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Abstract
In this article, we obtain two interesting families of partial finite sums of the
reciprocals of the Fibonacci numbers, which substantially improve two recent results
involving the reciprocal Fibonacci numbers. In addition, we present an alternative and
elementary proof of a result of Wu and Wang.
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1 Introduction
The Fibonacci sequence [], Sequence A is defined by the linear recurrence relation

Fn = Fn– + Fn– for n ≥ ,

where Fn is the nth Fibonacci number with F =  and F = . There exists a simple and
non-obvious formula for the Fibonacci numbers,

Fn =
√


(
 +

√




)n

–
√


(
 –

√




)n

.

The Fibonacci sequence plays an important role in the theory and applications of math-
ematics, and its various properties have been investigated by many authors; see [–].

In recent years, there has been an increasing interest in studying the reciprocal sums
of the Fibonacci numbers. For example, Elsner et al. [–] investigated the algebraic rela-
tions for reciprocal sums of the Fibonacci numbers. In [], the partial infinite sums of the
reciprocal Fibonacci numbers were studied by Ohtsuka and Nakamura. They established
the following results, where �·� denotes the floor function.

Theorem . For all n ≥ ,

⌊( ∞∑
k=n


Fk

)–⌋
=

{
Fn–, if n is even;
Fn– – , if n is odd.

(.)

Theorem . For each n ≥ ,

⌊( ∞∑
k=n


F

k

)–⌋
=

{
FnFn– – , if n is even;
FnFn–, if n is odd.

(.)
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Further, Wu and Zhang [, ] generalized these identities to the Fibonacci polynomials
and Lucas polynomials and various properties of such polynomials were obtained.

Recently, Holliday and Komatsu [] considered the generalized Fibonacci numbers
which are defined by

Gn+ = aGn+ + Gn, n ≥ 

with G =  and G = , and a is a positive integer. They showed that

⌊( ∞∑
k=n


Gk

)–⌋
=

{
Gn – Gn–, if n is even and n ≥ ;
Gn – Gn– – , if n is odd and n ≥ 

(.)

and

⌊( ∞∑
k=n


G

k

)–⌋
=

{
aGnGn– – , if n is even and n ≥ ;
aGnGn–, if n is odd and n ≥ .

(.)

More recently, Wu and Wang [] studied the partial finite sum of the reciprocal Fi-
bonacci numbers and deduced that, for all n ≥ ,

⌊( n∑
k=n


Fk

)–⌋
= Fn–. (.)

Inspired by Wu and Wang’s work, we obtain two families of partial finite sums of the re-
ciprocal Fibonacci numbers in this paper, which significantly improve Ohtsuka and Naka-
mura’s results, Theorems . and .. In addition, we present an alternative proof of (.).

2 Reciprocal sum of the Fibonacci numbers
We first present several well known results on Fibonacci numbers, which will be used
throughout the article. The detailed proofs can be found in [].

Lemma . Let n ≥ , we have

F
n – Fn–Fn+ = (–)n– (.)

and

FaFb + Fa+Fb+ = Fa+b+ (.)

if a and b are positive integers.

As a consequence of (.), we have the following result.

Corollary . For all n ≥ , we have

Fn = Fn–Fn + FnFn+, (.)
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Fn+ = F
n + F

n+, (.)

Fn+ = Fn–Fn+ + FnFn+. (.)

It is easy to derive the following lemma and we leave the proof as a simple exercise.

Lemma . For each n ≥ , we have

Fn+Fn+ – Fn–Fn = Fn+. (.)

We now establish two inequalities on Fibonacci numbers which will be used later.

Lemma . If n ≥ , then

Fn–Fn– > Fn+. (.)

Proof It is easy to see that

Fn–Fn– – Fn+ = Fn–Fn– – (Fn– + Fn)

= Fn–Fn– – Fn– – (Fn– + Fn–)

= (Fn– – )Fn– – Fn–.

Since n ≥ , Fn– –  > . So

Fn–Fn– – Fn+ > Fn– – Fn– > ,

which completes the proof. �

Lemma . For each n ≥ , we have

Fn–(Fn + Fn–) > Fn–Fn–FnFn+. (.)

Proof Applying (.), we get

Fn– = Fn–Fn– + FnFn.

Thus

Fn–(Fn + Fn–) ≥ (Fn–Fn– + FnFn)Fn > F
n Fn > Fn–FnFn.

Employing (.), we have

Fn > FnFn+ > Fn–Fn+,

which yields the desired equation (.). �
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The following are some inequalities on the sum of reciprocal Fibonacci numbers.

Proposition . For all n ≥ , we have

n∑
k=n


Fk

>


Fn– + 
. (.)

Proof For all k ≥ ,


Fk– + 

–


Fk
–


Fk– + 

=
Fk – Fk– – 
Fk(Fk– + )

–


Fk– + 

=
(Fk– – )(Fk– + ) – FkFk– – Fk

(Fk– + )(Fk– + )Fk

=
F

k– – FkFk– –  – Fk

(Fk– + )(Fk– + )Fk
.

Invoking (.), we obtain F
k– – FkFk– = (–)k . Therefore,


Fk– + 

–


Fk
–


Fk– + 

=
(–)k –  – Fk

(Fk– + )(Fk– + )Fk
.

Now we have

n∑
k=n


Fk

=


Fn– + 
–


Fn– + 

+
n∑

k=n

(–)k– +  + Fk

(Fk– + )(Fk– + )Fk

>


Fn– + 
–


Fn– + 

+
n∑

k=n


(Fk– + )(Fk– + )

>


Fn– + 
+


(Fn– + )(Fn– + )

–


Fn– + 
.

Because of (.), we have

Fn– +  – (Fn– + )(Fn– + ) = Fn– – Fn–Fn– – Fn– – Fn–

= F
n– + Fn–Fn+ – Fn

> .

Thus, we arrive at

n∑
k=n


Fk

>


Fn– + 
.

This completes the proof. �

Proposition . Assume that m ≥ . Then, for all even integers n ≥ , we have

mn∑
k=n


Fk

<


Fn–
. (.)
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Proof By elementary manipulations and (.), we deduce that


Fk–

–


Fk
–


Fk–

=
(–)k

Fk–Fk–Fk
, k ≥ .

Hence, for n ≥ , we have

mn∑
k=n


Fk

=


Fn–
–


Fmn–

+
mn∑
k=n

(–)k–

Fk–Fk–Fk
. (.)

Since n is even,

mn∑
k=n

(–)k–

Fk–Fk–Fk
< ,

from which we conclude that

mn∑
k=n


Fk

<


Fn–
.

The proof is complete. �

Proposition . If n ≥  is odd, then

n∑
k=n


Fk

<


Fn–
. (.)

Proof It is straightforward to check that the statement is true when n = .
Now we assume that n ≥ . Since n is odd, we have

n∑
k=n+

(–)k–

Fk–Fk–Fk
< .

Applying (.) and (.) yields


Fn–Fn–Fn

–


Fn–
<


FnFn+

–


Fn–

=
Fn– – FnFn+

FnFn+Fn–

= –
Fn–Fn–

FnFn+Fn–

< .

Employing (.) and the above two inequalities, (.) follows immediately. �

Proposition . Let m ≥  be given. If n ≥  is odd, we have

mn∑
k=n


Fk

>


Fn–
. (.)
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Proof It is easy to see that

m∑
k=


Fk

>

F

,

thus (.) holds for n = . Now we assume that n ≥ .
Based on (.) and using the fact n is odd, we have

mn∑
k=n


Fk

=


Fn–
+


Fn–Fn–Fn

–


Fn–FnFn+
–


Fmn–

+
mn∑

k=n+

(–)k–

Fk–Fk–Fk
.

It is clear that

mn∑
k=n+

(–)k–

Fk–Fk–Fk
> .

Since m ≥  and invoking (.), we obtain

Fmn–(Fn– + Fn) ≥ Fn–(Fn– + Fn) > Fn–Fn–FnFn+,

which implies


Fn–Fn–Fn

–


Fn–FnFn+
–


Fmn–

=
Fn+ – Fn–

Fn–Fn–FnFn+
–


Fmn–

=
Fn– + Fn

Fn–Fn–FnFn+
–

Fn– + Fn

Fmn–(Fn– + Fn)
> .

Therefore, (.) also holds for n ≥ . �

Now we state our main results on the sum of reciprocal Fibonacci numbers.

Theorem . For all n ≥ , we have

⌊( n∑
k=n


Fk

)–⌋
= Fn–. (.)

Proof Combining (.), (.), and (.), we conclude that, for all n ≥ ,


Fn– + 

<
n∑

k=n


Fk

<


Fn–
,

from which (.) follows immediately. �

Remark Identity (.) was first conjectured by Professor Ohtsuka, the first author of [].
Based on the formula of Fn and using analytic methods, Wu and Wang [] presented a
proof of (.). In contrast to Wu and Wang’s work, the techniques we use here are more
elementary.
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Theorem . If m ≥  and n ≥ , then

⌊( mn∑
k=n


Fk

)–⌋
=

{
Fn–, if n is even;
Fn– – , if n is odd.

(.)

Proof It is clear that

⌊( m∑
k=


Fk

)–⌋
= F. (.)

Combining (.) and (.), we find that, for all even integers n ≥ ,


Fn– + 

<
mn∑
k=n


Fk

<


Fn–
. (.)

Thus (.) and (.) show that, for all m ≥ ,

⌊( mn∑
k=n


Fk

)–⌋
= Fn–,

provided that n ≥  is even.
Next we aim to prove that, for m ≥  and all odd integers n ≥ ,

⌊( mn∑
k=n


Fk

)–⌋
= Fn– – . (.)

If n = , we can readily see that

m∑
k=


Fk

> ,

thus (.) holds for n = . So in the rest of the proof we assume that n ≥ .
It is not hard to derive that, for all k ≥ ,


Fk– – 

–


Fk
–


Fk– – 

=
(–)k –  + Fk

Fk(Fk– – )(Fk– – )
> .

Hence, we get

mn∑
k=n


Fk

<


Fn– – 
–


Fmn– – 

<


Fn– – 
. (.)

Finally, combining (.) with (.) yields (.). �

Remark As m → ∞, (.) becomes (.). Hence our result, Theorem ., substantially
improves Theorem ..
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3 Reciprocal square sum of the Fibonacci numbers
We first give several preliminary results which will be used in our later proofs.

Lemma . For all n ≥ ,

FnFn+ – Fn–Fn+ = (–)n–. (.)

Proof It is easy to show that

FnFn+ – Fn–Fn+ = FnFn+ – Fn–(Fn + Fn+)

= FnFn+ – FnFn– – Fn–Fn+

= Fn(Fn+ – Fn–) – Fn–Fn+

= F
n – Fn–Fn+.

Employing (.), the desired result follows. �

Proposition . Given an integer m ≥  and let n ≥  be odd, we have

mn∑
k=n


F

k
<


Fn–Fn

. (.)

Proof It is straightforward to check that, for each k ≥ ,


Fk–Fk

–


F
k

–


F
k+

–


Fk+Fk+

=
FkF

k+Fk+ – Fk–F
k+Fk+ – Fk–F

k Fk+ – Fk–F
k Fk+

Fk–F
k F

k+Fk+

=
FkFk+(Fk+Fk+ – Fk–Fk) – Fk–Fk+(F

k+ + F
k )

Fk–F
k F

k+Fk+

=
(FkFk+ – Fk–Fk+)Fk+

Fk–F
k F

k+Fk+

=
(–)k–Fk+

Fk–F
k F

k+Fk+
,

where the last equality follows from (.).
Since n is odd, we have


Fn–Fn

–


F
n

–


F
n+

–


Fn+Fn+
> .

If m is even, then

mn∑
k=n


F

k
<


Fn–Fn

–


FmnFmn+
<


Fn–Fn

.
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If m is odd, then

mn∑
k=n


F

k
<


Fn–Fn

–


Fmn–Fmn
+


F

mn
<


Fn–Fn

.

Thus, (.) always holds. �

Proposition . Let n be odd, then we have

n∑
k=n


F

k
>


Fn–Fn + 

. (.)

Proof Invoking (.), we can readily derive that


Fk–Fk + 

–


F
k

–


FkFk+ + 
=

⎧⎨
⎩

– Fk–Fk +
F

k (Fk–Fk +)(Fk Fk++) , if k is odd;

– Fk Fk++
F

k (Fk–Fk +)(Fk Fk++) , if k is even.

Now we have

n∑
k=n


F

k
=


Fn–Fn + 

+
(

Fn–Fn + 
F

n (Fn–Fn + )(FnFn+ + )

+
Fn+Fn+ + 

F
n+(FnFn+ + )(Fn+Fn+ + )

+ · · ·

+
FnFn+ + 

F
n(Fn–Fn + )(FnFn+ + )

)
–


FnFn+ + 

>


Fn–Fn + 
+

Fn–Fn + 
F

n (Fn–Fn + )(FnFn+ + )
–


FnFn+ + 

.

It is obvious that Fk–Fk ≥ Fk–Fk+. From (.) and the fact that n is odd, we obtain

Fn–Fn + 
F

n
≥ Fn–Fn+ + 

F
n

=
F

n
F

n
= ,

which implies that

n∑
k=n


F

k
>


Fn–Fn + 

+


(Fn–Fn + )(FnFn+ + )
–


FnFn+ + 

.

By (.) and (.), we have

FnFn+ +  > (Fn–Fn + FnFn+)
(
F

n + F
n+

)
> (Fn–Fn + )(FnFn+ + ),

from which we conclude that

n∑
k=n


F

k
>


Fn–Fn + 

.

The proof is complete. �
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Proposition . Suppose that m ≥  and n >  is even. Then

mn∑
k=n


F

k
<


Fn–Fn – 

. (.)

Proof Applying (.), we can rewrite F
k as

F
k = Fk–F

k Fk+ + (–)k–F
k . (.)

In addition,

(Fk–Fk – )(FkFk+ – ) = Fk–F
k Fk+ – Fk–Fk – FkFk+ + 

= Fk–F
k Fk+ – Fk–Fk – F

k + . (.)

Combining (.) and (.) yields


Fk–Fk – 

–


F
k

–


FkFk+ – 
=

F
k

(Fk–Fk – )(FkFk+ – )
–


F

k

=
Fk–Fk –  + F

k + (–)k–F
k

(Fk–Fk – )(FkFk+ – )F
k

≥ Fk–Fk – 
(Fk–Fk – )(FkFk+ – )F

k

> .

Therefore,

mn∑
k=n


F

k
<


Fn–Fn – 

–


FmnFmn+ – 
<


Fn–Fn – 

,

which completes the proof. �

Proposition . If n >  is even, then

n∑
k=n


F

k
>


Fn–Fn

. (.)

Proof Employing (.), we can deduce that


Fk–Fk

–


F
k

–


FkFk+
=

(–)k–

Fk–F
k Fk+

.

Hence, since n is even, we have

n∑
k=n


F

k
=


Fn–Fn

+
n∑

k=n

(–)k

Fk–F
k Fk+

–


FnFn+

=


Fn–Fn
+

(


Fn–F
n Fn+

–


FnF
n+Fn+

–


FnFn+

)

+
n–∑

k=n+

(–)k

Fk–F
k Fk+

+


Fn–F
nFn+

.
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It is easy to see that

n–∑
k=n+

(–)k–

Fk–F
k Fk+

> ,

thus

n∑
k=n


F

k
>


Fn–Fn

+
(


Fn–F

n Fn+
–


FnF

n+Fn+
–


FnFn+

)
.

We claim that


Fn–F

n Fn+
–


FnF

n+Fn+
–


FnFn+

> .

First, by (.), we have


Fn–F

n Fn+
–


FnF

n+Fn+
–


FnFn+

=
Fn+

Fn–F
n F

n+Fn+
–

Fn+

FnF
n+

.

It follows from (.), (.), and (.) that

Fn > Fn–Fn,

Fn+ > F
n+,

Fn+ > FnFn+,

which implies that

FnF
n+ > Fn–F

n F
n+Fn+.

Thus we obtain


Fn–F

n Fn+
–


FnF

n+Fn+
–


FnFn+

> ,

which yields the desired (.). �

Now we introduce our main result on the square sum of reciprocal Fibonacci numbers.

Theorem . For all n ≥  and m ≥ , we have

⌊( mn∑
k=n


F

k

)–⌋
=

{
FnFn–, if n is odd;
FnFn– – , if n is even.

(.)

Proof We first consider the case when n is odd. If n = , the result is clearly true. So we
assume that n ≥ .

It follows from (.) that

mn∑
k=n


F

k
≥

n∑
k=n


F

k
>


Fn–Fn + 

. (.)
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Employing (.) and (.) yields


Fn–Fn + 

<
mn∑
k=n


F

k
<


Fn–Fn

,

which implies that, if n >  is odd, we have

⌊( mn∑
k=n


F

k

)–⌋
= FnFn–.

We now consider the case where n >  is even. It follows from (.) that

mn∑
k=n


F

k
≥

n∑
k=n


F

k
>


Fn–Fn

. (.)

Combining (.) and (.), we arrive at


Fn–Fn

<
mn∑
k=n


F

k
<


Fn–Fn – 

,

from which we find that, if n >  is even,

⌊( mn∑
k=n


F

k

)–⌋
= FnFn– – .

This completes the proof. �

Remark Theorem . can be regarded as the limiting case as m → ∞ in (.).
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