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Abstract
In this paper, we prove a general uniqueness theorem that can easily be applied to
the (generalized) Hyers-Ulam stability of a large class of functional equations, which
includes monomial functional equations (e.g. the Cauchy additive functional
equation, the quadratic functional equation, and the cubic functional equation, etc.).
This uniqueness theorem can save us much trouble in proving the uniqueness of
relevant solutions repeatedly appearing in the stability problems for functional
equations in fuzzy spaces.
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1 Introduction
Let X and Y be real vector spaces and let n be a positive integer. For a given mapping
f : X → Y , we define a mapping Dnf : X × X → Y by

Dnf (x, y) :=
n∑

i=
nCi(–)n–if (ix + y) – n!f (x)

for all x, y ∈ X, where nCi = n!
i!(n–i)! . A mapping f : X → Y is called a monomial mapping

of degree n if f satisfies the monomial functional equation Dnf (x, y) =  for all x, y ∈ X.
The mapping f (x) := axn satisfies the functional equation Dnf (x, y) =  for all x, y ∈ R.
In particular, a mapping f : X → Y is called an additive mapping, a quadratic mapping,
a cubic mapping, a quadratic mapping, respectively, if f satisfies the functional equation
Df (x, y) = , Df (x, y) = , Df (x, y) = , Df (x, y) = , respectively. We notice that if a
mapping f : X → Y is a monomial mapping of degree n, then f (rx) = rnf (x) for all x ∈ X
and all rational numbers r (see [, ]).

In the study of Hyers-Ulam stability problems of monomial functional equations, we
have been frequently requested to prove the uniqueness of the monomial mappings un-
der various conditions. We can find in the books [–] a lot of references concerning the
Hyers-Ulam stability of functional equations (see also [–]).

In this paper, we prove a general uniqueness theorem that can easily be applied to the
(generalized) Hyers-Ulam stability of a large class of functional equations, which includes
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monomial functional equations. Indeed, this uniqueness theorem can save us much trou-
ble in proving the uniqueness of relevant solutions repeatedly appearing in the stability
problems for various functional equations in fuzzy spaces (see [–]).

2 Preliminaries
We first introduce the definition of fuzzy normed spaces (see [–]).

Definition . Let X be a real vector space. A mapping N : X × R → [, ] is said to be a
fuzzy norm on X if for all x, y ∈ X and all c, s, t ∈ R,

(N) N(x, t) =  for all t ≤ ;
(N) x =  if and only if N(x, t) =  for all t > ;
(N) N(cx, t) = N(x, t/|c|) for all c �= ;
(N) N(x + y, s + t) ≥ min{N(x, s), N(y, t)};
(N) N(x, ·) is a non-decreasing mapping on R and limt→∞ N(x, t) = .

The pair (X, N) is called a fuzzy normed space.

Example . ([]) Let (X,‖ · ‖) be a normed space and let k >  be an arbitrary real
number. If we define a mapping Nk : X × R → [, ] by

Nk(x, t) :=

{
t

t+k‖x‖ if t > ,
 otherwise,

then Nk is a fuzzy norm on X.

Let (X, N) be a fuzzy normed space and let {xn} be a sequence in X. Then {xn} is said to
be convergent if there exists an x ∈ X such that limn→∞ N(xn – x, t) =  for all t > . In this
case, x is called the limit of the sequence {xn} and we write N-limn→∞ xn = x. A sequence
{xn} in X is called Cauchy if for each ε >  and each t >  there exists a positive integer
n such that for all n ≥ n and all integers p >  we have N(xn+p – xn, t) >  – ε. It is well
known that every convergent sequence in a fuzzy normed space is Cauchy. If each Cauchy
sequence is convergent, then the fuzzy norm is said to be complete and the fuzzy normed
space is called a fuzzy Banach space.

3 Main result
Throughout this section, let (Y , NY ) and (Z, NZ) be fuzzy normed spaces and let X be a
real vector space. To the best of our knowledge, Mirmostafaee et al. seem to be the first
authors who investigated the (generalized) Hyers-Ulam stability of functional equations
in fuzzy spaces [–].

In the following theorem, we prove that if, for any given mapping f , there exists a map-
ping F (near f ) with some properties which are certainly satisfied by monomial mappings,
then the mapping F is uniquely determined.

Theorem . Let a �=  be a positive real constant, let b be a real constant, let � : X\{} →
(Z, NZ) be a mapping satisfying either

lim
n→∞ NZ

(


abn �
(
anx

)
, t

)
=  ()
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for all x ∈ X\{} and all t > , or

lim
n→∞ NZ

(
abn�

(
x

an

)
, t

)
=  ()

for all x ∈ X\{} and all t > , and let f : X → (Y , NY ) be an arbitrarily given mapping. If
there exists a mapping F : X → (Y , NY ) such that

NY
(
f (x) – F(x), t

) ≥ NZ
(
�(x), t

)
()

for all x ∈ X\{} and all t > , and if F satisfies

F(ax) = abF(x) ()

for all x ∈ X, then F is determined by

F(x) =

{
NY -limn→∞ 

abn f (anx) if � satisfies (),
NY -limn→∞ abnf ( x

an ) if � satisfies ()

for all x ∈ X\{}. In other words, F is the unique mapping satisfying () and ().

Proof Assume that F is a mapping satisfying () and () for a given mapping f : X →
(Y , NY ).

First, we consider the case when � satisfies the condition () for all x ∈ X\{} and all
t > . It then follows from (N), (), (), and () that

NY

(
F(x) –


abn f

(
anx

)
, t

)
= NY

(


abn

(
F
(
anx

)
– f

(
anx

))
, t

)

= NY
(
f
(
anx

)
– F

(
anx

)
, abnt

)

≥ NZ
(
�

(
anx

)
, abnt

)

= NZ

(


abn �
(
anx

)
, t

)

→ , as n → ∞

for all x ∈ X\{} and all t > . Thus, we have F(x) = NY -limn→∞ 
abn f (anx) for all x ∈ X\{}.

On the other hand, if � satisfies the condition () for all x ∈ X\{} and all t > , it then
follows from (N), (), (), and () that

NY

(
F(x) – abnf

(
x

an

)
, t

)
= NY

(
abnF

(
x

an

)
– abnf

(
x

an

)
, t

)

= NY

(
f
(

x
an

)
– F

(
x

an

)
,

t
abn

)

≥ NZ

(
�

(
x

an

)
,

t
abn

)

= NZ

(
abn�

(
x

an

)
, t

)

→ , as n → ∞
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for all x ∈ X\{} and all t > . Therefore, we have F(x) = NY -limn→∞ abnf ( x
an ) for all x ∈

X\{}. �

In general, it is not easy to apply Theorem . in practical applications. Hence, we intro-
duce some corollaries which are easily applicable to investigating the uniqueness problems
in the stability of various functional equations.

Corollary . Let a �=  be a positive real constant, let b be a real constant, let φ : X\{} →
(Z, NZ) be a mapping satisfying either

�(x) := NZ- lim
n→∞

n∑

i=


abi φ

(
aix

) ∈ Z ()

for all x ∈ X\{}, or

�(x) := NZ- lim
n→∞

n∑

i=

abiφ

(
x
ai

)
∈ Z ()

for all x ∈ X\{}, and let f : X → (Y , NY ) be an arbitrarily given mapping. If there exists
a mapping F : X → (Y , NY ) satisfying () for all x ∈ X\{} and t >  and () for all x ∈ X,
then F is a unique mapping satisfying () and ().

Proof If φ satisfies () for all x ∈ X\{}, then we have

�
(
amx

)
= NZ- lim

n→∞

n∑

i=


abi φ

(
ai+mx

)

or equivalently

lim
n→∞ NZ

(
�

(
amx

)
–

n∑

i=


abi φ

(
ai+mx

)
,

abm


t

)
=  ()

for all x ∈ X\{} and m ∈ N, where we write ‘ abm

 t’ instead of ‘t’ in () (it is not bad because
abm

 is a positive real constant). It now follows from (N) and () that

lim
n→∞ NZ

(


abm �
(
amx

)
–


abm

n∑

i=


abi φ

(
ai+mx

)
,

t


)

= lim
n→∞ NZ

(
�

(
amx

)
–

n∑

i=


abi φ

(
ai+mx

)
,

abm


t

)
=  ()

for any x ∈ X\{} and m ∈ N. Hence, by (N) and (), we get

NZ

(


abm �
(
amx

)
, t

)

= lim
n→∞ NZ

(


abm �
(
amx

)
, t

)
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≥ lim
n→∞ min

{
NZ

(


abm �
(
amx

)
–


abm

n∑

i=


abi φ

(
ai+mx

)
,

t


)
,

NZ

( n∑

i=


ab(i+m) φ

(
ai+mx

)
,

t


)}

= lim
n→∞ NZ

(m+n∑

i=m


abi φ

(
aix

)
,

t


)

for all x ∈ X\{} and t > .
Hence, by using (N) and (), we have

lim
m→∞ NZ

(


abm �
(
amx

)
, t

)

≥ lim
m→∞ lim

n→∞ NZ

(m+n∑

i=m


abi φ

(
aix

)
,

t


)

≥ lim
m→∞ lim

n→∞ min

{
NZ

(m+n∑

i=


abi φ

(
aix

)
– �(x),

t


)
,

NZ

(
�(x) –

m–∑

i=


abi φ

(
aix

)
,

t


)}

= 

for each x ∈ X\{} and t > , i.e., � satisfies the condition ().
If φ satisfies () for any x ∈ X\{}, then we get

�

(
x

am

)
= NZ- lim

n→∞

n∑

i=

abiφ

(
x

ai+m

)

or equivalently

lim
n→∞ NZ

(
�

(
x

am

)
–

n∑

i=

abiφ

(
x

ai+m

)
,

t
abm

)
=  ()

for every x ∈ X\{} and m ∈ N, where we write ‘ t
abm ’ instead of ‘t’ in () (it is not bad

because 
abm is a positive real constant). In view of (N) and (), we have

lim
n→∞ NZ

(
abm�

(
x

am

)
– abm

n∑

i=

abiφ

(
x

ai+m

)
,

t


)

= lim
n→∞ NZ

(
�

(
x

am

)
–

n∑

i=

abiφ

(
x

ai+m

)
,

t
abm

)
=  ()

for any x ∈ X\{} and m ∈ N. Thus, it follows from (N) and () that

NZ

(
abm�

(
x

am

)
, t

)

= lim
n→∞ NZ

(
abm�

(
x

am

)
, t

)
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≥ lim
n→∞ min

{
NZ

(
abm�

(
x

am

)
– abm

n∑

i=

abiφ

(
x

ai+m

)
,

t


)
,

NZ

( n∑

i=

ab(i+m)φ

(
x

ai+m

)
,

t


)}

= lim
n→∞ NZ

(m+n∑

i=m

abiφ

(
x
ai

)
,

t


)

for any x ∈ X\{} and t > .
Therefore, by (N) and (), we obtain

lim
m→∞ NZ

(
abm�

(
x

am

)
, t

)

≥ lim
m→∞ lim

n→∞ NZ

(m+n∑

i=m

abiφ

(
x
ai

)
,

t


)

≥ lim
m→∞ lim

n→∞ min

{
NZ

(m+n∑

i=

abiφ

(
x
ai

)
– �(x),

t


)
,

NZ

(
�(x) –

m–∑

i=

abiφ

(
x
ai

)
,

t


)}

= 

for each x ∈ X\{} and t > , i.e., � satisfies the condition (). Hence, our assertion is true
in view of Theorem .. �

Corollary . Let a �=  be a positive real constant, let b be a real constant, let Y and Z be
real normed spaces, let φ : X\{} → Z be a mapping satisfying either

�(x) :=
∞∑

i=


abi φ

(
aix

) ∈ Z ()

for all x ∈ X\{}, or

�(x) :=
∞∑

i=

abiφ

(
x
ai

)
∈ Z ()

for all x ∈ X\{}, and let f : X → Y be an arbitrarily given mapping. If there exists a map-
ping F : X → Y satisfying

∥∥f (x) – F(x)
∥∥ ≤ ∥∥�(x)

∥∥ ()

for all x ∈ X\{} and if F satisfies () for all x ∈ X, then F is a unique mapping satisfying
() and ().
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Proof If we define the fuzzy norms NY : Y × R → [, ] on Y and NZ : Z × R → [, ] on
Z by

NY (y, t) :=

{
t

t+‖y‖ if t > ,
 otherwise

and NZ(z, t) :=

{
t

t+‖z‖ if t > ,
 otherwise

for all y ∈ Y and z ∈ Z, then (Y , NY ) and (Z, NZ) are fuzzy normed spaces. We then know
that () and () imply () and (), respectively.

In view of (), we have

t
t + ‖f (x) – F(x)‖ ≥ t

t + ‖�(x)‖

for all x ∈ X\{} and t > , i.e., NY (f (x) – F(x), t) ≥ NZ(�(x), t) for all x ∈ X\{} and t > .
Therefore, by Theorem ., we conclude that our assertion is true. �

Corollary . Let a �=  be a positive real constant, let b be a real constant, let φ : X\{} →
[,∞) be a mapping satisfying either

�(x) :=
∞∑

i=


abi φ

(
aix

)
< ∞ ()

for all x ∈ X\{}, or

�(x) :=
∞∑

i=

abiφ

(
x
ai

)
< ∞ ()

for all x ∈ X\{}, and let f : X → (Y , NY ) be an arbitrarily given mapping. Let NR : R×R →
[, ] be the fuzzy norm on R defined by

NR(r, t) :=

{
t

t+|r| if t > ,
 otherwise.

If there exists a mapping F : X → (Y , NY ) satisfying

NY
(
f (x) – F(x), t

) ≥ NR
(
�(x), t

)
()

for all x ∈ X\{} and all t >  and, moreover, if F satisfies () for all x ∈ X, then F is a
unique mapping satisfying () and ().

We now prove a general uniqueness theorem that can easily be applied to the (general-
ized) Hyers-Ulam stability of the monomial functional equations.

Corollary . Let a �=  be a positive real constant, let Y be a normed space, let φ : X\{} →
[,∞) be a mapping satisfying either () for all x ∈ X\{} or () for all x ∈ X\{}, and let
f : X → Y be an arbitrary mapping. If there exists a mapping F : X → Y satisfying

∥∥f (x) – F(x)
∥∥ ≤ �(x) ()
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for all x ∈ X\{}, and, moreover, if F satisfies () for all x ∈ X, then F is a unique mapping
satisfying () and ().

Proof If we set Z := R,

NY (y, t) :=

{
t

t+‖y‖ if t > ,
 otherwise

and

NZ(z, t) = NR(z, t) :=

{
t

t+|z| if t > ,
 otherwise

it then follows from () that

t
t + ‖f (x) – F(x)‖ ≥ t

t + |�(x)| or NY
(
f (x) – F(x), t

) ≥ NZ
(
�(x), t

)

for all x ∈ X\{} and t > .
Finally, we use Corollaries . and . to show that our assertion of this corollary is

true. �

Corollary . Let a �=  and θ be positive real numbers, let b and p be real numbers with
p �= b, and let f : R → Y be a mapping from R into a normed space Y . If there is a mapping
F : R → Y satisfying the inequality

∥∥f (x) – F(x)
∥∥ ≤ θ |x|p ()

for any x ∈ R\{}, and if F , moreover, satisfies () for all x ∈ R, then F is a unique mapping
satisfying () and ().

Proof We define fuzzy norms NR and NY by

NR(x, t) :=

{
t

t+|x| if t > ,
 otherwise

and NY (y, t) :=

{
t

t+‖y‖ if t > ,
 otherwise

for any x ∈ R and y ∈ Y . Moreover, we define a mapping � : R\{} → (R, NR) by �(x) :=
θxp.

If ab > ap, then � satisfies () for all x ∈ R\{} and all t > . On the other hand, if ab < ap,
then � satisfies () for all x ∈ R\{} and all t > . It, moreover, follows from () that

NY
(
f (x) – F(x), t

) ≥ NR
(
�(x), t

)

for all x ∈ R\{} and t > . Therefore, in view of Theorem ., we conclude that our corol-
lary is true. �

In the following corollaries, we prove that if there exists an additive mapping F near a
given mapping f , then the mapping F is uniquely determined. These corollaries are imme-
diate consequences of Corollaries ., ., ., ., and ., because every additive map-
ping satisfies the condition () for each positive rational number a �=  provided b = .
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Corollary . Let a �=  and b =  be positive rational numbers, let φ : X\{} → (Z, NZ)
be a mapping satisfying either () for all x ∈ X\{} or () for all x ∈ X\{}, and let
f : X → (Y , NY ) be an arbitrarily given mapping. If there exists an additive mapping
F : X → (Y , NY ) satisfying the inequality () for all x ∈ X\{} and t > , then F is uniquely
determined.

Corollary . Let a �=  and b =  be positive rational numbers, let Y and Z be real normed
spaces, let φ : X\{} → Z be a mapping satisfying either () for all x ∈ X\{}, or () for
all x ∈ X\{}, and let f : X → Y be an arbitrarily given mapping. If there exists an additive
mapping F : X → Y satisfying () for all x ∈ X\{}, then F is a unique additive mapping
satisfying ().

Corollary . Let a �=  and b =  be positive rational numbers, let φ : X\{} → [,∞)
be a mapping satisfying either () for all x ∈ X\{} or () for all x ∈ X\{}, and let f :
X → (Y , NY ) be an arbitrarily given mapping. Let NR be the fuzzy norm on R defined as
in Corollary .. If there exists an additive mapping F : X → (Y , NY ) satisfying () for all
x ∈ X\{} and all t > , then F is a unique additive mapping satisfying ().

Corollary . Let a �=  and b =  be positive rational numbers, let Y be a normed space,
let φ : X\{} → [,∞) be a mapping satisfying either () for all x ∈ X\{} or () for all x ∈
X\{}, and let f : X → Y be an arbitrary mapping. If there exists an additive mapping F :
X → Y satisfying () for all x ∈ X\{}, then F is a unique additive mapping satisfying ().

Corollary . Let a �= , b = , and θ be positive real numbers, let p �=  be a real number,
and let f be a mapping from R into a normed space Y . If there is an additive mapping
F : R → Y satisfying the inequality () for each x ∈ R\{}, then F is a unique additive
mapping satisfying ().

Because each quadratic mapping satisfies the condition () for any given positive rational
number a �=  provided b = , we can replace the words ‘additive mapping’ with ‘quadratic
mapping’ in Corollaries ., ., ., ., and ..

Corollary . Let a �=  and b =  be positive rational numbers, let φ : X\{} → (Z, NZ)
be a mapping satisfying either () for all x ∈ X\{} or () for all x ∈ X\{}, and let
f : X → (Y , NY ) be an arbitrarily given mapping. If there exists a quadratic mapping
F : X → (Y , NY ) satisfying the inequality () for all x ∈ X\{} and t > , then F is uniquely
determined.

Corollary . Let a �=  and b =  be positive rational numbers, let Y and Z be real
normed spaces, let φ : X\{} → Z be a mapping satisfying either () for all x ∈ X\{} or
() for all x ∈ X\{}, and let f : X → Y be an arbitrarily given mapping. If there exists a
quadratic mapping F : X → Y satisfying () for all x ∈ X\{}, then F is a unique quadratic
mapping satisfying ().

Corollary . Let a �=  and b =  be positive rational numbers, let φ : X\{} → [,∞)
be a mapping satisfying either () for all x ∈ X\{} or () for all x ∈ X\{}, and let f :
X → (Y , NY ) be an arbitrarily given mapping. Let NR be the fuzzy norm on R defined as
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in Corollary .. If there exists a quadratic mapping F : X → (Y , NY ) satisfying () for all
x ∈ X\{} and all t > , then F is a unique quadratic mapping satisfying ().

Corollary . Let a �=  and b =  be positive rational numbers, let Y be a normed space,
let φ : X\{} → [,∞) be a mapping satisfying either () for all x ∈ X\{} or () for all
x ∈ X\{}, and let f : X → Y be an arbitrary mapping. If there exists a quadratic mapping
F : X → Y satisfying () for all x ∈ X\{}, then F is a unique quadratic mapping satisfy-
ing ().

Corollary . Let a �= , b = , and θ be positive real numbers, let p �=  be a real number,
and let f be a mapping from R into a normed space Y . If there is a quadratic mapping
F : R → Y satisfying () for each x ∈ X\{}, then F is a unique quadratic mapping satis-
fying ().

Remark . () Because every cubic mapping satisfies the condition () for any given
positive rational number a �=  provided b = , we can replace the words ‘additive mapping’
with ‘cubic mapping’ in Corollaries ., ., ., ., and . when b = .

() Because each quartic mapping satisfies the condition () for any given positive ratio-
nal number a �=  provided b = , we can replace the words ‘additive mapping’ with ‘quartic
mapping’ in Corollaries ., ., ., ., and . when b = .
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