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Abstract
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1 Introduction
Let {ξi, i ≥ } be a standardized normal sequence with correlation coefficients rij =
Cov(ξi, ξj) and M(k)

n be the kth largest maxima of {ξi,  ≤ i ≤ n}. A conventional assump-
tion is that rij →  as j – i → +∞ at different rates according to which dependent normal
sequences are classified into two different types: ‘weakly dependent’ and ‘strongly depen-
dent’, respectively. Leadbetter et al. [] considered the case: rij = r|j–i| and rn log n →  as
n → +∞, i.e. {ξi, i ≥ } is a weakly dependent stationary normal sequence. By using asymp-
totic independence, they focused on M(k)

n and its location (which is written as L(k)
n ) and

obtained the asymptotic behavior of the probabilities P(an(M()
n – bn) ≤ x, L()

n /n ≤ t), and
P(an(M()

n – bn) ≤ x, an(M()
n – bn) ≤ x); here and in the sequel the standardized constants

an and bn are defined as

an = ( log n)/, bn = an – (an)–(log log n + log π ). (.)

Mittal and Ylvisaker [] showed that if rij = r|j–i| and rn log n → γ >  as n → +∞ (the
strongly dependent stationary case) then an(M()

n – bn) tends in distribution to a convo-
lution of exp(–e–x) and a normal distribution function, and further if rn log n → ∞ then
by a different normalization, the limiting distribution is normal. Recently, several impor-
tant results for extremes of dependent normal sequences were established. Ho and Hsing
[] and Tan and Peng [] investigated the joint asymptotic distributions of the maximum
of {ξi,  ≤ i ≤ n} and

∑n
i= ξi for dependent Gaussian sequences. Hashorva et al. [] con-

sidered the joint limit distributions of maxima of complete and incomplete samples, re-
spectively, i.e. the Piterbarg theorem under some conditions on convergence rate of the
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correlations. Leadbetter et al. [] developed an important tool: the weak convergence of
exceedance point processes which is crucial to study the joint asymptotic distributions
of some extremes. Many authors further studied the asymptotic behavior of exceedance
point processes under different conditions. We refer to Piterbarg [], Hu et al. [], Falk et
al. [], Peng et al. [] and Hashorva et al. [] for point processes of exceedances by weakly
dependent stationary sequences including Gaussian ones and Wiśniewski [], Lin et al.
[] for point processes of exceedances by strongly dependent Gaussian vector sequences.

Throughout this paper, let {ξi, i ≥ } be a standardized strongly dependent station-
ary normal sequence with correlation coefficients rij = Cov(ξi, ξj). C stands for a con-
stant which may vary from line to line and ‘→’ for the convergence as n → ∞. The re-
mainder of the paper is organized as follows. In Section , we define an in plane Cox
process and prove that the time-normalized point process Nn of exceedances of levels
u()

n , u()
n , . . . , u(r)

n by {ξi,  ≤ i ≤ n} converges in distribution to the in plane Cox process.
In Section , as the applications of our main result, the asymptotic results of the prob-
abilities P(an(M()

n – bn) ≤ x, L()
n /n ≤ t), and P(an(M()

n – bn) ≤ x, an(M()
n – bn) ≤ x) are

established.

2 Convergence of point processes of exceedances
Let {ξi, i ≥ } be a standardized normal sequence with correlation coefficients rij =
Cov(ξi, ξj) satisfying the following assumptions:

rij = r|j–i| and rn log n → γ ∈ (,∞) as n → +∞. (.)

We concentrate on deriving the convergence of the time-normalized exceedance point
process Nn of the levels u()

n , u()
n , . . . , u(r)

n by {ξi,  ≤ i ≤ n} where u(k)
n = xk/an + bn, k =

, , . . . , r. In order to prove the main result in this section, we shall use the famous
Berman’s inequality which is based on the early work of Slepian [], Berman [] and
is polished up in Li and Shao []. The latest results related to Berman’s inequality are
Hashorva and Weng [] and Lu and Wang []. The former gave a detailed introduction
to Berman’s inequality and derived the inequality for some general scaling random vari-
able and thus obtained a Berman inequality for non-normal random vector. The upper
bound of Berman’s inequality gives an estimate of the difference between two standard-
ized n-dimensional distribution functions by a convenient function of their covariances.
According to Hashorva and Weng [], some results for normal sequences may be ex-
tended to non-normal cases. The following lemmas are also needed in the proof of our
result.

Lemma . Let d >  and γ ≥  be constants, put ρn = γ / log n and suppose that rn log n →
γ as n → ∞. Then, for any sequence {un} such that n( – �(un)) is bounded, we have

nd
[nd]∑

k=

|rk – ρn| exp

(

–
u

n
 + wk

)

→  as n → +∞,

where wk = max{|rk|,ρn}.

Proof The proof can be found on p. in Leadbetter et al. []. �
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Leadbetter et al. [] defined a Cox process N with intensity exp(–x – γ +
√

γ ζ ), where
ζ is a standard normal random variable, i.e. the process has the distribution determined
by the following probability:

P

( k⋂

i=

{
N(Bi) = ki

}
)

=
∫ ∞

–∞

k∏

i=

(
(m(Bi) exp(–x – γ +

√
γ z))ki

ki!

· exp
(
–m(Bi)e–x–γ +

√
γ z)

)

φ(z) dz, (.)

where m(·) is the Lebesgue measure and proved that a point process Nn of time-
normalized exceedances converges in distribution to N on (, +∞) which is summarized
as Lemma . below.

Lemma . Suppose {ξi, i ≥ } is a standard stationary normal sequence with covari-
ances satisfying (.). Then the point process Nn of time-normalized exceedances of the level
un(un = x/an + bn) converges in distribution to N on (, +∞), where N is the Cox process
defined by (.).

Proof The proof can be found on p. in Leadbetter et al. []. �

In Theorem . below, we extend Lemma . to the case of exceedances of several
levels and study a vector of point processes Nn = (N ()

n , N ()
n , . . . , N (r)

n ) which arises when
{ξi,  ≤ i ≤ n} exceeds the levels u()

n , u()
n , . . . , u(r)

n , where u(k)
n = xk/an + bn,  ≤ k ≤ r. For

clarity, we record the locations of u()
n , u()

n , . . . , u(r)
n along fixed horizontal lines L, L, . . . , Lr

in the plane. The structure of the process vector is the same as that of the exceedances
process on pp.- in Leadbetter et al. [] where the authors presented a detailed and
visualized introduction. According to Lemma ., each one-dimensional point process, on
a given Lk , i.e. N (k)

n converges to a Cox process in distribution under appropriate condi-
tions. Before presenting Theorem ., we first give two definitions, one of which concerns
a two-dimension Cox process, i.e. an in plane Cox process.

Definition . The locations of order statistics are the places where order statistics appear
in the index set, for example the location of the maxima of {ξi,  ≤ i ≤ n} varying among
, . . . , n.

Definition . Let {σj, j = , , . . .} be the points of a Cox process N (k) on Lr with (stochas-
tic) intensity exp(–xr – γ +

√
γ ζ ), where ζ is a standard normal random variable, i.e. N (k)

has the distribution characterized in (.). Let βj, j = , , . . . be independent and identically
distributed (i.i.d.) random variables, independent also of the Cox process on Lr , taking val-
ues , , . . . , r with conditional probabilities

P(βj = s|ζ = z) =

{
(τr–s+ – τr–s)/τr , for s = , , . . . , r – ,
τ/τr , for s = r,

i.e. P(βj ≥ s|ζ = z) = τr–s+/τr for s = , , . . . , r where τi = e–xi–γ +
√

γ z, i = , , . . . , r. For each
j, place points σj,σj, . . . ,σβj j on βj –  lines Lr–, Lr–, . . . , Lr–βj+, vertically above σj, we
can obtain an in plane Cox process N . Obviously the probability that a point appears Lr–
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above σj is P(βj ≥ |ζ = z) = τr–/τr and the deletions are conditionally independent, so
that N (r–) is obtained as a conditionally independent thinning of the Cox process N (r).

The structure of the in plane Cox process N is very similar to that of the Poisson pro-
cess on p. in Leadbetter et al. [], but the independent thinning is replaced with the
conditionally independent thinning here.

Theorem . Suppose {ξi, i ≥ } is a standardized normal sequence satisfying the condi-
tions in Lemma .. Let u(k)

n = xk/an + bn satisfy u()
n ≥ u()

n ≥ · · · ≥ u(r)
n ( ≤ k ≤ r) where an

and bn are defined in (.). Then the time-normalized point process Nn of exceedances of
levels u()

n , u()
n , . . . , u(r)

n by {ξi,  ≤ i ≤ n} converges in distribution to the above-mentioned in
plane Cox process.

Proof It is sufficient to show that when n goes to ∞:
(a) E(Nn(B)) → E(N(B)) for all sets B of the form (c, d] × (r, δ], r < δ,  < c < d, where

d ≤  and E(·) is the expectation,
(b) P(Nn(B) = ) → P(N(B) = ) for all sets B which are finite unions of disjoint sets of

this form.
Focus on (a) firstly. If B = (c, d] × (r, δ] intersects any of the lines, suppose these are
Ls, Ls+, . . . , Lt ( ≤ s ≤ t ≤ r). Then

Nn(B) =
t∑

k=s

N (k)
n

(
(c, d]

)
, N(B) =

t∑

k=s

N (k)((c, d]
)

and the number of points j/n in (c, d] is [nd] – [nc]. As in the proof of Theorem .. on
p. in Leadbetter et al. [], we have E(Nn(B)) = ([nd] – [nc])

∑t
k=s( – F(u(k)

n )), where

 – F
(
u(k)

n
)

=  – �
(
u(k)

n
)
,  ≤ j ≤ n.

Obviously

n
(
 – �

(
u(k)

n
))

= n
(
 – �(xk/an + bn)

) ∼ e–xk as n → ∞. (.)

Thus, we have E(Nn(B)) ∼ n(d – c)
∑t

k=s(
e–xk

n + o( 
n )) → (d – c)

∑t
k=s e–xk . Since

E
(
N(B)

)
=

t∑

k=s

E
(
(d – c) exp(–xk – γ +

√
γ ζ )

)

=
t∑

k=s

(d – c)e–xk –γ · e
(
√

γ )


=
t∑

k=s

(d – c)e–xk ,

(a) follows. In order to prove (b), we must show that P(Nn(B) = ) → P(N(B) = ), where
B =

⋃m
 Ck with disjoint Ck = (ck , dk] × (rk , sk]. It is convenient to discard any set Ck which
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does not intersect any of the lines L, L, . . . , Lr . Because there are intersections and differ-
ences of the intervals (ck , dk], we may write B in the form

⋃s
k=(ck , dk] × Ek , where (ck , dk]

are disjoint and Ek is a finite union of semi-closed intervals. It therefore follows that

{
Nn(B) = 

}
=

s⋂

k=

{
Nn(Fk) = 

}
, (.)

where Fk = (ck , dk] × Ek . Denote the lowest Lj intersecting Fk by Llk . By the above thinning
property, obviously

{
Nn(Fk) = 

}
=

{
N (lk )

n
(
(ck , dk]

)
= 

}
=

{
Mn(ck , dk) ≤ u(lk )

n
}

, (.)

where Mn(ck , dk) stands for the maximum of {ηi, i ≥ } with index k ([cn] < k ≤ [dn]). Con-
sider the probabilities of (.) and (.) and obtain

P
(
Nn(B) = 

)
= P

( s⋂

k=

{
Mn(ck , dk) ≤ u(lk )

n
}
)

. (.)

It is convenient to firstly prove the following result. Let {ξ̄i, i ≥ } be a standardized normal
sequence with the correlation coefficient ρ . Mn(c, d;ρ) stands for the maximum of {ξ̄k}
with index k ([cn] < k ≤ [dn]). It is well known that Mn(c, d;ρ), . . . , Mn(ck , dk ;ρ) have the
same distribution as ( – ρ)/Mn(c, d; ) + ρ/ζ , . . . , ( – ρ)/Mn(ck , dk ; ) + ρ/ζ , where
c = c < d < · · · < ck < dk = d and ζ is a standard normal variable; see Leadbetter et al. [].
Next we must estimate the bound of

∣
∣
∣
∣
∣
P

( s⋂

k=

{
Mn(ck , dk) ≤ u(lk )

n
}
)

– P

( s⋂

k=

{
Mn(ck , dk ,ρn) ≤ u(lk )

n
}
)∣

∣
∣
∣
∣
, (.)

where ρn = γ / log n.
Using Berman’s inequality, the bound of (.) does not exceed


π

∑
|rij – ρn|

(
 – ρ

n
)–/

exp

(

–

 ((u(i)

n ) + (u(j)
n ))

 + ωij

)

, (.)

where the sum is carried out over i < j and i, j ∈ ⋃s
k=([ckn], [dkn]], u(i)

n or u(j)
n stands for

xi/an + bn or xj/an + bn, and ωij = max{|rij|,ρn}. Furthermore, (.) does not exceed

C
∑

≤i<j≤n

|rij – ρn| exp

(

–

 ((xi/an + bn) + (xj/an + bn))

 + ωij

)

< Cn
n∑

k=

|rk – ρn| exp

(

–
((min≤i≤n xi)/an + bn)

 + ωk

)

→ .

Noting n( – �((min≤i≤n xi)/an + bn)) is bounded, the last ‘→’ attributes to Lemma .. So
it suffices to prove

P

( s⋂

k=

{
Mn(ck , dk ,ρn) ≤ u(lk )

n
}
)

→ P

( s⋂

k=

{
N(B) = 

}
)

.
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Noting the definition of Mn(ck , dk ,ρn), clearly, it follows that

P

( s⋂

k=

{
Mn(ck , dk ,ρn) ≤ u(lk )

n
}
)

= P

( s⋂

k=

{
( – ρn)


 Mn(ck , dk , ) + ρ




n ζ ≤ u(lk )
n

}
)

=
∫ +∞

–∞
P

( s⋂

k=

{
Mn(ck , dk , ) ≤ ( – ρn)– 


(
u(lk )

n – ρ



n z
)}

)

φ(z) dz,

where the proof of the last ‘=’ can be completed by using the argument on the first line from
the bottom on p. in Leadbetter et al. []. Since an = ( log n) 

 , bn = an + O(a–
n log log n),

and ρn = γ / log n, it is easy to show

( – ρn)– 

(
u(lk )

n – ρ



n z
)

=
xlk + γ –

√
γ z

an
+ bn + o

(
a–

n
)
,

see also the proof of Theorem .. on p. in Leadbetter et al. []. Furthermore, we may
obtain the following result:

P

( s⋂

k=

{
Mn(ck , dk , ) ≤ ( – ρn)– 


(
u(lk )

n – ρ



n z
)}

)

= P

( s⋂

k=

{
ζ̃[ck n]+ ≤ ( – ρn)– 


(
u(lk )

n – ρ



n z
)
, . . . ,

ζ̃[dk n] ≤ ( – ρn)– 

(
u(lk )

n – ρ



n z
)}

)

→
s∏

k=

exp
(
–(dk – ck)e–xlk –γ +

√
γ z),

where ζ̃k is a sequence of independent standard normal variables and we used the same
arguments as (.) for the last step. Using the dominated convergence theorem, it follows
that

∫ +∞

–∞
P

( s⋂

k=

{
Mn(ck , dk , ) ≤ ( – ρn)– 


(
u(lk )

n – ρ



n z
)}

)

φ(z) dz

→
∫ +∞

–∞

s∏

k=

exp
(
–(dk – ck)e–xlk –γ +

√
γ z)

φ(z) dz

= P
(
N(B) = 

)
.

The proof of (b) is completed. �

Corollary . Suppose {ξi, i ≥ } satisfies the conditions of Theorem .. Let B, . . . , Bs be
Borel subsets of the unit interval, whose boundaries have zero Lebesgue measure. Then for
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integers m(k)
j ,

P
(
N (k)

n (Bj) = m(k)
j , j = , , . . . , s; k = , , . . . , r

)

→ P
(
N (k)(Bj) = m(k)

j , j = , , . . . , s; k = , , . . . , r
)
.

Proof Combining Theorem . and the proof of Corollary .. in Leadbetter et al. [], we
can complete the proof. �

Theorem . Let the levels u(k)
n ( ≤ k ≤ r) satisfy

P
(

max
≤i≤n

ξi ≤ u(k)
n

)
→

∫ +∞

–∞
exp

(
–e–xk –γ +

√
γ z)φ(z) dz, n → ∞,

with u()
n ≥ u()

n ≥ · · · ≥ u(r)
n . Let S(k)

n be the number of exceedances of u(k)
n by {ξi,  ≤ i ≤ n}.

Then for k ≥ , k ≥ , . . . , kr ≥ ,

P
(
S()

n = k, S()
n = k + k, . . . , S(r)

n = k + k + · · · + kr
)

→ τ
k
 (τ – τ)k · · · (τr – τr–)kr

k!k! · · ·kr !

·
∫ +∞

–∞

(
exp(

√
γ z – γ )

)k+k+···+kr · exp
(
–e–xk –γ +

√
γ z)φ(z) dz. (.)

Proof By Corollary ., the left-hand side of (.) converges to

P
(
S() = k, S() = k + k, . . . , S(r) = k + k + · · · + kr

)
, (.)

where S(i) = N (i)([, ]). In our paper, the definition of the Cox process is similar to that
of the in plane Poisson process in Leadbetter et al. []. So we can refer to the proof of
Theorem .. in Leadbetter et al. [] and find that (.) equals

(k + k + · · · + kr)!
k!k! · · ·kr !

(
τ

τr

)k(τ – τ

τr

)k

· · ·
(

τr – τr–

τr

)kr

· P
(
N (r)((, ]

)
= k + k + · · · + kr

)
.

The proof is completed since

P
(
N (r)((, ]

)
= k + k + · · · + kr

)

=
∫ +∞

–∞
(exp(–xr – γ +

√
γ z))k+k+···+kr

(k + k + · · · + kr)!
· exp

(
–e–xr–γ +

√
γ z)φ(z) dz

=
(exp(–xr))k+k+···+kr

(k + k + · · · + kr)!

∫ +∞

–∞

(
exp(–γ +

√
γ z)

)k+k+···+kr

· exp
(
–e–xr–γ +

√
γ z)φ(z) dz. �

3 The joint distributions of some order statistics
This section contains two important results which concerns the joint distributions of order
statistics of {ξi, i ≥ }.
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Theorem . Suppose {ξi, i ≥ } is a standard normal sequence satisfying the conditions of
Theorem .. Let u(k)

n = xk/an +bn and M()
n , L()

n be the second largest maxima of ξ, ξ, . . . , ξn

and its location. Then for x > x, as n → ∞,

P
(
an

(
M()

n – bn
) ≤ x, an

(
M()

n – bn
) ≤ x

)

→
∫ +∞

–∞

(
exp(–x – γ +

√
γ z) – exp(–x – γ +

√
γ z) + 

)

· exp
(
–e–x–γ +

√
γ z)φ(z) dz (.)

and

P
(

an
(
M()

n – bn
) ≤ x,


n

L()
n ≤ t

)

→
∫ x

–∞
H(y, t) dy, (.)

where

H(y, t) =
∫ +∞

–∞
( – t) exp(–y – γ +

√
γ z) exp

(
–( – t)e–y–γ +

√
γ z)φ(z) dz

·
∫ +∞

–∞
t exp(–y – γ +

√
γ z) exp

(
–te–y–γ +

√
γ z)φ(z) dz

+
∫ +∞

–∞
exp

(
–( – t)e–y–γ +

√
γ z)φ(z) dz

·
∫ +∞

–∞
t exp(–y – γ + 

√
γ z) exp

(
–te–y–γ +

√
γ z)φ(z) dz.

Proof Clearly the left-hand side of (.) is equal to

P
(
an

(
M()

n – bn
) ≤ x, an

(
M()

n – bn
) ≤ x

)

= P
(
S()

n = 
)

+ P
(
S()

n = , S()
n = 

)
,

where S(i)
n is the number of exceedances of u(i)

n by η,η, . . . ,ηn. Using Theorem . in the
special case yields (.). In order to prove (.), write I and J for intervals {, , . . . , [nt]}
and {[nt] + , . . . , n}, respectively. M()(I), M()(I), M()(J), M()(J) stand for the maxima and
second largest maxima of ξ, ξ, . . . , ξn in the intervals I , J , respectively. Let Hn(x, x, x, x)
be the joint d.f. of the normalized r.v.

X()
n = an

(
M()

n (I) – bn
)
, X()

n = an
(
M()

n (I) – bn
)
,

Y ()
n = an

(
M()

n (J) – bn
)
, Y ()

n = an
(
M()

n (J) – bn
)
.

Generally let x > x and x > x, that is,

Hn(x, x, x, x)

= P
(
M()

n (I) ≤ u()
n , M()

n (I) ≤ u()
n , M()

n (J) ≤ u()
n , M()

n (J) ≤ u()
n

)

= P
(
N ()

n
(
I ′) = , N ()

n
(
I ′) ≤ , N ()

n
(
J ′) = , N ()

n
(
J ′) ≤ 

)
,
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where I ′ = (, t] and J ′ = (t, ]. By using Corollary . with B = I ′ and B = J ′, we obtain

lim
n→∞ Hn(x, x, x, x)

= lim
n→∞ P

(
N ()

n
(
I ′) = , N ()

n
(
I ′) ≤ 

) · P
(
N ()

n
(
J ′) = , N ()

n
(
J ′) ≤ 

)

=
∫ +∞

–∞

((
e–x – e–x

)
t exp(

√
γ – γ ) + 

)
exp

(
–te–x–γ +

√
γ z)φ(z) dz

·
∫ +∞

–∞

((
e–x – e–x

)
( – t) exp(

√
γ – γ ) + 

)
exp

(
–( – t)e–x–γ +

√
γ z)φ(z) dz

= Ht(x, x)H–t(x, x) = H(x, x, x, x).

Now the left-hand side of (.) is equal to

P
(
M()

n (I) ≤ u()
n , M()

n (I) ≥ M()
n (J)

)

+ P
(
M()

n (I) ≤ u()
n , M()

n (J) > M()
n (I) ≥ M()

n (J)
)
. (.)

Obviously H is absolutely continuous and the boundaries of sets in R such as {(w, w, w,
w) : w ≤ x, w > w} and {(w, w, w, w) : w ≤ x, w > w ≥ w} have zero Lebesgue
measure. Thus using Corollary ., it follows that (.) converges to

P(X ≤ x, X ≥ Y) + P(X ≤ x, Y > X ≥ Y).

According to the joint distribution H(x, x, x, x) of X, X, Y, and Y, a simple evaluation
completes the proof. �

Remark . We may obtain the joint asymptotic distribution of M()
n , M()

n , . . . , M(k)
n by us-

ing the same method as in Theorem ..
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