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Abstract
Let us define A = Circr(a0,a1, . . . ,an–1) to be a n× n r-circulant matrix. The entries in
the first row of A = Circr(a0,a1, . . . ,an–1) are ai = Fi , or ai = Li , or ai = FiLi , or ai = F2i , or
ai = L2i (i = 0, 1, . . . ,n – 1), where Fi and Li are the ith Fibonacci and Lucas numbers,
respectively. This paper gives an upper bound estimation of the spectral norm for
r-circulant matrices with Fibonacci and Lucas numbers. The result is more accurate
than the corresponding results of S Solak and S Shen, and of J Cen, and the numerical
examples have provided further proof.
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estimation

1 Introduction
For n > , the Fibonacci sequence {Fn} is defined by Fn+ = Fn + Fn–, where F =  and
F = . If we start by zero, then the sequence is given by

n          · · ·
Fn          · · · ()

If we deduce from Fn+ that Ln+ = Ln + Ln–, and let L = , L = , then we obtain the
Lucas sequence {Ln},

n          · · ·
Ln          · · · ()

Furthermore, the sequences {Fn} and {Ln} satisfy the following recursion:

Fn + Ln = Fn+. ()

Definition . A matrix A is an r-circulant matrix if it is of the form

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

a a · · · an– an–

ran– a · · · an– an–

· · · · · · · · · · · · · · ·
ra ra · · · a a

ra ra · · · ran– a

⎞
⎟⎟⎟⎟⎟⎟⎠

.
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Obviously, the elements of this r-circulant matrix are determined by its first row ele-
ments a, a, . . . , an– and the parameter r, thus we denote A = Circr(a, a, . . . , an–). Espe-
cially when r = , we obtain A = Circ(a, a, . . . , an–).

Definition . A matrix A is called a symmetric r-circulant matrix if it is of the form

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

a a · · · an– an–

a a · · · an– ra

· · · · · · · · · · · · · · ·
an– an– · · · ran– ran–

an– ra · · · ran– ran–

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Obviously, the elements of this r-circulant matrix are determined by its first row ele-
ments a, a, . . . , an– and the parameter r; thus we denote A = SCircr(a, a, . . . , an–). Es-
pecially when r = , we obtain A = SCirc(a, a, . . . , an–).

For any A = (aij)m×n, the well-known spectral norm of the matrix A is

‖A‖ =
√

max
≤i≤n

λi
(
AHA

)
,

in which λi(AHA) is the eigenvalue of AH A and AH is the conjugate transpose of matrix A.
Define the maximum column length norm c(·) and the maximum row length norm r(·)

of any matrix A by

c(A) = max
j

√∑
i

|aij|

and

r(A) = max
i

√∑
j

|aij|,

respectively.
Let A, B, and C be m × n matrices. If A = B ◦ C, then in accordance with [] we have

‖A‖ ≤ r(B)c(C) ()

and

‖A‖ ≤ ‖B‖‖C‖. ()

Here, we define B = (bij)m×n, C = (cij)m×n, and we let B ◦ C be the Hadamard product of B
and C.

In recent years, many authors (see [–]) were concerned with r-circulant matrices as-
sociated with a number sequence. References [–] calculate and estimate the Frobenius
norm and the spectral norm of a circulant matrix where the elements of the r-circulant
matrix are Fibonacci numbers and Lucas numbers; the authors found more accurate re-
sults of the upper bound estimated, and the numerical examples also have provided further
proof.
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Theorem . (see []) Let A = Circ(F, F, . . . , Fn–) be a circulant matrix, then we have

‖A‖ ≤ FnFn–,

where ‖ · ‖ is the spectral norm and Fn denotes the nth Fibonacci number.

Theorem . (see []) Let A = Circ(L, L, . . . , Ln–) be a circulant matrix, then we have

‖A‖ ≤
⎧⎨
⎩

√
[FnFn– + F

n– + Fn–Fn– + ] × [FnFn– + F
n– + Fn–Fn– + ], n odd,√

[FnFn– + F
n– + Fn–Fn–] × [FnFn– + F

n– + Fn–Fn– – ], n even,

where ‖ · ‖ is the spectral norm, and Ln and Fn denote the nth Lucas and Fibonacci num-
bers, respectively.

Theorem . (see []) Let A = Circr(F, F, . . . , Fn–) be a r-circulant matrix, in which
|r| ≥ , and then

‖A‖ ≤ |r|FnFn–,

where r ∈C, ‖ · ‖ is the spectral norm and Fn denotes the nth Fibonacci number.

Theorem . (see []) Let A = Circr(L, L, . . . , Ln–) be a r-circulant matrix and |r| ≥ ,
then we obtain

‖A‖ ≤
⎧⎨
⎩

√
(|r|FnFn– + )(FnFn– + ), n odd,√
[|r|FnFn– + ( – |r|)](FnFn– – ), n even,

where r ∈C, ‖ · ‖ is the spectral norm, and Ln and Fn denote the nth Lucas and Fibonacci
numbers, respectively.

2 Main results
Theorem . Let A = Circ(F, F, . . . , Fn–) be a circulant matrix, then we have

‖A‖ ≤ √
(n – )FnFn–,

where ‖ · ‖ is the spectral norm and Fn denotes the nth Fibonacci number.

Proof Since A = Circ(F, F, . . . , Fn–) is a circulant matrix, let the matrices B and C be

B =

⎛
⎜⎜⎜⎝

F  · · · 
 F · · · 

· · · · · · · · · · · ·
  · · · F

⎞
⎟⎟⎟⎠ , C =

⎛
⎜⎜⎜⎜⎜⎜⎝

F F · · · Fn– Fn–

Fn– F · · · Fn– Fn–

· · · · · · · · · · · · · · ·
F F · · · F F

F F · · · Fn– F

⎞
⎟⎟⎟⎟⎟⎟⎠

,

we get A = B ◦ C.
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For

r(B) = max
i

√∑
j

|bij| =
√

n – 

and

c(C) = max
j

√∑
i

|cij| = max
j

√√√√
n∑

i=

|cin| =

√√√√ n–∑
s=

F
s =

√
FnFn–.

From (), we have

‖A‖ ≤ √
(n – )FnFn–. �

Corollary . Let A = SCirc(F, F, . . . , Fn–) be a symmetric circulant matrix, then we have

‖A‖ ≤ √
(n – )FnFn–,

where ‖ · ‖ is the spectral norm and Fn denotes the nth Fibonacci number.

Corollary . Let A = Circ(F
 , F

 , . . . , F
n–) be a circulant matrix, then we have

‖A‖ ≤ (n – )FnFn–,

where ‖ · ‖ is the spectral norm and Fn denotes the nth Fibonacci number.

Proof Since A = Circ(F
 , F

 , . . . , F
n–) is a circulant matrix, if the matrices B = Circ(F, F,

. . . , Fn–), we get A = B ◦ B; thus from () and Theorem . we obtain

‖A‖ ≤ (n – )FnFn–. �

Theorem . Let A = Circ(L, L, . . . , Ln–) be a circulant matrix, then we have

‖A‖ ≤
⎧⎨
⎩

√
nFnFn– + n, n odd,

√
nFnFn–, n even,

where ‖ · ‖ is the spectral norm and Ln denotes the Lucas number.

Proof Since A = Circ(L, L, . . . , Ln–) is a circulant matrix, let the following matrices be
defined:

B =

⎛
⎜⎜⎜⎝

  · · · 
  · · · 

· · · · · · · · · · · ·
  · · · 

⎞
⎟⎟⎟⎠ , C =

⎛
⎜⎜⎜⎜⎜⎜⎝

L L · · · Ln– Ln–

Ln– L · · · Ln– Ln–

· · · · · · · · · · · · · · ·
L L · · · L L

L L · · · Ln– L

⎞
⎟⎟⎟⎟⎟⎟⎠

,

then A = B ◦ C.
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We have

r(B) = max
i

√∑
j

|bij| =
√

n

and

c(C) = max
j

√∑
i

|cij| =

√√√√
n∑

i=

|cin| =

√√√√ n–∑
s=

L
s =

√√√√ n–∑
s=

(Fs + Fs–).

Here

n–∑
s=

F
s = FnFn–,

n–∑
s=

FsFs– =

⎧⎨
⎩

F
n–, n odd,

F
n– – , n even,

n–∑
s=

F
s– = Fn–Fn– + ,

thus

c(C) =

⎧⎨
⎩

√
FnFn– + , n odd,

√
FnFn–, n even,

and from () we obtain

‖A‖ ≤
⎧⎨
⎩

√
nFnFn– + n, n odd,

√
nFnFn–, n even. �

Corollary . Let A = SCirc(L, L, . . . , Ln–) be a symmetric circulant matrix, then we
have

‖A‖ ≤
⎧⎨
⎩

√
nFnFn– + n, n odd,

√
nFnFn–, n even,

where ‖ · ‖ is the spectral norm, and Ln and Fn denote the nth Lucas and Fibonacci num-
bers, respectively.

Corollary . Let A = Circ(L
, L

 , . . . , L
n–) be circulant matrices, then

‖A‖ ≤
⎧⎨
⎩

nFnFn– + n, n odd,

nFnFn–, n even,

where ‖ · ‖ is the spectral norm, and Ln and Fn denote the nth Lucas and Fibonacci num-
bers, respectively.

Proof Since A = Circ(L
, L

 , . . . , L
n–) is a circulant matrix, if the matrices B = Circ(L, L,

. . . , Ln–), we get A = B ◦ B; thus from () and Theorem ., we obtain

‖A‖ ≤
⎧⎨
⎩

nFnFn– + n, n odd,

nFnFn–, n even. �
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Corollary . Let A = Circ(FL, FL, . . . , Fn–Ln–) be circulant matrices, then

‖A‖ ≤
⎧⎨
⎩

√
(n – )nFnFn–(FnFn– + ), n odd,

√
(n – )nFnFn–, n even,

where ‖ · ‖ is the spectral norm, and Ln and Fn denote the nth Lucas and Fibonacci num-
bers, respectively.

Proof Since A = Circ(FL, FL, . . . , Fn–Ln–) is a circulant matrix, if the matrices B =
Circ(F, F, . . . , Fn–) and C = Circ(L, L, . . . , Ln–), we get A = B ◦ C; thus from (), The-
orems ., and ., we obtain

‖A‖ ≤
⎧⎨
⎩

√
(n – )nFnFn–(FnFn– + ), n odd,

√
(n – )nFnFn–, n even. �

Theorem . Let A = Circr(F, F, . . . , Fn–) be a r-circulant matrix, in which |r| ≥ , and
then

‖A‖ ≤
√

(n – )|r|FnFn–,

where r ∈C, ‖ · ‖ is the spectral norm and Fn denotes the nth Fibonacci number.

Proof Since A = Circr(F, F, . . . , Fn–) is a r-circulant matrix, let B and C, respectively, be

B =

⎛
⎜⎜⎜⎜⎜⎜⎝

F   · · · 
r F  · · · 
r r F · · · 

· · · · · · · · · · · · · · ·
r r r · · · F

⎞
⎟⎟⎟⎟⎟⎟⎠

, C =

⎛
⎜⎜⎜⎜⎜⎜⎝

F F F · · · Fn–

Fn– F F · · · Fn–

Fn– Fn– F · · · Fn–

· · · · · · · · · · · · · · ·
F F F · · · F

⎞
⎟⎟⎟⎟⎟⎟⎠

,

then A = B ◦ C.
For

r(B) = max
i

√∑
j

|bij| =
√

(n – )|r|

and

c(C) = max
j

√∑
i

|cij| =

√√√√
n∑

i=

|cin| =

√√√√ n–∑
s=

F
s =

√
FnFn–,

from (), we have

‖A‖ ≤
√

(n – )|r|FnFn–. �
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Corollary . Let A = SCircr(F, F, . . . , Fn–) be a symmetric r-circulant matrix, in which
|r| ≥ , and then

‖A‖ ≤
√

(n – )|r|FnFn–,

where r ∈C, ‖ · ‖ is the spectral norm and Fn denotes the nth Fibonacci number.

Corollary . Let A = Circr(F
 , F

 , . . . , F
n–) be a r-circulant matrix, while |r| ≥ , then

we obtain

‖A‖ ≤ (n – )|r|FnFn–,

where r ∈C, ‖ · ‖ is the spectral norm and Fn denotes the Fibonacci number.

Proof Since A = Circr(F
 , F

 , . . . , F
n–) is a r-circulant matrix, if the matrices B = Circr(F,

F, . . . , Fn–) and C = Circ(F, F, . . . , Fn–), we get A = B ◦ C; thus from (), Theorems .,
and ., we obtain

‖A‖ ≤ (n – )|r|FnFn–. �

Corollary . Let A = Circr(FL, FL, . . . , Fn–Ln–) be a r-circulant matrix, while
|r| ≥ , then we obtain

‖A‖ ≤
⎧⎨
⎩

√
(n – )n|r|FnFn–(FnFn– + ), n odd,

FnFn–
√

|r|(n – )n, n even,

where r ∈C, ‖ · ‖ is the spectral norm, and Ln and Fn denote the nth Lucas and Fibonacci
numbers, respectively.

Proof Since A = Circr(FL, FL, . . . , Fn–Ln–) is a r-circulant matrix, if the matrices B =
Circr(F, F, . . . , Fn–) and C = Circ(L, L, . . . , Ln–), we get A = B ◦ C; thus from (), Theo-
rems ., and ., we obtain

‖A‖ ≤
⎧⎨
⎩

√
(n – )n|r|FnFn–(FnFn– + ), n odd,

FnFn–
√

|r|(n – )n, n even. �

Theorem . Let A = Circr(L, L, . . . , Ln–) be a r-circulant matrix and |r| ≥ , then we
obtain

‖A‖ ≤
⎧⎨
⎩

√
(n – )|r| +  × √

FnFn– + , n odd,√
(n – )|r| +  × √

FnFn–, n even,

where r ∈C, ‖ · ‖ is the spectral norm, and Ln and Fn denote the nth Lucas and Fibonacci
numbers, respectively.
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Proof Since A = Circr(L, L, . . . , Ln–) is a r-circulant matrix, let B and C, respectively, be

B =

⎛
⎜⎜⎜⎜⎜⎜⎝

   · · · 
r   · · · 
r r  · · · 

· · · · · · · · · · · · · · ·
r r r · · · 

⎞
⎟⎟⎟⎟⎟⎟⎠

, C =

⎛
⎜⎜⎜⎜⎜⎜⎝

L L · · · Ln– Ln–

Ln– L · · · Ln– Ln–

· · · · · · · · · · · · · · ·
L L · · · L L

L L · · · Ln– L

⎞
⎟⎟⎟⎟⎟⎟⎠

,

and then A = B ◦ C.
We have

r(B) = max
i

√∑
j

|bij| =
√

(n – )|r| + 

and

c(C) = max
j

√∑
i

|cij| =

√√√√
n∑

i=

|cin| =

√√√√ n–∑
s=

L
s =

√√√√ n–∑
s=

(Fs + Fs–),

in which

n–∑
s=

F
s = FnFn–,

n–∑
s=

Fs–Fs =

⎧⎨
⎩

F
n–, n odd,

F
n– – , n even,

n–∑
s=

F
s– = Fn–Fn– + ,

and we get

c(C) =

⎧⎨
⎩

√
FnFn– + , n odd,

√
FnFn–, n even.

From (), we further infer

‖A‖ ≤
⎧⎨
⎩

√
(n – )|r| +  × √

FnFn– + , n odd,√
(n – )|r| +  × √

FnFn–, n even. �

Corollary . Let A = SCircr(L, L, . . . , Ln–) be a symmetric r-circulant matrix and
|r| ≥ , then we obtain

‖A‖ ≤
⎧⎨
⎩

√
(n – )|r| +  × √

FnFn– + , n odd,√
(n – )|r| +  × √

FnFn–, n even,

where r ∈C, ‖ · ‖ is the spectral norm, and Ln and Fn denote the nth Lucas and Fibonacci
numbers, respectively.

Corollary . Let A = Circr(L
, L

 , . . . , L
n–) be a r-circulant matrix and |r| ≥ , then

‖A‖ ≤
⎧⎨
⎩

(FnFn– + )
√

n[(n – )|r| + ], n odd,

FnFn–
√

n[(n – )|r| + ], n even,
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where r ∈C, ‖ · ‖ is the spectral norm, and Ln and Fn denote the nth Lucas and Fibonacci
numbers, respectively.

Proof Since A = Circr(L
, L

 , . . . , L
n–) is a r-circulant matrix, if the matrices B = Circ(L, L,

. . . , Ln–) and C = Circr(L, L, . . . , Ln–), we get A = B ◦ C; thus from (), Theorems .,
and ., we obtain

‖A‖ ≤
⎧⎨
⎩

(FnFn– + )
√

n[(n – )|r| + ], n odd,

FnFn–
√

n[(n – )|r| + ], n even. �

3 Examples
Example  Let A = Circ(F, F, . . . , Fn–) be a circulant matrix, in which Fi (i = , , . . . , n–)
denotes the Fibonacci number.

From Table , it is easy to find that the upper bounds for the spectral norm, of Theo-
rem . are more accurate than Theorem . when n ≥ .

Example  Let A = Circ(L, L, . . . , Ln–) be a circulant matrix, where Li (i = , , . . . , n – )
denotes the Lucas sequence.

Let n ≥ , and it is easy to find that the upper bounds for the spectral norm of Theo-
rem . are more accurate than Theorem . (see Table ).

Example  Let A = Circ(F, F, . . . , Fn–) be a -circulant matrix, in which Fi (i =
, , . . . , n – ) denotes the Fibonacci number.

Let n ≥ , and it is easy to find that the upper bounds for the spectral norm of Theo-
rem . are more precise than Theorem . (see Table ).

Table 1 Numerical results of ai = Fi , r = 1

n Theorem 2.1 Theorem 1.3 Third column
Second column

2 1 1 1
1 = 1

3 2 2 2
2 = 1

4 3
√
2 6 6

3
√
2
=

√
2

5
√
60 15 15√

60
≈ 1.936

6
√
200 40 40√

200
= 2

√
2

n
√
(n – 1)FnFn–1 FnFn–1

FnFn–1√
(n–1)FnFn–1

=
√

FnFn–1
n–1

Table 2 Numerical results of ai = Li , r = 1

n Theorem 2.4 Theorem 1.4 Third column
Second column

1 2 2 2
2 = 1

2
√
10

√
10

√
10√
10

= 1

3
√
42

√
154

√
154√
42

≈ 1.915

4
√
120

√
810

√
810√
120

≈ 2.598

5
√
395

√
6,004

√
6,004√
395

≈ 3.899

6
√
1,200

√
39,400

√
39,400√
1,200

≈ 5.730

n
√
n–1(5FnFn–1 + 1) n odd,√
n–1(5FnFn–1 – 3) n even
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Table 3 Numerical results of ai = Fi , r = 2

n Theorem 2.8 Theorem 1.5 Third column
Second column

2 2 2 2
2 = 1

3 4 4 4
4 = 1

4 6
√
2 12 12

6
√
2
=

√
2

5 4
√
15

√
30 30

4
√
15

≈ 1.936

6 20
√
2 80 80

20
√
2
= 2

√
2

n
√
(n – 1)|r|2FnFn–1 |r|FnFn–1

√
(n – 1)–1FnFn–1

Table 4 Numerical results of ai = Li , r = 2

n Theorem 2.12 Theorem 1.6 Third column
Second column

1 2 2 2
2 = 1

2 5 4 4
5 = 4

5

3 3
√
14 2

√
231 2

√
231

3
√
14

≈ 2.708

4
√
390 54 54√

390
≈ 2.734

5
√
1,343 152 152√

1,343
≈ 4.418

6 10
√
42 394 394

10
√
342

≈ 6.080

Example  Let A = Circ(L, L, . . . , Ln–) be a -circulant matrix where Li (i = , , . . . ,
n – ) denotes the Lucas sequence.

It can be seen from Table  that the upper bounds for the spectral norm of Theorem .
are more precise than Theorem . when n ≥ .
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