictly row diagonally dominant matrix, that is, |ajj| >
∑

k �=j |ajk| =
∑

k �=j,i |ajk| + |aji|, we have  ≤ rji = |aji|
|ajj|–

∑
k �=j,i |ajk | < . By the definition of ri, we obtain

 ≤ ri < . Since ri = maxj �=i{rji}, so ri ≥ rji = |aji|
|ajj|–

∑
k �=j,i |ajk | , i.e., ri ≥ |aji|+

∑
k �=j,i |ajk |ri
|ajj| , from the

definition of mji, we have  > ri ≥ mji ≥ .
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Since A is a strictly row diagonally dominant matrix,  > dj ≥ sji ≥ . Then, by the defi-
nition of qji, it is easy to see that  ≤ qji < . Hence, if qji = sji, then

|aji|
|ajj|qji –

∑
k �=j,i |ajk|qki

=
|aji|

|ajj|sji –
∑

k �=j,i |ajk|ski
=

|ajj|sji –
∑

k �=j,i |ajk|dk

|ajj|sji –
∑

k �=j,i |ajk|ski
≤ ;

else, i.e., if qji = mji, then

|aji|
|ajj|qji –

∑
k �=j,i |ajk|qki

=
|aji|

|ajj|mji –
∑

k �=j,i |ajk|mki
=

|ajj|mji –
∑

k �=j,i |ajk|ri

|ajj|mji –
∑

k �=j,i |ajk|mki
≤ ,

furthermore, from the definition of hi, we have  ≤ hi ≤ .
Since

hi = max
j �=i

{ |aji|
|ajj|qji –

∑
k �=j,i |ajk|qki

}
,

we have

hi ≥ |aji|
|ajj|qji –

∑
k �=j,i |ajk|qki

, i.e., qjihi ≥ |aji| +
∑

k �=j,i |ajk|qkihi

|ajj| = v()
ji .

By  ≤ hi ≤ , we have qji ≥ v()
ji ≥ . From the definition of v()

ji , p()
ji , we have v()

ji ≥ p()
ji ≥ .

Hence,

|aji|
|ajj|p()

ji –
∑

k �=j,i |ajk|p()
ki

=
|ajj|p()

ji –
∑

k �=j,i |ajk|v()
ki

|ajj|p()
ji –

∑
k �=j,i |ajk|p()

ki

≤ ,

furthermore, by the definition of h()
i , we have  ≤ h()

i ≤ , i ∈ N .
Since

h()
i = max

j �=i

{ |aji|
|ajj|p()

ji –
∑

k �=j,i |ajk|p()
ki

}
,

we have

h()
i ≥ |aji|

|ajj|p()
ji –

∑
k �=j,i |ajk|p()

ki

, i.e., p()
ji h()

i ≥ |aji| +
∑

k �=j,i |ajk|p()
ki h()

i

|ajj| = v()
ji .

By  ≤ h()
i ≤ , we have p()

ji ≥ v()
ji ≥ . From the definition of v()

ji , p()
ji , we obtain v()

ji ≥
p()

ji ≥ .
In the same way as above, we can also prove that

p()
ji ≥ v()

ji ≥ · · · ≥ p(t)
ji ≥ v(t)

ji ≥ · · · ≥ ,  ≥ h(t)
i ≥ , t = , , . . . .

The proof is completed. �

Using the same technique as the proof of Lemma ., Lemma ., Lemma . in [], we
can obtain Lemma , Lemma , Lemma , respectively.
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Lemma  If A = [aij] ∈ Mn is a strictly row diagonally dominant matrix, then A– = [αij]
exists, and

αji ≤ |aji| +
∑

k �=j,i |ajk|v(t)
ki

ajj
αii = p(t+)

ji αii, j, i ∈ N , j �= i, t = , , , . . . .

Lemma  If A = [aij] ∈ Mn is a strictly row diagonally dominant matrix, then A– = [αij]
exists, and


aii

≤ αii ≤ 
aii –

∑
j �=i |aij|p(t)

ji

, i, j ∈ N , t = , , . . . .

Lemma  If A ∈Mn and A– = [αij] is a doubly stochastic matrix, then

αii ≥ 
 +

∑
j �=i p(t)

ji

, i, j ∈ N , t = , , . . . .

Lemma  [] If A– is a doubly stochastic matrix, then AT e = e, Ae = e, where e =
(, , . . . , )T .

Lemma  [] Let A = [aij] ∈ C
n×n and x, x, . . . , xn be positive real numbers. Then all the

eigenvalues of A lie in the region

n⋃

i=

{
z ∈C : |z – aii| ≤ xi

∑

j �=i


xj

|aji|
}

.

3 Main results
In this section, we give several sequences of the lower bounds for τ (B◦A–) and τ (A◦A–).

Theorem  Let A = [aij], B = [bij] ∈Mn. Then, for t = , , . . . ,

τ
(
B ◦ A–) ≥ min

i∈N

{bii – p(t)
i

∑
j �=i |bji|

aii

}
= �t . ()

Proof It is evident that the result holds with equality for n = .
We next assume that n ≥ .
Since A ∈ Mn, there exists a positive diagonal matrix D such that D–AD is a strictly

row diagonally dominant M-matrix, and

τ
(
B ◦ A–) = τ

(
D–(B ◦ A–)D

)
= τ

(
B ◦ (

D–AD
)–).

Therefore, for convenience and without loss of generality, we assume that A is a strictly
row diagonally dominant matrix.

If A is irreducible, then  < p(t)
i < , for any i ∈ N . Let A– = [αij]. Since τ (B ◦ A–) is an

eigenvalue of B ◦ A–, by Lemma  and Lemma , there exists an i such that

∣∣τ
(
B ◦ A–) – biiαii

∣∣ ≤ p(t)
i

∑

j �=i


p(t)

j

|bjiαji| ≤ p(t)
i

∑

j �=i


p(t)

j

|bji|p(t)
ji |αii|

≤ p(t)
i

∑

j �=i


p(t)

j

|bji|p(t)
j |αii| = p(t)

i |αii|
∑

j �=i

|bji|. ()
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By Lemma , inequality (), and τ (B ◦ A–) ≤ biiαii for all i ∈ N , we have

τ
(
B ◦ A–) ≥ biiαii – p(t)

i |αii|
∑

j �=i

|bji| ≥
bii – p(t)

i
∑

j �=i |bji|
aii

≥ min
i∈N

{bii – p(t)
i

∑
j �=i |bji|

aii

}
.

If A is reducible, it is well known that a matrix in Zn = {A = [aij] ∈R
n×n : aij ≤ , i �= j} is a

nonsingular M-matrix if and only if all its leading principal minors are positive (see condi-
tion (E) of Theorem .. of []). If we denote by C = [cij] the n × n permutation matrix
with c = c = · · · = cn–,n = cn = , the remaining cij zero, then A – εC is an irreducible
nonsingular M-matrix for any chosen positive real number ε, sufficiently small such that
all the leading principal minors of A – εC are positive. Now we substitute A – εC for A, in
the previous case, and then, letting ε → , the result follows by continuity. �

Theorem  The sequence {�t}, t = , , . . . obtained from Theorem  is monotone increas-
ing with an upper bound τ (B ◦ A–) and, consequently, is convergent.

Proof By Lemma , we have p(t)
ji ≥ p(t+)

ji ≥ , t = , , . . . , so by the definition of p(t)
i , it is

easy to see that the sequence {p(t)
i } is monotone decreasing. Then �t is a monotonically

increasing sequence. Hence, the sequence is convergent. �

Remark  We give a simple comparison between () and (). According to Lemma , we
know that qji = min{sji, mji} ≥ p(t)

ji . Furthermore, by the definition of mi, p(t)
i , we have mi ≥

p(t)
i . Therefore for t = , , . . . ,

τ
(
B ◦ A–) ≥ min

i∈N

{bii – p(t)
i

∑
j �=i |bji|

aii

}
≥ min

i∈N

{bii – mi
∑

j �=i |bji|
aii

}
.

So the bound in () is bigger than the bound in ().

Let A = [aij] ∈Mn. By Lemma , we know that if A– is a doubly stochastic matrix, then
AT e = e, Ae = e, that is, aii = +

∑
j �=i |aij| = +

∑
j �=i |aji|. So A is strictly diagonally dominant

matrix by row and by column. By using Lemma  and Theorem , we can get the following
corollaries.

Corollary  Let A = [aij], B = [bij] ∈ Mn and A– be a doubly stochastic matrix. Then, for
t = , , . . . ,

τ
(
B ◦ A–) ≥ min

i∈N

{bii – p(t)
i

∑
j �=i |bji|

 +
∑

j �=i p(t)
ji

}
.

Corollary  Let A = [aij] ∈ Mn and A– be a doubly stochastic matrix. Then, for t =
, , . . . ,

τ
(
A ◦ A–) ≥ min

i∈N

{
aii – p(t)

i Ri

 +
∑

j �=i p(t)
ji

}
= 	t . ()
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Remark  (i) The sequence {	t}, t = , , . . . obtained from Corollary  is monotone in-
creasing with an upper bound τ (A ◦ A–) and, consequently, is convergent.

(ii) Next, we give a simple comparison between () and (). By Lemma , we know

that qji = min{sji, mji} ≥ v()
ji , so uji =

|aji|+
∑

k �=j,i |ajk |mki
|ajj| ≥ |aji|+

∑
k �=j,i |ajk |v()

ki
|ajj| = p()

ji ≥ p(t)
ji . Further-

more, by the definition of ui, p(t)
i , we have ui ≥ p(t)

i . Obviously,

τ
(
A ◦ A–) ≥ 	t ≥ min

i∈N

{
aii – uiRi

 +
∑

j �=i uji

}
.

So the bound in () is bigger than the bound in ().

Using the same technique as the proof of Theorem , the another lower upper of τ (B ◦
A–) is given.

Theorem  Let A = [aij], B = [bij] ∈Mn. Then, for t = , , . . . ,

τ
(
B ◦ A–) ≥ min

i∈N

{bii – si
∑

j �=i
|bji|p(t)

ji
sj

aii

}
= 
t .

Using the same method as the proof of Theorem , the following theorem is obtained.

Theorem  The sequence {
t}, t = , , . . . obtained from Theorem  is monotone increas-
ing with an upper bound τ (B ◦ A–) and, consequently, is convergent.

Similarly, by Lemma  and Theorem , we can get the following corollaries.

Corollary  Let A = [aij], B = [bij] ∈Mn and A– be a doubly stochastic matrix. Then, for
t = , , . . . ,

τ
(
B ◦ A–) ≥ min

i∈N

{bii – si
∑

j �=i
|bji|p(t)

ji
sj

 +
∑

j �=i p(t)
ji

}
.

Corollary  Let A = [aij] ∈ Mn and A– be a doubly stochastic matrix. Then, for t =
, , . . . ,

τ
(
A ◦ A–) ≥ min

i∈N

{aii – si
∑

j �=i
|aji|p(t)

ji
sj

 +
∑

j �=i p(t)
ji

}
= Tt .

Remark  The sequence {Tt}, t = , , . . . , obtained from Corollary  is monotone increas-
ing with an upper bound τ (A ◦ A–) and, consequently, is convergent.

Let ϒt = max{	t , Tt}. By Corollary  and Corollary , the following theorem is easily
found.

Theorem  Let A = [aij] ∈Mn and A– be a doubly stochastic matrix. Then, for t = , , . . . ,

τ
(
A ◦ A–) ≥ ϒt .
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4 Numerical examples
In this section, several numerical examples are given to verify the theoretical results.

Example  Let

A =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

 – – – – – – – – –
–  – – – – – – – –
– –  – – –  – – –
– –   – – – – – –
– –  –  – – – – –
– – – – –  –  – 
– – – –  –   – 
– – – – –     –
– – – – –  – –  
– –  – – –  – – 

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

By Ae = e, AT e = e, we know that A is strictly diagonally dominant by row and column.
Based on A ∈ Zn, it is easy to see that A is nonsingular M-matrix and A– is doubly stochas-
tic. Numerical results are given in Table  for the total number of iterations T = . In fact,
τ (A ◦ A–) = ..

Remark  Numerical results in Table  show that:
(a) Lower bounds obtained from Theorem  are greater than the bound in Theorem .

of [].
(b) Sequence obtained from Theorem  is monotone increasing.
(c) The sequence obtained from Theorem  approximates effectively to the true value

of τ (A ◦ A–), so we can estimate τ (A ◦ A–) by Theorem .

Example  A nonsingular M-matrix A = [aij] ∈ R
n×n whose inverse is doubly stochastic

is randomly generated by Matlab . (with - average distribution).

The numerical results obtained from Theorem  for T =  are listed in Table , where
T are defined in Example .

Remark  Numerical results in Table  show that it is effective by Theorem  to estimate
τ (A ◦ A–) for large order matrices.

Table 1 The lower upper of τ (A ◦ A–1)

Method t ϒt

Theorem 3.1 of [6] 0.4471
Theorem 5 t = 1 0.7359

t = 2 0.8441
t = 3 0.8976
t = 4 0.9233
t = 5 0.9328
t = 6 0.9350
t = 7 0.9359
t = 8 0.9363
t = 9 0.9364
t = 10 0.9365
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Table 2 The lower upper of τ (A ◦ A–1)

t n = 200 n = 500

t = 1 0.0311 0.0121
t = 30 0.3689 0.1568
t = 60 0.6198 0.2928
t = 90 0.7551 0.4149
t = 120 0.8430 0.5135
t = 150 0.8707 0.5911
t = 180 0.8873 0.6566
t = 210 0.8897 0.7041
t = 240 0.8928 0.7416
t = 270 0.8938 0.7699
t = 300 0.8943 0.7909
t = 330 0.8946 0.8065
t = 360 0.8947 0.8180
t = 390 0.8948 0.8264
t = 420 0.8948 0.8326
t = 450 0.8948 0.8371
t = 480 0.8948 0.8403
t = 500 0.8948 0.8420

Table 3 The lower upper of τ (A ◦ A–1)

t n = 10 n = 15

t = 1 0.6667 0.1905
t = 2 0.7385 0.4364
t = 3 0.7500 0.6379
t = 4 0.7507 0.7191
t = 5 0.7422
t = 6 0.7481
t = 7 0.7495
t = 8 0.7499
t = 9 0.7500

Example  Let A = [aij] ∈ R
n×n, where a = a = · · · = an,n = , a = a = · · · = an–,n =

an, = –, and aij =  elsewhere.

It is easy to see that A is a nonsingular M-matrix and A– is doubly stochastic. The
results obtained from Theorem  for n = ,  and T =  are listed in Table , where T
is defined in Example . In fact, τ (A ◦ A–) = . for n =  and τ (A ◦ A–) = . for
n = .

Remark  Numerical results in Table  show that the lower bound obtained from Theo-
rem  could reach the true value of τ (A ◦ A–) in some cases.

5 Further work
In Theorem , we present a convergent sequence {ϒt}, t = , , . . . , to approximate τ (A ◦
A–). Then an interesting problem is how accurately these bounds can be computed. At
present, it is very difficult for the authors to give the error analysis. We will continue to
study this problem in the future.
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