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Abstract
In this paper, some new sufficient conditions for the oscillation of all solutions of
nonlinear neutral delay differential equations are established aiming at extending
and/or improving some well known results in the literature. Our main results are
obtained by employing the Riccati transformation aiming to transfer the neutral
equation to a nonneutral type and then using some inequality techniques. Some
illustrative examples are also included.
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1 Introduction
When delays appear in additional terms involving the highest order derivative of the un-
known function in a differential equation, we are dealing with a neutral type differential
equation. The study of the asymptotic and oscillatory behavior of solutions of neutral dif-
ferential equations is of importance in applications. This is due to the fact that such equa-
tions appear in various phenomena including networks containing lossless transmission
lines (as in high-speed computers where such lines are used to interconnect switching cir-
cuits), in the study of vibrating masses attached to an elastic bar, as the Euler equations
for the minimization of functionals involving a time delay in some variational problems
and in the theory of automatic control (see Hale [], Driver [] and Boe and Chang [] and
references cited therein). The construction of these models using delays is complemented
by the mathematical investigation of nonlinear equations.

In this paper, we mainly consider the nonlinear neutral delay differential equations of
the form

[
r(t)

(
a(t)x(t) + p(t)x(t – τ )

)]′ + q(t)f
(
x(t – σ )

)
= , (.)

where

r(t), a(t), p(t), q(t) ∈ C
[
[t,∞),R+]

, τ ,σ ∈ R
+, (.)

and f satisfies

f ∈ C[R,R], uf (u) >  for u �= , (.)
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and there exists a positive constant k such that

f (u)
u

≥ k > . (.)

Many authors have considered linear neutral delay differential equations and established
sufficient conditions for oscillation of all solutions. We refer to Ahmed et al. [], Karpuz
and Ocalan [], Gopalsamy et al. [] and Zhou [].

In , Saker and Kubiaczyk [] considered the nonlinear neutral equation

(
a(t)x(t) + p(t)x(t – τ )

)′ + q(t)f
(
x(t – σ )

)
= , (.)

where the function f satisfies condition (.) with limu→
f (u)

u = k exists and there exists
t∗ ≥ t such that

p(t∗ + n∗τ )
a(t∗ + (n∗ – )τ )

≤  for n∗ = , , , . . . . (.)

In , Kubiaczyk et al. [] studied the nonlinear equations of the form

(
x(t) + p(t)x(t – τ )

)′ + q(t)
n∏

i=

∣
∣x(t – σi)

∣
∣αi sign x(t – σi) = , (.)

where αi >  and
∑n

i= αi = , and they have given some sharp sufficient conditions for the
oscillation of all solutions of (.).

In , Graef et al. [] considered (.) when a(t) ≡ , r(t) ≡  and developed some
sufficient conditions for the oscillation of all solutions. For further results on the oscillation
of various classes of neutral differential equations one can see [–].

A primary purpose of this paper is to establish new integral conditions that guarantee
the oscillation of all solutions of (.) when p(t) is constant and equal p. In some sense, the
obtained results here extend and generalize several of well known results in the literature.

Let m = max{τ ,σ }. By a solution of (.) we mean a function x ∈ C[[t – m,∞),R] for
some t ≥ t such that a(t)x(t) + p(t)x(t – τ ) is continuously differentiable for t ≥ t and
such that (.) is satisfied for t ≥ t.

Let t ≥ t be a given initial point and let � ∈ C[[t – m, t],R] be a given initial function.
Then one can show by using the method of steps that (.) has a unique solution on [t,∞)
satisfying the initial function

x(t) = �(t), for t – m ≤ t ≤ t.

As is customary, a solution of (.) is said to be oscillatory if it has arbitrarily large zeros.
Otherwise the solution is said to be nonoscillatory. Equation (.) is said to be oscillatory
if all its solutions are oscillatory.

In the sequel, unless otherwise specified, when we write a functional inequality we shall
assume that it holds for all sufficiently large values of t.
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2 Auxiliary lemmas
We give here some useful lemmas which will play an important role in the study of the
oscillation of (.).

Lemma . [] Assume that Pi(t), τi(t) ∈ C[[t,∞), [,∞)], i = , , . . . .
Then the differential inequality

x′(t) +
n∑

i=

Pi(t)x
(
t – τi(t)

) ≤  (.)

has an eventually positive solution if and only if the equation

x′(t) +
n∑

i=

Pi(t)x
(
t – τi(t)

)
=  (.)

has an eventually positive solution.

Lemma . [] Assume that

lim sup
t→∞

∫ t+τi

t
pi(s) ds > , for some i. (.)

If x(t) is an eventually positive solution of the delay differential equation

x′(t) +
n∑

i=

pi(t)x(t – τi) = , (.)

then, for the same i,

lim inf
t→∞

x(t – τi)
x(t)

< ∞.

Lemma . Assume that

a(t) ≤ , σ > τ , and p > , (.)

lim sup
t→∞

∫ t+σ–τ

t
q(s) ds > . (.)

Let x(t) be an eventually positive solution of the equation

(
a(t)x(t) + px(t – τ )

)′ + q(t)f
(
x(t – σ )

)
= . (.)

Set

z(t) = a(t)x(t) + px(t – τ ), (.)

then

lim inf
t→∞

z(t – σ + τ )
z(t)

< ∞. (.)
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Proof In view of (.) and our hypothesis, we see that z(t) >  eventually. From (.) we
have

z(t + τ ) = a(t + τ )x(t + τ ) + px(t) (.)

and

px(t – τ ) = z(t) – a(t)x(t) ≥ z(t) – x(t). (.)

Since z′(t) < , we have z(t) > z(t + τ ), which implies with (.) that

z(t) ≥ px(t) ⇒ x(t) ≤ z(t)
p

.

Substituting in (.), we obtain

px(t – τ ) ≥ z(t) –
z(t)
p

,

or

p
x(t – τ ) ≥ pz(t) – z(t).

Hence

x(t – σ ) ≥ p – 
p


z(t + τ – σ ). (.)

From (.) and (.), we get

z′(t) +
k(p – )

p


q(t)z(t + τ – σ ) ≤ . (.)

By Lemma ., we find that

z′(t) +
k(p – )

p


q(t)z(t + τ – σ ) =  (.)

has an eventually positive solution as well.
As a result, by Lemma . and (.), we have

lim inf
t→∞

z(t – σ + τ )
z(t)

< ∞,

which is the desired result. The proof is complete. �

Lemma . Assume that conditions (.) hold. If (.) has an eventually positive solution,
then

∫ t+σ–τ

t
q(s) ds ≤ p


k(p – )

(.)

for all sufficiently large t.
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Proof Proceeding as in the proof of Lemma ., we again obtain the inequality (.). In-
tegrating (.) from t to t + σ – τ , it follows that

z(t – τ + σ ) – z(t) +
k(p – )

p


∫ t+σ–τ

t
q(s)z(s – σ + τ ) ds ≤ .

Using Bonnet’s theorem, it follows that

z(t – τ + σ ) – z(t) +
k(p – )

p


z(t)
∫ t+σ–τ

t
q(s) ds ≤ .

Then

z(t – τ + σ ) +
(

k(p – )
p



∫ t+σ–τ

t
q(s) ds – 

)
z(t) ≤ . (.)

Since z(t) > , (.) implies

k(p – )
p



∫ t+σ–τ

t
q(s) ds –  ≤ .

Hence, for all sufficiently large t, we have

∫ t+σ–τ

t
q(s) ds ≤ p


k(p – )

,

which is the desired result. The proof is complete. �

Remark . Lemma . and Lemma . extend results of Graef et al. [].

3 Oscillation of solutions
Theorem . Assume that conditions (.) and (.) hold. If

∫ ∞

t

q(t) ln

(
ek(p – )

p


∫ t+σ–τ

t
q(s) ds

)
dt = ∞. (.)

Then every solution of (.) oscillates.

Proof For the sake of obtaining a contradiction, assume that there is an eventually positive
solution x(t) of (.). Set z(t) as in (.). Then z(t) is eventually positive and decreasing and
satisfies the inequality (.). That is,

z′(t) +
k(p – )

p


q(t)z(t + τ – σ ) ≤ .

Let

ψ(t) = –
z′(t)
z(t)

.
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Then ψ(t) is continuous and nonnegative. So, there exists t ≥ t with z(t) >  such that

z(t) = z(t) exp

(
–

∫ t

t

ψ(s) ds
)

.

Moreover, ψ(t) satisfies

ψ(t) ≥ k(p – )
p


q(t) exp

(∫ t

t+τ–σ

ψ(s) ds
)

. (.)

By using the inequality (cf. Erbe et al. [], p.)

erx ≥ x +
ln(er)

r
, x, r > ,

we have from (.)

ψ(t) ≥ k(p – )
p


q(t) exp

(
A(t)
A(t)

∫ t

t+τ–σ

ψ(s) ds
)

≥ k(p – )
p


q(t) exp

(


A(t)

∫ t

t+τ–σ

ψ(s) ds +
ln(eA(t))

A(t)

)
,

where

A(t) =
k(p – )

p


∫ t+σ–τ

t
q(s) ds.

Therefore,

ψ(t)
∫ t+σ–τ

t
q(s) ds – q(t)

∫ t

t+τ–σ

ψ(s) ds ≥ q(t) ln

(
ek(p – )

p


∫ t+σ–τ

t
q(s) ds

)
.

Hence, for ξ > T + σ – τ ,

∫ ξ

T
ψ(t)

(∫ t+σ–τ

t
q(s) ds

)
dt –

∫ ξ

T
q(t)

(∫ t

t+τ–σ

ψ(s) ds
)

dt

≥
∫ ξ

T
q(t) ln

(
ek(p – )

p


∫ t+σ–τ

t
q(s) ds

)
dt. (.)

By interchanging the order of integration, we have

∫ ξ

T
q(t)

(∫ t

t+τ–σ

ψ(s) ds
)

dt ≥
∫ ξ+τ–σ

T
ψ(t)

(∫ t+σ–τ

t
q(s) ds

)
dt. (.)

Combining (.) and (.), leads to

∫ ξ

ξ+τ–σ

ψ(t)
(∫ t+τ–σ

t
q(s) ds

)
dt ≥

∫ ξ

T
q(t) ln

(
ek(p – )

p


∫ t+σ–τ

t
q(s) ds

)
dt. (.)

Using (.) of Lemma . in (.), we obtain

∫ ξ

ξ+τ–σ

ψ(t) dt ≥ k(p – )
p



∫ ξ

T
q(t) ln

(
ek(p – )

p


∫ t+σ–τ

t
q(s) ds

)
dt,
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i.e.,

ln
z(ξ + τ – σ )

z(ξ )
≥ k(p – )

p


∫ ξ

T
q(t) ln

(
ek(p – )

p


∫ t+σ–τ

t
q(s) ds

)
dt.

This result along with condition (.) leads to

lim
t→∞

z(t + τ – σ )
z(t)

= ∞,

which contradicts (.) and completes the proof. �

Example . Consider the equation

(

t

x(t) + x(t – )
)′

+

e

(
 +


t

)
x(t – )

(
 + x(t – )

)
= , t ≥ e. (.)

Here we have

a(t) =

t

, q(t) =

e

(
 +


t

)
, p = , τ = , and σ = ,

f
(
x(t – σ )

)
= x(t – )

(
 + x(t – )

)
.

Then we have

f (u)
u

=
x(t – )( + x(t – ))

x(t – )
=  + x(t – )) ≥ .

Let k = ,

∫ ∞

t

q(t) ln

(
ek(p – )

p


∫ t+σ–τ

t
q(s) ds

)
dt

=
∫ ∞

e


e

(
 +


t

)
ln

(∫ t+

t+

(
 +


s

)
ds

)
dt

=

e

∫ ∞

e

(
 +


t

)(
 + ln

(
 +


t

))

≥ 
e

∫ ∞

e
ln

(
 + ln

(
 +


t

))
= ∞.

Hence, according to Theorem ., all solutions of (.) oscillate.

Remark . Theorem . extends results of Graef et al. ([], Theorem . and Theo-
rem .), where a(t) ≡ .

Theorem . Assume that conditions (.) hold. If

 < c ≤ lim inf
t→∞

∫ t–τ+σ

t

q(s)
r(s + τ – σ )

ds (.)
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and
∫ ∞

t

q(t)
r(t + τ – σ )

ln

(
ek(p – )

p


∫ t+σ–τ

t

q(s)
r(s + τ – σ )

ds
)

dt = ∞. (.)

Then every solution of (.) oscillates.

Proof For the sake of obtaining a contradiction, assume that there is an eventually positive
solution x(t) of (.). Set z(t) as in (.). Then z(t) is eventually positive and decreasing.
From (.) and (.), we have

(
r(t)z(t)

)′ +
k(p – )

p


q(t)z(+τ – σ ) ≤ . (.)

Dividing (.) by r(t) > , we obtain

z′(t) +
r′(t)
r(t)

z(t) +
k(p – )

p


q(t)
r(t)

z(+τ – σ ) ≤ . (.)

Let

z(t) = exp

(
–

∫ t

t

r′(s)
r(s)

ds
)

y(t), (.)

which implies that y(t) > . Substituting in (.) yields for all t ≥ t,

y′(t) +
k(p – )

p


q(t)
r(t + τ – σ )

y(+τ – σ ) ≤ . (.)

Set

λ(t) = –
y′(t)
y(t)

.

Then λ(t) is continuous and positive. So, there exists t ≥ t with y(t) >  such that

y(t) = y(t) exp

(∫ t

t

λ(s) ds
)

.

Moreover, λ(t) satisfies

λ(t) ≥ k(p – )
p



q(t)
r(t + τ – σ )

exp

(∫ t

t+τ–σ

λ(s) ds
)

. (.)

Applying the inequality

erx ≥ x +
ln(er)

r
, x, r > 

to (.) yields that

λ(t) ≥
(

k(p – )
p



)(
q(t)

r(t + τ – σ )

)
exp

(
B(t)
B(t)

∫ t

t+τ–σ

λ(s) ds
)

≥
(

k(p – )
p



)(
q(t)

r(t + τ – σ )

)(


B(t)

∫ t

t+τ–σ

λ(s) ds +
ln(eB(t))

B(t)

)
,
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where

B(t) =
k(p – )

p


∫ t–τ+σ

t

q(s)
r(s + τ – σ )

ds.

Therefore,

λ(t)
∫ t–τ+σ

t

q(s)
r(s + τ – σ )

ds –
q(t)

r(t + τ – σ )

∫ t

t+τ–σ

λ(s) ds

≥ q(t)
r(t + τ – σ )

ln

(
ek(p – )

p


∫ t–τ+σ

t

q(s)
r(s + τ – σ )

ds
)

.

Hence, for η > T + σ – τ

∫ η

T

λ(t)
(∫ t–τ+σ

t

q(s)
r(s + τ – σ )

ds
)

dt –
∫ η

T

q(t)
r(t + τ – σ )

(∫ t

t+τ–σ

λ(s) ds
)

dt

≥
∫ η

T

q(t)
r(t + τ – σ )

ln

(
ek(p – )

p


∫ t–τ+σ

t

q(s)
r(s + τ – σ )

ds
)

dt. (.)

By interchanging the order of integration, we have

∫ η

T

q(t)
r(t + τ – σ )

(∫ t

t+τ–σ

λ(s) ds
)

dt ≥
∫ η+τ–σ

T

λ(t)
(∫ t–τ+σ

t

q(s)
r(s + τ – σ )

ds
)

dt. (.)

From (.) and (.), we obtain

∫ η

η+τ–σ

λ(t)
(∫ t–τ+σ

t

q(s)
r(s + τ – σ )

ds
)

dt

≥
∫ η

T

q(t)
r(t + τ – σ )

ln

(
ek(p – )

p


∫ t–τ+σ

t

q(s)
r(s + τ – σ )

ds
)

dt. (.)

Employing (.) in (.), it follows that

∫ η

η+τ–σ

λ(t) dt ≥ k(p – )
p



∫ η

T

q(t)
r(t + τ – σ )

ln

(
ek(p – )

p


∫ t–τ+σ

t

q(s)
r(s + τ – σ )

ds
)

dt

or

ln
y(η + τ – σ )

y(η)

≥ k(p – )
p



∫ η

T

q(t)
r(t + τ – σ )

ln

(
ek(p – )

p


∫ t–τ+σ

t

q(s)
r(s + τ – σ )

ds
)

dt. (.)

From (.) and (.), we have

lim
t→∞

y(t + τ – σ )
y(t)

= ∞. (.)
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On the other hand, from condition (.), there exists a sequence {tn}, tn → ∞ as n → ∞,
and there exists μn ∈ (tn – σ , t) for every n such that

∫ μn

tn+τ–σ

q(s)
r(s + τ – σ )

ds ≥ c


and
∫ tn

μn

q(s)
r(s + τ – σ )

ds ≥ c


. (.)

Integrating both sides of (.) over the interval [tn,μn] and [μn, tn + σ – τ ], we have

y(μn) – y(tn) +
k(p – )

p


∫ μn

tn

q(s)
r(s + τ – σ )

y(s + τ – σ ) ds =  (.)

and

y(tn + σ – τ ) – y(μn) +
k(p – )

p


∫ tn–τ+σ

μn

q(s)
r(s + τ – σ )

y(s + τ – σ ) ds = . (.)

From (.), (.), and (.), we have

–y(tn) +
c


y(μn + σ – τ ) ≤ 

and

–y(μn) +
c


y(tn) ≤ .

This implies eventually

y(μn – σ + τ )
y(μn)

≤
(


c

)

,

which is a contradiction with (.). The proof is complete. �

Example . Consider the equation

[
et(x(t) + x(t – )

)]′ +
t + 

t
et–x(t – )

(
 + x(t – )

)
= , t ≥ . (.)

Here we have,

r(t) = et , a(t) = , q(t) =
t + 

t
et–, p = , τ =  and σ = ,

f
(
x(t – σ )

)
= x(t – )

(
 + x(t – )

)
.

Then we have

f (u)
u

=  + x(t – )) ≥ .

Let k = ; we have

lim inf
t→∞

∫ t–τ+σ

t

q(s)
r(s + τ – σ )

ds = lim inf
t→∞

∫ t+

t

[es–( s+
s )

es–

]
ds

= lim inf
t→∞

∫ t+

t

(
 +


s

)
ds ≥  > 
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and

∫ ∞

t

q(t)
r(t + τ – σ )

ln

(
ek(p – )

p


∫ t+σ–τ

t

q(s)
r(s + τ – σ )

ds
)

dt

=
∫ ∞



(
t + 

t
ln

(
e


∫ t+

t

s + 
s

ds
))

dt ≥ e


∫ ∞


ln

(
ln

(
 +


t

))
dt = ∞.

Hence, according to Theorem ., all solutions of (.) oscillate.

Remark . Theorem . extends results of Graef et al. [], Ahmed et al. [], Saker and
Elabbasy [] and Saker and Kubiaczyk [].
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