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Abstract
This article examines the value of equity, optimal bankruptcy boundary, and optimal
dividend policy in a continuous-time framework with finite time maturity. The model
of equity value is formulated as a parabolic variational inequality, or equivalently,
a free boundary problem, where the free boundary corresponds to the optimal
bankruptcy boundary. We present an analytical approach to analyze the behaviors of
the free boundary. The regularity of the value function and the optimal dividend
policy are studied as well. The main feature and difficulty are the discontinuity of the
coefficient in the variational inequality.
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1 Introduction
The value of debt and equity and default covenants have long been interested in corporate
finance literature. Merton [] pioneers the study of corporate debt and equity value under
the assumption that bankruptcy cannot be triggered before maturity, he obtained the value
of debt and equity. Black and Cox [], Leland [], Anderson and Sundaresan [], Bruche
[] and Zhou [] have extended the original Merton [] model to incorporate a more re-
alistic assumption: the possibility of early default. By assuming a time-independent debt
structure, Leland [] derived closed-form solutions for the value of debt and for optimal
capital structure.

Unfortunately in these models dividend policy is not explicitly considered. The firms
either simply do not have a policy with respect to dividends (Leland []) or they pay out all
residual cash flows as dividends (Anderson and Sundaresan [], Leland and Toft []). Fan
and Sundaresan [] and Gryglewicz [] study the optimal dividend policy. In [], dividends
are treated as a control variable in the firm’s cash flow generating process. They obtained
the optimal dividend policy. Gryglewicz [] presented a model of a firm that optimally
chooses capital structure, cash holding, dividends, and default. However, most of these
papers were restricted to dealing with a perpetual debt.
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It is challenging to take the finite horizon case into consideration since the debt val-
ues are no longer time homogeneous. The fundamental valuation equation will explicitly
depend on time.

In this paper, we aim to develop a continuous-time model for the finite horizon cor-
porate equity, provide a theoretical analysis of the behaviors of the optimal bankruptcy
boundary, and obtain the optimal dividend policy. One paper related to the present work
is Han et al. [] where they obtained the optimal reorganization boundary by using a vari-
ational inequality approach, but they did not consider the dividend policy; they paid out all
residual cash flows as dividends. However, in our formulation, dividend is optional when
cash payout exceeds the promised coupon rate. That is to say, when βV ≥ c, stockholders
have a decision to make: they can pay all the residual cash flows as dividends to themselves,
or they can reinvest a fraction to the firm. They choose their dividend policy by acting to
maximize their equity value. Whenever βV < c, the firm is under a liquidity constraint and
no dividend can be paid (see (.) and (.)), which causes the function f (v) (in (.)) to be
not continuous at the point V = c/β and the inequality ∂xu ≥  does not hold. But the con-
dition ∂xu ≥  is critical to prove the smoothness and monotonicity of the free boundary.
At this point, it brings difficulty for analyzing the behaviors of the free boundary.

The rest of the paper is organized as follows. In Section , we set up the model. In Sec-
tion , we study the behavior of the solution and prove that when βV ≥ c, as the pay-
out ratio increases from c( – γ )/V to β , the firm’s equity value is increasing, in other
words, it would be optimal for the equity holders to pay all the cash flows available as div-
idends. Section  is devoted to an analysis of the behaviors of the free boundary in case
of c( – γ ) – rP < , we prove that the free boundary is decreasing and infinitely differen-
tiable. In Section , we deduce the boundedness of the free boundary by the comparison
principle and show that it is not always monotonic in some case. In Section  we provide
some numerical results and some financial interpretations. We conclude in Section . The
main contribution of this paper lies in the following. . We give a rigorous derivation of
variational inequality (.) by stochastic analysis (Section ). . We prove that the value of
equity is increasing with the aggregate payout ratio δ and obtaining the optimal dividend
policy (Section ). . In the absence of ∂xu ≥ , we show the monotonicity and infinite
differentiability of the bankruptcy boundary for the case of c( – γ ) – rP ≤  (Section ).
. We analyze the loss of monotonicity of the reorganization boundary in some cases for
the case of c( – γ ) – rP >  (Section ). . We give some numerical results and financial
interpretations (Section ). The main feature and difficulty are the discontinuity of the
coefficient f (v) in variational inequality (.), which brings about a lot of trouble.

2 Formulation of the model
In this section, we develop a model of equity value with finite time maturity at time T .
The model is set in a continuous-time framework. The following assumptions underlie
the model:

() There is a firm which has equity and a single issue of debt which promises a flow rate
of coupon c per unit time. The principal amount of the debt is P.

() To focus attention on default risk, we assume that the default-free term structure is
flat and the instantaneous risk-free rate is r per unit time.

() When the firm pays its contractual coupon c, it is entitled to a tax benefit of γ c
( ≤ γ ≤ ). During the default period, the tax benefits are lost.

() Asset sales for dividend payments are prohibited.
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() The firm is not otherwise constrained by covenants, bankruptcy will occur only when
the firm cannot meet the required (instantaneous) coupon payment: that is, when the
equity value falls to zero. In fact, in continuous time, the coupon (cdt) paid over the in-
finitesimal interval, dt, is itself infinitesimal. Therefore the value of equity simply needs to
be positive to avoid bankruptcy over the next instant.

() The asset value of the firm, denoted by V , follows the lognormal diffusion process,

dV = (μ – β)V dt + σV dBt , (.)

where μ is the instantaneous expected rate of return on the firm gross of all payout, σ  is
the instantaneous variance of the return on the firm, Bt is the standard Brownian motion.
The cash payout at any time is βV and β ≤ μ, where β is the firm’s cash payout ratio and
the free cash flows available for the payment of dividends and debt service is restrict to βV .

Most models in the literature tend to assume that the residual cash flow are simply paid
out as dividends. In our formulation, as Fan and Sundaresan in [], dividends, or equiv-
alently the total payout ratio, denoted by δ, are treated as a control variable in the firm’s
cash flow generating process. Stockholders will choose their dividend policies by acting
to maximize their equity value.

When the cash payout βV exceeds the promised coupon rate c, stockholders have a
decision to make: they can pay all the residual cash flows as dividends to themselves, or
they can reinvest a fraction into the firm. The motivation for such an action is simple: by
foregoing current dividends, the stockholders can avoid costly liquidations that may arise
in the future. This feature is modeled in the following manner.

Whenever βV ≥ c, the firm has no flow constraint and we refer to this state as a ‘good’
state. We assume that the dynamics of the firm’s value is given by

dV = (μ – β)V dt + σV dBt + (β – δ)V dt = (μ – δ)V dt + σV dBt , (.)

where δ denotes the aggregate payout ratio. Among the total cash flow βV , the retained
earnings, (β – δ)V , are reinvested back into the firm’s value-generating activity. The total
payout δV includes the coupon payment c and the dividends δV – c. When βV ≥ c, we
constrain

c( – γ )/V ≤ δ ≤ β , (.)

since the payout at least has to cover the debt obligations and no more than the total cash
flows being available.

Whenever βV < c, the firm is under a liquidity constraint and we refer to this state as a
‘bad’ state. We assume that the dynamics of the firm’s value is given by

dV = (μ – β)V dt + σV dBt . (.)

No dividend can be paid because equity holders are not allowed to pay themselves div-
idend by selling the firm’s assets. In order to address this issue systematically, we begin
with a given payout ratio δ.

Definition Let  ≤ t ≤ T , V (t) = v ≥ , F (t)
u (t ≤ u ≤ T ) be the filtration of V (t), Tt,T be

the set of all stopping time in [t, T]. The value of equity with maturity time T at time t is
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defined as

E(v, t) = max
τ∈Tt,T

˜E
[

e–r(τ–t)(V (τ ) – P
)+X{τ=T} –

∫ τ

t
e–r(u–t)c( – γ ) du

+
∫ τ

t
e–r(u–t)(βX{Vu<c/β} + δX{Vu≥c/β})Vu du

∣

∣

∣V (t) = v
]

, (.)

where˜E is the expectation under the risk neutral measure, XA denotes the indicator func-
tion of the set A, the second term˜E[

∫ τ

t e–r(u–t)c( –γ ) du] denotes the discounted expected
value of coupon interest, the third term ˜E[

∫ τ

t e–r(u–t)(βX{Vu<c/β} + δX{Vu≥c/β})Vu du] repre-
sents the expected discounted value of cash payout for dividends and debt service.

Theorem . The value of equity E(v, t) satisfies the following parabolic variational in-
equality:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

E(v, t) ≥ , v > ,  ≤ t < T ,

–∂tE – 
σ v∂vvE – (rv – f (v))∂vE + rE – f (v) + c( – γ ) ≥ , v > ,  < t < T ,

E[–∂tE – 
σ v∂vvE – (rv – f (v))∂vE + rE – f (v) + c( – γ )] = , v > ,  < t < T ,

E(v, T) = (v – P)+, v > ,

(.)

where

f (v) =

⎧

⎨

⎩

βv, v ≤ c/β ,

δv, v > c/β .

Proof From the definition of E(v, t), we set τ = t and t = T in (.), respectively, it is clear
that

E(v, t) ≥ , E(v, T) = (v – P)+.

Let us consider the time τ = t + h (h > ), by the dynamic programming principle [],

˜E
{

e–r(t+h)E(Vt+h, t + h) +
∫ t+h

t
e–ru[(βX{Vu<c/β} + δX{Vu≥c/β})Vu – c( – γ )

]

du
}

≤ e–rtE(v, t),

i.e.

˜E
{∫ t+h

t
d
[

e–ruE(Vu, u)
]

+
∫ t+h

t
e–ru[(βX{Vu<c/β} + δX{Vu≥c/β})Vu – c( – γ )

]

du
}

≤ . (.)

From (.) and (.), we can get

dV = (r – βX{V <c/β} – δX{V≥c/β})V dt + σV d˜Bt , (.)

where ˜Bt is a standard Brownian motion under the risk neutral measure ˜P.
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We apply the Itô formula:

d
[

e–ruE(Vu, u)
]

= e–ru
[

∂tE(Vu, u) +


σ (Vu)∂vvE(Vu, u) – rE(Vu, u)

+ (r – βX{Vu<c/β} – δX{Vu≥c/β})Vu∂vE(Vu, u)
]

du + e–ruσVu∂vE(Vu, u) d˜Bt . (.)

Substituting (.) into (.), dividing by h and sending h to , this yield by the mean-value
theorem

–∂tE –


σ v∂vvE –

(

rv – f (v)
)

∂vE + rE – f (v) + c( – γ ) ≥ .

When E(v, t) > , which implies the optimal stopping time τ ∗ > t, then we set τ = τ ∗,
from the dynamic programming principle,

e–rtE(v, t) =˜E
{

e–rτ∗
E
(

Vτ∗ , τ ∗) +
∫ τ∗

t
e–ru[(βX{Vu<c/β} + δX{Vu≥c/β})Vu – c( – γ )

]

du
}

,

i.e.

˜E
{∫ τ∗

t
d
[

e–ruE(Vu, u)
]

+
∫ τ∗

t
e–ru[(βX{Vu<c/β} + δX{Vu≥c/β})Vu – c( – γ )

]

du
}

= .

Combining with (.) and noting that τ ∗ > t, we obtain

–∂tE –


σ v∂vvE –

(

rv – f (v)
)

∂vE + rE – f (v) + c( – γ ) = . �

In view of problem (.) being a backward PDE and the degeneracy of the operator Lv

at v = , we set

x = ln v, τ = T – t, u(x, τ ) = E(v, t),

then we have
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

u ≥ , (x, τ ) ∈ �T ,

∂τ u – Lu + g(x)(∂xu – ex) + c( – γ ) ≥ , (x, τ ) ∈ �T ,

u[∂τ u – Lu + g(x)(∂xu – ex) + c( – γ )] = , (x, τ ) ∈ �T ,

u(x, ) = (ex – P)+, x ∈ R,

(.)

where �T = R × (, T] and

g(x) =

⎧

⎨

⎩

β , x ≤ ln c
β

,

δ, x > ln c
β

,

and

Lu =


σ ∂xxu +

(

r –


σ 

)

∂xu – ru.
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3 The behavior of solution of problem (2.10)
Since problem (.) lies in an unbounded region and g(x) is not smooth, we first consider
the problem in the bounded domain �n

T = (–n, n) × (, T], n ∈N\{}:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

un ≥ , (x, τ ) ∈ �n
T ,

∂τ un – Lun + gn(x)(∂xun – ex) + c( – γ ) ≥ , (x, τ ) ∈ �n
T ,

un[∂τ un – Lun + gn(x)(∂xun – ex) + c( – γ )] = , (x, τ ) ∈ �n
T ,

∂xun(–n, τ ) – un(–n, τ ) = , τ ∈ (, T],

∂xun(n, τ ) = en, τ ∈ (, T],

un(x, ) = (ex – P)+ x ∈ [–n, n],

(.)

where gn(x) satisfies

gn(x) ∈ C[–n, n], δ ≤ gn(x) ≤ β , for all x ∈ [–n, n],

moreover,

gn(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

β , x < ln c
β

– 
n ,

decreasing, ln c
β

– 
n < x < ln c

β
+ 

n ,

δ, x ≥ ln c
β

+ 
n .

Lemma . For any fixed n ∈N\{}, there exists a solution un ∈ C(�n
T )∩W ,

p (�n
T\Bθ (P))

to problem (.), where  < p < ∞, θ > ; P = (ln P, ), Bθ (P) = {(x, τ ) : (x– ln P) +τ  ≤ θ}.
Moreover, if n is large enough, we have

 ≤ un ≤ ex, (x, τ ) ∈ �n
T . (.)

Proof As usual [], we define a penalty function βε(t) (see Figure ), which satisfies

βε(t) ∈ C(–∞, +∞), βε(t) ≤  for all t ∈ R,

βε(t) =  if t ≥ ε, βε() = –c( – γ ),

β ′
ε(t) ≥ , β ′′

ε (t) ≤ ,

moreover,

lim
ε→+

βε(t) =

⎧

⎨

⎩

, t > ,

–∞, t < .

Since (ex – P)+ is not in W 
p ([–n, n]), we need to smooth it. Define πε(t) (see Figure ) as

πε(t) =

⎧

⎨

⎩

t, t ≥ ε,

, t ≤ –ε,

and πε(t) ∈ C∞,  ≤ π ′
ε(t) ≤ , π ′′

ε (t) ≥ , limε→+ πε(t) = t+.
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Figure 1 βε(t).

Figure 2 πε(t).

Following the idea in [], we construct an approximation of problem (.)

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

∂τ uε,n – Luε,n + gn(x)(∂xuε,n – ex) + βε(uε,n) + c( – γ ) = , (x, τ ) ∈ �n
T ,

∂xuε,n(–n, τ ) – uε,n(–n, τ ) = , τ ∈ (, T],

∂xuε,n(n, τ ) = en, τ ∈ (, T],

uε,n(x, ) = πε(ex – P), x ∈ [–n, n].

(.)

By applying the Schauder fixed theorem we can establish the existence of the W ,
p solution

to problem (.). The procedure is standard, we omit the details.
If we can prove that as n is large enough

 ≤ uε,n ≤ ex, (.)

then by the method in [], it is not difficult to deduce that, as ε → +,

uε,n ⇀ un in W ,
p

(

�n
T\Bθ (P)

)

weakly, and uε,n → un in C
(

�n
T
)

,

where un is the solution of problem (.).
Next, we prove (.). We set w = , then

∂τ w – Lw + gn(x)
(

∂xw – ex) + βε(w) + c( – γ )

= –gn(x)ex + βε() + c( – γ )

= –gn(x)ex ≤ .

(The last equity is from the definition of βε().)
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Moreover, from the boundary conditions in (.), we see that

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∂xuε,n(–n, τ ) – uε,n(–n, τ ) =  = ∂xw(–n, τ ) – w(–n, τ ), τ ∈ (, T],

∂xuε,n(n, τ ) = en ≥ ∂xw(n, τ ), τ ∈ (, T],

uε,n(x, ) = πε(ex – P) ≥ w(x, ), x ∈ [–n, n].

Applying the comparison principle of PDE [], we have uε,n ≥ , that is, the left hand side
of inequality (.). On the other hand, we set w = ex, then

∂τ w – Lw + gn(x)
(

∂xw – ex) + βε(w) + c( – γ )

= βε

(

ex) + c( – γ )

= c( – γ ) ≥ 
(

for any  < ε < e–n),

and from the boundary condition in (.), we have

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∂xuε,n(–n, τ ) – uε,n(–n, τ ) =  = ∂xw(–n, τ ) – w(–n, τ ), τ ∈ (, T],

∂xuε,n(n, τ ) = en = ∂xw(n, τ ), τ ∈ (, T],

uε,n(x, ) = πε(ex – P) ≤ ex = w(x, ).

Combining (.), applying the comparison principle of PDE [], we have uε,n ≤ w. Hence,
we obtain (.), and (.) is the consequence of (.). �

Lemma . For problem (.), the solution un(x, τ ) satisfies

∂xun ≤ ex, (x, τ ) ∈ �n
T . (.)

Proof Denote ∂xuε,n = w. Differentiating the equation in (.) with respect to x,

∂τ w – Lw + gn(x)∂x
(

w – ex) + g ′
n(x)

(

w – ex) + β ′
ε(uε,n)w = , (x, τ ) ∈ �n

T ,

it can be rewritten as

∂τ

(

w – ex) – L
(

w – ex) + gn(x)∂x
(

w – ex) + g ′
n(x)

(

w – ex) + β ′
ε(uε,n)

(

w – ex)

= –β ′
ε(uε,n)ex ≤ , (x, τ ) ∈ �n

T .

From (.),

∂xuε,n(–n, τ ) = uε,n(–n, τ )

it follows that, by (.),  ≤ w(–n, τ ) ≤ e–n,

w(–n, τ ) – e–n ≤ .

It is clear that, by (.),,

w(n, τ ) – en = , w(x, ) – ex ≤ .
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Hence

∂xun ≤ ex. �

Theorem . There exists a solution u ∈ C(�T ) ∩ W ,
p (�R

T\Bδ(P)) to problem (.) for
any  < p < ∞, δ > , R > , and

 ≤ u ≤ ex, (x, τ ) ∈ �T , (.)

∂xu ≤ ex, (x, τ ) ∈ �T , (.)

moreover, the solution satisfying (.) is unique, and

u > , (x, τ ) ∈
{

(x, τ ) : x > ln
c
β

,  < τ < T
}

� QT . (.)

Proof We rewrite problem (.) as

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

∂τ un – Lun + gn(x)∂xun = F(x, τ ), in �n
T ,

∂xun(–n, τ ) – un(–n, τ ) = , τ ∈ (, T],

∂xun(n, τ ) = en, τ ∈ (, T],

un(x, ) = (ex – P)+, x ∈ [–n, n],

un ∈ W ,
p,loc(�n

T ) implies F(x, τ ) ∈ Lp
loc(�n

T ) where

F(x, τ ) =
(

gn(x)ex – c( – γ )
)

X{un>}, a.e. �n
T .

As δ ≤ gn(x) ≤ β , it is obvious that |F(x, τ )| ≤ C for –R ≤ x ≤ R, where R > , C is depen-
dent on R, but independent of n. Hence, for any fixed R > ,  < θ < min{|R– ln P|, |R+ ln P|},
if n > R, combining (.), we have the following W ,

p uniform estimates in the domain
�R

T\Bθ (P):

|un|W ,
p (�R

T \Bθ (P))

≤ C
[|un|L∞(�R

T ) +
∣

∣F(x, τ )
∣

∣

L∞(�R
T ) +

∣

∣ex – P
∣

∣

C([–R,–θ+ln P]∪[θ+ln P,R])

]

≤ C,

where C depends on R, θ , but is independent of n. Let n → ∞, then we have possibly a
subsequence,

un → uR in W ,
p

(

�R
T\Bθ (P)

)

weakly as n → ∞,

∂xun → ∂xuR in C
(

�R
T\Bθ (P)

)

as n → ∞.

Applying a Cα estimate (see [] and []) we have

|un|Cα, α (�R
T )

≤ C,
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where C depends on R, but is independent of n. It follows that

un → uR in C
(

�
R
T
)

as n → ∞.

Define u = uR if x ∈ [–R, R] for each R > , it is clear that u is reasonable defined in �T

and u ∈ C(�T ) ∩ W ,
p (�R

T\Bδ(P)) is the solution of problem (.). Equations (.) and
(.) are consequences of (.) and (.).

Next, we prove uniqueness. Suppose U and U are two C(�T ) ∩ W ,
p,loc(�R

T ) solutions
to problem (.) and satisfy (.); denote

N =
{

(x, τ ) : U(x, τ ) < U(x, τ ), x ∈ R,  < τ ≤ T
}

and suppose it is not empty. Then if (x, τ ) ∈N ,

U(x, τ ) > , ∂τ U – LU + g(x)∂xU = g(x)ex – c( – γ ).

Denote W = U – U, then W satisfies

⎧

⎨

⎩

∂τ W – LW + g(x)∂xW ≤ , (x, τ ) ∈N ,

W (x, τ ) = , (x, τ ) ∈ ∂pN ,

where ∂pN is the parabolic boundary of the domain N . From (.), we know the function
W satisfies the estimation  ≤ W ≤ ex, so using the maximum principle [], we deduce
W ≤  in N , which contradicts the definition of N .

Finally, we prove the estimate (.). From problem (.), we see that

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∂τ u – 
σ ∂xxu – (r – δ – 

σ )∂xu + ru ≥ δex – c( – γ ) ≥ , (x, τ ) ∈ QT ,

u(ln c
β

, τ ) ≥ , τ ∈ (, T),

u(x, ) = (ex – P)+ ≥ , x > ln c
β

.

(.)

In fact, the inequality in (.) is deduced from (.). Using the strong maximum prin-
ciple, we deduce that u >  in QT . �

Theorem . The solution of problem (.) is increasing with the aggregate payout ra-
tio δ, it is to say that when βex ≥ c, as the payout ratio δ increases from c( – γ )e–x to β , the
firm’s equity value is increasing. Thus we conclude that when βV ≥ c, it is optimal to pay
all the residual cash flows as dividends. When βV < c, it is optimal to pay no dividends.

Proof Denote that ui
ε,n (i = , ) is the solution of problem (.) (where δ is replaced by δi)

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

∂τ ui
ε,n – Lui

ε,n + gi
n(x)(∂xui

ε,n – ex) + βε(ui
ε,n) + c( – γ ) = , (x, τ ) ∈ �n

T ,

∂xui
ε,n(–n, τ ) – ui

ε,n(–n, τ ) = , τ ∈ (, T],

∂xui
ε,n(n, τ ) = en, τ ∈ (, T],

ui
ε,n(x, ) = πε(ex – P), x ∈ [–n, n],

(.)
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where gi
n(x) satisfies

gi
n(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

β , x < ln c
β

– 
n ,

decreasing, ln c
β

– 
n < x < ln c

β
+ 

n ,

δi, x ≥ ln c
β

+ 
n ;

moreover,

gi
n(x) ∈ C[–n, n], δi ≤ gi

n(x) ≤ β , for all x ∈ [–n, n],

and g
n(x) ≤ g

n(x) if δ ≤ δ.
We assume that δ < δ, denote w = u

ε,n – u
ε,n, then w satisfies

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

∂τ w – Lw + g
n(x)∂xw + β ′

ε(·)w = –(g
n(x) – g

n(x))(∂xu
ε,n – ex), (x, τ ) ∈ �n

T ,

∂xw(–n, τ ) – w(–n, τ ) = , τ ∈ (, T],

∂xw(n, τ ) = , τ ∈ (, T],

w(x, ) = , x ∈ [–n, n].

In fact, from the estimation (.), –(g
n(x) – g

n(x))(∂xu
ε,n – ex) ≤ . By the maximum prin-

ciple, we deduce that w ≤ , i.e. u
ε,n ≤ u

ε,n. Let ε →  and n → ∞, we obtain

u(x, τ ) ≤ u(x, τ ), (x, τ ) ∈ �T ,

where ui(x, τ ) (i = , ) is the solution of problem (.) with the payout ratio δi. �

Remark . Theorem . shows that, when βex ≥ c, as the payout ratio δ increases from
c( – γ )e–x to β , the firm’s equity value is increasing, thus we obtain

u(x, τ ) ≤ uβ (x, τ ), (x, τ ) ∈ �T , (.)

where uβ (x, τ ) is the solution of problem (.) with δ = β , i.e.

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

uβ ≥ , (x, τ ) ∈ �T ,

∂τ uβ – ˜Luβ ≥ βex – c( – γ ), (x, τ ) ∈ �T ,

uβ [uβ
τ – ˜Luβ – βex + c( – γ )] = , (x, τ ) ∈ �T ,

uβ (x, ) = (ex – P)+, x ∈ R,

(.)

where �T = R × (, T] and

˜Lu =
σ 


∂xxu +

(

r – β –
σ 



)

∂xu – ru;

when βex ≥ c, it is optimal to pay all the residual cash flows as dividends. When βex < c,
it is optimal to pay no dividends. This is consistent with the result of Fan and Sundaresan
in [].
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In the following, we devote the analysis to the behavior of the free boundary (i.e. optimal
bankruptcy boundary).

Denote

CR =
{

(x, τ ) : u(x, τ ) > 
}

, the continuation region,

BR =
{

(x, τ ) : u(x, τ ) = 
}

, the bankruptcy region.

From (.), we can see that the region BR ⊂ {x ≤ ln c
β
}.

4 Free boundary in the case of c(1 – γ ) – rP ≤ 0
In this section, we aim to characterize the regularities of the free boundary between the
region CR and the region BR. It is worthwhile pointing out that, without consideration
of the dividend policy, Han et al. in [] deduced that ∂xu ≥ , which plays an important
role in the analysis of the regularities of the free boundary. But it is not true in this paper.
Fortunately, we have the following lemma, which enables us to define the free boundary
another way.

Lemma . If c( – γ ) – rP ≤ , then the solution to problem (.) satisfies

u ≥ (

ex – P
)+, (.)

∂τ u ≥ . (.)

Proof We denote V = ex – P, then we have

⎧

⎨

⎩

∂τ V – LV – g(x)ex + c( – γ ) = –rP + c( – γ ) ≤ , (x, τ ) ∈ �T ,

V (x, ) = ex – P, x ∈ R.
(.)

In view of the estimation (.), we can apply the comparison principle to the system (.),
(.), and (.), then we have

u ≥ ex – P.

Combining estimation (.), we have

u ≥ (

ex – P
)+.

On the other hand, for any small δ > , denote û(x, τ ) = u(x, τ + δ), then by (.),

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

û(x, τ ) ≥ , (x, τ ) ∈ �T–δ ,

∂τ û(x, τ ) – Lû(x, τ ) ≥ g(x)ex – c( – γ ), (x, τ ) ∈ �T–δ ,

û(x, τ )[∂τ û(x, τ ) – Lû(x, τ ) – g(x)ex + c( – γ )] = , (x, τ ) ∈ �T–δ ,

û(x, ) = u(x, δ) ≥ (ex – P)+ = u(x, ), x ∈ R,

where �T–δ = R × (, T – δ].
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Applying the comparison principle with respect to the initial value of variational in-
equality (see []), we obtain

u(x, τ + δ) = û(x, τ ) ≥ u(x, τ ), (x, τ ) ∈ R × (, T – δ].

So, we have

∂τ u ≥ , (x, τ ) ∈ �T . �

By (.), u is monotonically increasing with respect to τ , so we can define the free bound-
ary

F(x) = sup
{

τ : u(x, τ ) = 
}

, x ∈ R. (.)

It is clear that

BR =
{

(x, τ ) :  < τ ≤ F(x)
}

,

CR =
{

(x, τ ) : F(x) < τ ≤ T
}

.

Lemma . If c( – γ ) – rP ≤ , the free boundary F(x) is decreasing, moreover, F(x) is
strictly decreasing and continuous in the region {x :  < F(x) < T}.

Proof We divide the proof into four steps.
Step : We will deduce that if F(x) > , then x ≤ min{ln c(–γ )

β
, ln P}.

From the initial condition u(x, ) = (ex – P)+ and the estimation (.), we can conclude
that u >  when x > ln P. On the other hand, when (x, τ ) ∈ BR, u = , then from estimation
(.) we have x ≤ ln c

β
and g(x) = β , combining with (.), we deduce that x ≤ ln c(–γ )

β
.

From the free boundary definition of (.) we have the conclusion.
Step : We will prove that F(x) is decreasing in {x : F(x) > }.
For any F(x) > , from step  we know that x ≤ min{ln c(–γ )

β
, ln P}. We define

ũ(x, τ ) =

⎧

⎨

⎩

u(x, τ ), (x, τ ) ∈ [x, +∞) × [, F(x)],

, (x, τ ) ∈ (–∞, x) × [, F(x)].

We will prove that ũ(x, τ ) is also the solution of problem (.). Since x ≤ ln P, it is easy
to prove that ũ(x, τ ) satisfies (.) and (.). When x ≤ x ≤ ln c(–γ )

β
, ũ(x, τ ) = ,

∂τ ũ(x, τ ) – Lũ(x, τ ) – g(x)ex + c( – γ ) = –βex + c( – γ ) ≥ .

Thus we can conclude ũ(x, τ ) is solution of (.) and u(x, τ ) = ũ(x, τ ) when (x, τ ) ∈
(–∞, +∞) × [, F(x)] for the uniqueness of the solution. So for any point x ≤ x, we have
u(x, F(x)) = , combining the estimation (.) and free boundary definition (.) we con-
clude that F(x) ≥ F(x), i.e. the free boundary F(x) is decreasing in {x : F(x) > }.

Step : We infer F(x) is strictly decreasing in {x :  < F(x) < T}.
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Otherwise, there exist x, x, (x < x ≤ min{ln c(–γ )
β

, ln P}), such that  < F(x) = F(x) <
T , x ∈ [x, x]. There exists a domain (x, x) × (F(x), T], such that

⎧

⎨

⎩

∂τ u – Lu = βex – c( – γ ), (x, τ ) ∈ (x, x) × (F(x), T],

u(x, F(x)) = , x ∈ (x, x).

Then we have ∂τ u(x, F(x)) = βex – c( – γ ) + Lu(x, F(x)) = βex – c( – γ ) <  for any x ∈
(x, x), which contradicts (.). Hence F(x) is strictly decreasing in {x :  < F(x) < T}.

Step : We conclude F(x) is continuous in {x :  < F(x) < T}.
Otherwise there exists a point x such that limx→x+


F(x) = τ < τ = limx→x–


F(x) and

⎧

⎨

⎩

∂τ u – Lu = βex – c( – γ ), (x, τ ) ∈ (x, ln c
β

) × (τ, τ),

u(x, τ ) = , τ ∈ (τ, τ).

Then u ∈ C∞[x, ln c
β

) × (τ, τ). Denote w = ∂τ u, then w satisfies

⎧

⎨

⎩

∂τ w – Lw = , (x, τ ) ∈ (x, ln c
β

) × (τ, τ),

w(x, τ ) = , τ ∈ (τ, τ).

Since w = ∂τ u ≥ , w reaches its non-positive minimums at x = x; applying the maximum
principle we have ∂xw(x, τ ) >  for any τ ∈ (τ, τ). On the other hand, u(x, τ ) = , (x, τ ) ∈
(x – , x]× (τ, τ), moreover, ∂xu ∈ C(�T ), thus we can deduce that ∂xu(x, τ ) =  for any
τ ∈ (τ, τ). So, ∂xw(x, τ ) = ∂τxu(x, τ ) =  for any τ ∈ (τ, τ), thus we get a contradiction.
Hence, F(x) is continuous in {x :  < F(x) < T}. �

Since the free boundary τ = F(x) (x ∈ R) is strictly decreasing in (, T), there exists an
inverse function x = h(τ ), and we define the free boundary

h(τ ) =
{

x : τ = F(x)
}

, τ ∈ (, T).

Theorem . If c(–γ )–rP ≤ , the free boundary (see Figure ) h(τ ) ∈ C[, T]∩C∞(, T]
is strictly decreasing with

h() = lim
τ→+

h(τ ) = min

{

ln P, ln
c( – γ )

β

}

,

Figure 3 Monotonic free boundary. If c(1 – γ ) – rP
≤ 0, the free boundary x = h(τ ) is strictly decreasing.
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moreover,

x∞ ≤ h(τ ) ≤ min

{

ln P, ln
c( – γ )

β

}

,

where, from Fan and Sundaresan [], x∞ is the optimal bankruptcy point for perpetual
debt and

x∞ = ln

(

–α

 – α

c( – γ )
r

)

, (.)

where α is a negative root of the equation



σ x +

(

r – δ –


σ 

)

x – r = . (.)

Proof Since the free boundary τ = F(x) is strictly decreasing, its inverse function h(τ ) is
continuous and strictly decreasing.

Now we prove h() = limτ→+ h(τ ) = min{ln P, ln c(–γ )
β

}. From estimation (.), we know
h(τ ) ≤ ln c

β
, combining its monotonicity we conclude the limitation exists. In the same

way as in Lemma ., we can prove the conclusion.
Because h(τ ) is decreasing in [, T], we can deduce that x∞ = limτ→+∞ h(τ ) ≤ h(τ ) ≤

h() for any τ ∈ (, T].
At last, we prove h(τ ) ∈ C∞(, T]. Since ∂τ u ≥ , using the method developed by Fried-

man [], it is not difficult to prove h(τ ) ∈ C,(, T]. At this point we can use the result of
the Stefan problem [] to find that h(τ ) ∈ C∞(, T]. �

5 Free boundary in the case of c(1 – γ ) – rP > 0
In this section, we aim to investigate the behaviors of the free boundary in the case of
c( – γ ) – rP > . However, when c( – γ ) – rP > , the inequality ∂τ u ≥  is no longer satis-
fied. A numerical example is presented in Section . In [], Han et al. obtained a similar
property to ∂τ u ≥  by making the transformation, which is no longer true since the func-
tion g(x) is a piecewise function. In addition, g(x) is discontinuous on the point x = ln c

β
,

which causes it to be difficult to prove that ∂xu ≥ . So we cannot prove the free boundary
is differentiable. Fortunately, by establishing linkages between problem (.) and (.),
we deduce that the free boundary is bounded and no longer monotonic in some cases.

For comparison, let us first recall the results in [] where the authors do not take the
optimal dividend policy into account. In the absence of a dividend policy, the counter-
part of (.) becomes (.) (see [] and we assume ηα = ). Problem (.) has a free
boundary, denoted by˜h(τ ), such that

˜h(τ ) = sup
{

x ∈ R, uβ (x, τ ) = 
}

, τ ∈ (, T]. (.)

Han et al. [] completely characterized the behaviors of ˜h(τ ), which is summarized as
follows.
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Lemma . In the case of c( – γ ) – rP > , the free boundary ˜h(τ ) ∈ C[, T] ∩ C∞(, T]
and

ln

(

–
Pα

 – α

)

≤˜h(τ ) ≤ ln
c( – γ )

β
, (.)

where α is the negative root of the algebraic equation



σ x +

(

r – β –


σ 

)

x – r = . (.)

Moreover,

˜h() := lim
τ→+

˜h(τ ) = min

{

ln P, ln
c( – γ )

β

}

.

Now we define free boundary of problem (.) by

h(τ ) = max
{

x|u(y, τ ) = , for y ≤ x
}

.

Theorem . If c( – γ ) – rP > , the free boundary h(τ ) is bounded and starts with

h() = min

{

ln P, ln
c( – γ )

β

}

,

moreover,

ln

(

–
Pα

 – α

)

≤˜h(τ ) ≤ h(τ ) ≤ ln
c( – γ )

β
, (.)

where˜h(τ ) is defined by (.) and α is a negative root of (.).

Proof When (x, τ ) ∈ BR, u(x, τ ) = , combining the estimation (.), we deduce that x ≤
ln c

β
, then g(x) = β . From (.), we have x ≤ ln c(–γ )

β
. Hence, we obtain the right hand

side of inequality (.).
On the other hand, from [], we know that when x ≤˜h(τ ) (where ˜h(τ ) is the optimal

reorganization boundary of problem (.)), uβ (x, τ ) = . From (.), we have u(x, τ ) ≤
uβ (x, τ ), noticing that u(x, τ ) ≥ , then we can infer that u(x, τ ) =  for all x ≤˜h(τ ). Thus
we conclude that ˜h(τ ) ≤ h(τ ). By Lemma ., ln(– Pα

–α
) ≤ ˜h(τ ), so we obtain inequality

(.).
Next, we prove h() = min{ln P, ln c(–γ )

β
}. Since u(x, τ ) ∈ C(�T ) and u(x, ) = (ex – P)+,

we have h() ≤ ln P. Combining (.), we have h() ≤ min{ln P, ln c(–γ )
β

}. If h() <
min{ln P, ln c(–γ )

β
}, there exists a domain (h(), h() + ε) × (, t) ⊂ (h(), min{ln P,

ln c(–γ )
β

}) × (, T], such that

⎧

⎨

⎩

∂τ u – Lu + β∂xu = βex – c( – γ ), (x, τ ) ∈ (h(), h() + ε) × (, t),

u(x, ) = , x ∈ (h(), h() + ε).
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Figure 4 If c(1 – γ ) – rP < 0, the free boundary x = h(τ )
is non-monotonic in some case.

Then we have ∂τ u(x, ) = βex – c( – γ ) + Lu(x, ) – β∂xu(x, ) = βex – c( – γ ) <  for
any x ∈ (h(), h() + ε), which contradicts u(x, τ ) ≥  for all  < τ ≤ T . Hence h() =
min{ln P, ln c(–γ )

β
}. �

Next, we prove that the free boundary is not monotonic in some cases.

Theorem . In the case of c( – γ ) – rP > , the free boundary h(τ ) (see Figure ) is non-
monotonic in the interval [, +∞) if

ln P < x∞,

where x∞ is defined by (.).

Proof Since α is the negative root of (.), we can infer that ln[ –α
–α

· c(–γ )
r ] < ln c(–γ )

β
, thus

if ln P < x∞ = ln[ –α
–α

· c(–γ )
r ], we deduce that h() = min{ln P, ln c(–γ )

β
} = ln P.

First, we prove that there exists a positive τ such that h(τ ) < h() for any τ ≤ τ.
We set

y = x – ln P, w(y, τ ) =

P

u(x, τ ).

Recall (.), it is not difficult to find w is governed by

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

w ≥ , (y, τ ) ∈ R × (, T],

∂τ w – Lw + g(y + ln P)(∂yw – ey) ≥ – c(–γ )
P (y, τ ) ∈ R × (, T],

w(∂τ w – Lw + g(y + ln P)(∂yw – ey) + c(–γ )
P ) = , (y, τ ) ∈ R × (, T],

w(y, ) = (ey – )+, y ∈ R,

(.)

where

Lw =
σ 


∂yyw +

(

r –
σ 



)

∂yw – rw.

From (.), we deduce that ∂yw(y, τ ) ≤ ey for any (y, τ ) ∈ R × (, T]. We construct a sub-
solution w̃ to problem (.), which satisfies

⎧

⎨

⎩

∂τ w̃ – Lw̃ = – c(–γ )
P , (y, τ ) ∈ R × (, T],

w̃(y, ) = (ey – )+, y ∈ R.
(.)
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It is clear that w ≥ w̃ by the comparison principle. If we can prove that there exists a pos-
itive τ, such that w̃(, τ ) >  for any  < τ < τ, then w(, τ ) > .

We define w̃(y, τ ) = v(y, τ ) + c(–γ )
rP (e–rτ – ), where v satisfies

⎧

⎨

⎩

∂τ v – Lv = , (y, τ ) ∈ R × (, T],

v(y, ) = (ey – )+, y ∈ R.
(.)

In fact, v is the premium of the European call option with strike price  and dividend .
We can obtain the solution of (.) (see [])

v(y, τ ) = eyN(d̂) – e–rτ N(d̂), (.)

where

N(x) =
√
π

∫ x

–∞
e–t/ dt, d̂ =

y + (r + σ /)τ
σ
√

τ
, d̂ =

y + (r – σ /)τ
σ
√

τ
.

It is not difficult to check that

∂τ v(, τ ) = n(d)
r + σ /
σ

√
τ

+ re–rτ N(d) – e–rτ n(d)
r – σ /
σ

√
τ

≥ n(d)
σ


√

τ
,

where

n(x) =
e–x/
√

π
, d =

(r + σ /)
√

τ

σ
, d =

(r – σ /)
√

τ

σ
.

(The last inequality is obtained from the fact n(d) = e–rτ n(d).)
Then we have

∂τ v(, τ ) → +∞, as τ → +.

So

∂τ w̃(, τ ) → +∞, as τ → +.

Since w̃(, ) =  and w̃ ∈ C(R × [, T]), there exists a positive τ such that

w̃(, τ ) > , τ ≤ τ.

Thus, there exists a positive τ, such that h(τ ) < h() for any τ ≤ τ; combining the condi-
tion h() < x∞ and limτ→+∞ h(τ ) = x∞, we know that the free boundary h(τ ) is not mono-
tonic in the interval [, +∞). �

6 Numerical results
We start from problem (.), which can be rewritten as

⎧

⎨

⎩

min{∂τ u – Lu + g(x)(∂xu – ex) + c( – γ ), u} = , (x, τ ) ∈ �T ,

u(x, ) = (ex – P)+, x ∈ R,
(.)
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where �T = R × (, T] and

Lu =
σ 


∂xxu +

(

r –
σ 



)

∂xu – ru,

and

g(x) =

⎧

⎨

⎩

β , x ≤ ln c
β

,

δ, x > ln c
β

.

Given mesh size �x,�τ > , un
j = u(j�x, n�τ ) represents the value of the numerical ap-

proximation at (j�x, n�τ ), then (.) becomes the following difference equation:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

min{ un
j –un–

j
�τ

– σ


un–

j+ –un–
j +un–

j–
�x – (r – g(j�x) – σ

 )
un–

j+ –un–
j–

�x

+ run
j – g(j�x)ej�x + c( – γ ), un

j } = ,

u
j = (ej�x – P)+.

(.)

Denote ω = σ�τ

�x , a = ω
 + (r – g(j�x) – σ

 ) �τ
�x , b = ω – a; from (.) we calculate that

⎧

⎪

⎪

⎨

⎪

⎪

⎩

min{( + r�τ )un
j – ( – ω)un–

j – aun–
j+ – bun–

j– – g(j�x)ej�x�τ

+ c( – γ )�τ , un
j } = ,

u
j = (ej�x – P)+.

Choosing ω = , we have

⎧

⎨

⎩

un
j = max{ 

+r�τ
[aun–

j+ + bun–
j– +, g(j�x)ej�x�τ – c( – γ )�τ ], },

u
j = (ej�x – P)+,

(.)

where j ∈ Z,  ≤ n ≤ N , N = T
�τ

, then we get Figures -.

Remark . The numerical results in Figure  and Figure  reveal that the bankrupt
boundary h(τ ) is decreasing with respect to the volatility σ . The financial meaning is this:
when the volatility increases, the firm need not bankrupt at once, because of a possibility
of increasing for V due to the big volatility.

Remark . The numerical results in Figure  and Figure  show that the bankrupt
boundary is decreasing with respect to the risk-free rate r. The financial explanation is
very simple. The increase of the risk-free rate r results in the increase of V . Hence E(v, t)
increases, then bankruptcy is behind of schedule.

Remark . Figure  and Figure  show that, as the payout ratio δ increases from β(–γ )
to β , the bankrupt boundary is decreasing. The financial explanation is very simple. If the
residual cash flows are invested back as retained earning, they become accessible by the
debt holders upon bankruptcy. It would be optimal for the equity holders to pay all the
cash flows available as divided.
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Figure 5 The free boundary when c(1 – γ ) – rP ≤ 0 with different volatility. Plot of the optimal
bankruptcy boundary h(τ ) as the function of time τ when c(1 – γ ) – rP ≤ 0. The parameter values used in the
calculations are T = 1, N = 2,000, r = 0.3, β = 0.02, δ = 0.01, c = 0.04, γ = 0.2, P = 2; h1(τ ) and h2(τ ) are the free
boundaries when σ1 = 0.3 and σ2 = 0.7, respectively. The numerical result (see Figure 5) shows that the
optimal bankruptcy boundary is decreasing not only with τ , which coincides with Theorem 4.1, but also with
volatility σ .

Figure 6 The free boundary when c(1 – γ ) – rP > 0 with different volatility. Plot of the optimal
bankruptcy boundary h(τ ) as the function of time τ when c(1 – γ ) – rP > 0. The parameter values used in the
calculations are T = 1, N = 2,000, r = 0.03, β = 0.02, c = 0.04, δ = 0.01, γ = 0.2, P = 0.07; h1(τ ) and h2(τ ) are the
free boundaries when σ1 = 0.3 and σ2 = 0.7, respectively. The numerical result (see Figure 6) shows that the
optimal bankrupt boundary h(τ ) is not monotonic with τ , which coincides with Theorem 5.2, at the same
time, the numerical result also reveals the bankruptcy boundary h(τ ) is decreasing with respect to volatility σ .
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Figure 7 The free boundary when c(1 – γ ) – rP ≤ 0 with different risk-free rate. Plot of the optimal
bankruptcy boundary h(τ ) as the function of time τ when c(1 – γ ) – rP ≤ 0. The parameter values used in the
calculations are T = 1, N = 2,000, σ = 0.3, β = 0.02, δ = 0.01, c = 0.04, γ = 0.2, P = 2; h1(τ ) and h2(τ ) are the
free boundaries when r1 = 0.3 and r2 = 0.7, respectively. The numerical result (see Figure 7) shows that the
optimal bankruptcy boundary h(τ ) is decreasing not only with τ , which coincides with Theorem 4.1, but also
with risk-free rate r.

Figure 8 The free boundary when c(1 – γ ) – rP > 0 with different risk-free rate. Plot of the optimal
bankruptcy boundary h(τ ) as the function of time τ when c(1 – γ ) – rP > 0. The parameter values used in the
calculations are T = 1, N = 2,000, σ = 0.3, β = 0.02, c = 0.04, δ = 0.01, γ = 0.2, P = 0.07; h1(τ ) and h2(τ ) are the
free boundaries when r1 = 0.03 and r2 = 0.07, respectively. The numerical result (see Figure 8) shows that the
optimal bankruptcy boundary h(τ ) is not monotonic with τ , which coincides with Theorem 5.2, at the same
time, the numerical result also reveals the bankruptcy boundary h(τ ) is decreasing with respect to risk-free
rate r.
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Figure 9 The free boundary when c(1 – γ ) – rP ≤ 0 with different aggregate payout ratio. Plot of the
optimal bankruptcy boundary h(τ ) as the function of time τ when c(1 – γ ) – rP ≤ 0. The parameter values
used in the calculations are T = 4, N = 2,500, σ = 0.3, r = 0.3, β = 0.2, c = 0.3, γ = 0.2, P = 6; h1(τ ) and h2(τ ) are
the free boundaries when δ1 = 0.15 and δ2 = 0.2, respectively. The numerical result (see Figure 9) shows that
the optimal bankruptcy boundary h(τ ) is decreasing not only with τ , which coincides with Theorem 4.1, but
also with aggregate payout ratio δ .

Figure 10 The free boundary when c(1 – γ ) – rP > 0 with different aggregate payout ratio. Plot of the
optimal bankruptcy boundary h(τ ) as the function of time τ when c(1 – γ ) – rP > 0. The parameter values
used in the calculations are T = 1, N = 2,500, σ = 0.3, r = 0.01, β = 0.8, c = 0.01, γ = 0.001, P = 0.02; h1(τ ) and
h2(τ ) are the free boundaries when δ1 = 0.1 and δ2 = 0.3, respectively. The numerical result (see Figure 10)
shows that the optimal bankruptcy boundary h(τ ) is not monotonic with τ , which coincides with
Theorem 5.2, at the same time, the numerical result also reveals the bankruptcy boundary h(τ ) is decreasing
with respect to the aggregate payout ratio δ .
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7 Conclusion
In this paper, we study the value of equity, optimal bankruptcy and dividend policy in a
continuous-time framework with finite time maturity. Most of the previous works either
take only an infinite time horizon into consideration or pay out all residual cash flows as
dividend.

Mathematically the model of equity value is formulated as a parabolic variational in-
equality with discontinuous coefficient, or equivalently, a free boundary problem, where
the free boundary corresponds to the optimal bankruptcy boundary. We aim to investigate
the behaviors of the free boundary and optimal dividend policy.

As we know, the results in this paper are the first integral one for optimal dividends
due to the use of the PDE technique. First we rigorously established variational inequality
model (.) by stochastic analysis. we prove that the solution is increasing with the ag-
gregate payout ratio and obtain the optimal dividend policy. The results are perfect in the
case of c( – γ ) – rP ≤ . In Section  we deduced that in the case of c( – γ ) – rP >  the
bankruptcy boundary is bounded and we show its loss of monotonicity in some cases. We
presented some numerical results and financial interpretations in Section .

At time t, if the assert value of the firm v is in the continuation region, then the firm
should not go bankrupt, and if v is in the bankruptcy region, then the firm should go
bankrupt at once.
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