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Abstract
In this paper, we prove the O’Neil inequality for the k-linear convolution operator in
the Lorentz spaces. As an application, we obtain the necessary and sufficient
conditions on the parameters for the boundedness of the k-sublinear fractional
maximal operatorM�,α (f) and the k-linear fractional integral operator I�,α (f) with
rough kernels from the spaces Lp1r1 × Lp2r2 × · · · × Lpkrk to Lqs, where
n/(n + α) ≤ p < q <∞, 0 < r ≤ s <∞, p is the harmonic mean of p1,p2, . . . ,pk > 1 and r
is the harmonic mean of r1, r2, . . . , rk > 0.
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1 Introduction
Fractional maximal and fractional integral operators are two important operators in har-
monic analysis and partial differential equations. Multilinear maximal operator and mul-
tilinear fractional integral operator and related topics have been areas of research of many
mathematicians such as Coifman and Grafakos [], Grafakos [, ], Grafakos and Kalton
[], Kenig and Stein [], Ding and Lu [], Guliyev and Nazirova [, ], Ragusa [] and
others.

Let k ≥  be an integer and θj (j = , , . . . , k) be fixed, distinct and nonzero real numbers,
and let f = (f, . . . , fk). The k-linear convolution operator f ⊗ g is defined by

(f ⊗ g)(x) =
∫
Rn

f(x – θy) · · · fk(x – θky)g(y) dy.

Let � ∈ Ls(Sn–), s ≥  and � be homogeneous of degree zero on R
n, and let  < α < n,

where Sn– is the unit sphere in R
n. The k-sublinear fractional maximal function with

rough kernel is defined by

M�,α(f)(x) = sup
r>


rn–α

∫
|y|<r

∣∣�(y)
∣∣∣∣f(x – θy) . . . fk(x – θky)

∣∣dy,
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and the k-linear fractional integral with rough kernel is defined by

I�,α(f)(x) =
∫
Rn

�(y)
|y|n–α

f(x – θy) · · · fk(x – θky) dy.

This paper consists of four sections. In Section , some lemmas needed to facilitate
the proofs of our theorems and the O’Neil inequality for rearrangements of the k-linear
convolution operator f ⊗ g proved in [] are given. In Section , we prove the O’Neil
inequality for the k-linear convolution operator in the Lorentz spaces. Finally, in Sec-
tion , we obtain rearrangement estimates for the multilinear fractional maximal func-
tion and multilinear fractional integral with rough kernels. We prove the boundedness
of the multilinear fractional maximal operator M�,α and the multilinear fractional in-
tegral operator I�,α with rough kernels from the spaces Lpr × Lpr × · · · × Lpk rk to
Lqs, n/(n + α) ≤ p < q < ∞,  < r ≤ s ≤ ∞, where p and r are the harmonic means of
p, p, . . . , pk >  and r, r, . . . , rk > , respectively. We show that the conditions on the pa-
rameters ensuring the boundedness cannot be weakened.

2 Preliminaries
We need the following two generalized Hardy inequalities (see []) which are to be used
in the proof of Theorem ..

We denote by M(Rn) the set of all extended real-valued measurable functions on R
n.

When v is a non-negative measurable function on (,∞), we say that v is a weight. We
denote W (t) =

∫ t
 w(τ ) dτ , V (t) =

∫ t
 v(τ ) dτ and U(r, t) =

∫ r
t u(τ ) dτ . For simplicity we sup-

pose that  < V (t) < ∞,  < W (t) < ∞ for all t >  and V (∞) = ∞, W (∞) = ∞.

Lemma . [] Let  < r ≤ s < ∞ and let v, w be weights. Then the inequality

(∫ ∞



(
g(t)

)sw(t) dt
)/s

≤ C
(∫ ∞



(
g(t)

)rv(t) dt
)/r

(.)

holds for all non-negative and non-increasing g on (,∞) if and only if

A ≡ sup
t>

W /s(t)V –/r(t) < ∞,

and the best constant C in (.) equals A.

Lemma . [, ] Let r, s ∈ (,∞) and let v, w be weights.
(i) Let  < r ≤ s < ∞. Then the inequality

(∫ ∞



(

t

∫ t


g(τ ) dτ

)s

w(t) dt
)/s

≤ C
(∫ ∞



(
g(t)

)rv(t) dt
)/r

(.)

holds for all non-negative and non-increasing g on (,∞) if and only if A < ∞,

A ≡ sup
t>

(∫ ∞

t

w(τ )
τ s dτ

)/s(∫ t



v(τ )τ r′

V r′ (τ )
dτ

)/r′

< ∞,

and the best constant C in (.) satisfies C ≈ A + A.
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(ii) Let  < r ≤ , r ≤ s. Then (.) holds if and only if A < ∞,

A ≡ sup
t>

t
(∫ ∞

t

w(τ )
τ s dτ

)/s

V –/r(t) < ∞,

and the best constant C in (.) satisfies C ≈ A + A.

Lemma . [] Let r, s ∈ (,∞) and let u, v, w be weight functions.
(i) Let  < r ≤ s < ∞. Then the inequality

(∫ ∞



(∫ ∞

t
g(τ )u(τ ) dτ

)s

w(t) dt
)/s

≤ C
(∫ ∞



(
g(t)

)rv(t) dt
)/r

(.)

holds for all non-negative and non-increasing g on (,∞) if and only if

A ≡ sup
t>

(∫ t


Us(t, τ )w(τ ) dτ

)/s

V –/r(t) < ∞,

also

A ≡ sup
t>

W /s(t)
(∫ ∞

t
Ur′ (τ , t)V –r′ (τ )v(τ ) dτ

)/r′

< ∞,

and the best constant C in (.) satisfies C ≈ A + A.
(ii) Let  < r ≤ , r ≤ s. Then (.) holds if and only if A < ∞ and the best constant C in

(.) equals A.

Lemma . [] Let r ∈ (,∞) and let u, v, w be weight functions.
(i) Let  < r < ∞. Then the inequality

sup
t>

(∫ ∞

t
g(τ )u(τ ) dτ

)
w(t) ≤ C

(∫ ∞



(
g(t)

)rv(t) dt
)/r

(.)

holds for all non-negative and non-increasing g on (,∞) if and only if

A ≡ sup
t>

w(t)
(∫ ∞

t
Ur′ (τ , t)V –r′ (τ )v(τ ) dτ

)/r′

< ∞,

and the best constant C in (.) equals A.
(ii) Let  < r ≤  and r ≤ s. Then (.) holds if and only if

A ≡ sup
t>

sup
<τ<t

U(τ , t)w(τ )V –/r(t) < ∞,

and the best constant C in (.) equals A.

Lemma . [] Let r ∈ (,∞) and let u, v, w be weight functions.
(i) Let  < r < ∞. Then the inequality

sup
t>

(∫ t


k(t, τ )g(τ )u(τ ) dτ

)
w(t) ≤ C

(∫ ∞



(
g(t)

)rv(t) dt
)/r

(.)
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holds for all non-negative and non-increasing g on (,∞) if and only if

A ≡ sup
t>

w(t)
(∫ t



(∫ t

s
k(t, τ )V –(τ ) dτ

)r′

v(s) ds
)/r′

< ∞,

and the best constant C in (.) equals A.
(ii) Let  < r ≤ , r ≤ s. Then (.) holds if and only if

A ≡ sup
t>

sup
τ>

K
(
t, min(τ , t)

)
w(τ )V –/r(t) < ∞,

and the best constant C in (.) equals A.

Let g be a measurable function on R
n. The distribution function of g is defined by the

equality

λg(t) =
∣∣{x ∈ R

n :
∣∣g(x)

∣∣ > t
}∣∣, t ≥ .

We shall denote by L(Rn) the class of all measurable functions g on R
n, which are finite

almost everywhere and such that λg(t) < ∞ for all t >  (see []). If a function g belongs
to L(Rn), then its non-increasing rearrangement is defined to be the function g∗ which is
non-increasing on (,∞) equi-measurable with |g(x)|:

∣∣{t >  : g∗(t) > τ
}∣∣ = λg(τ )

for all τ ≥ . Moreover, by the Hardy-Littlewood theorem (see [], p.) and for every
f, f ∈ L(Rn),

∫
Rn

∣∣f(x)f(x)
∣∣dx ≤

∫ ∞


f ∗
 (t)f ∗

 (t) dt.

Equi-measurable rearrangements of functions play an important role in various fields of
mathematics. We give some of the main important properties (see, for example, []):

() if  < t < t + τ , then

(g + h)∗(t + τ ) ≤ g∗(t) + h∗(τ ),

() if  < p < ∞, then
∫
Rn

∣∣g(x)
∣∣p dx =

∫ ∞



(
g∗(t)

)p dt,

() for any t >  and for any set E,

sup
|E|=t

∫
E

∣∣g(x)
∣∣dx =

∫ t


g∗(τ ) dτ .

We denote by WLp(Rn) the weak Lp space of all measurable functions g with finite norm

‖f ‖WLp = sup
t>

t/pf ∗(t) < ∞,  ≤ p < ∞.

The function g∗∗ : (,∞) → [,∞] is defined as g∗∗(t) = 
t
∫ t

 f ∗(s) ds.



Guliyev et al. Journal of Inequalities and Applications  (2015) 2015:71 Page 5 of 15

Definition . If  < p, q < ∞, then the Lorentz space Lpq(Rn) is the set of all classes of
measurable functions f with the finite quasi-norm

‖f ‖pq ≡ ‖f ‖Lpq =
(∫ ∞



(
t/pf ∗(t)

)q dt
t

)/q

.

If  < p ≤ ∞, q = ∞, then Lp∞(Rn) = WLp(Rn).

If  ≤ q ≤ p or p = q = ∞, then the functional ‖f ‖pq is a norm (see []). If p = q = ∞,
then the space L∞∞(Rn) is denoted by L∞(Rn).

In the case  < p, q < ∞ we define

‖f ‖(pq) =
(∫ ∞



(
t/pf ∗∗(t)

)q dt
t

)/q

(with the usual modification if  < p ≤ ∞, q = ∞) which is a norm on Lpq(Rn) for  < p < ∞,
 ≤ q ≤ ∞ or p = q = ∞. If  < p ≤ ∞ and  ≤ q ≤ ∞, then

‖f ‖pq ≤ ‖f ‖(pq) ≤ p′‖f ‖pq

that is, the quasi-norms ‖f ‖pq and ‖f ‖(pq) are equivalent.

Lemma . [] Let f, f, . . . , fk ∈ L(Rn), k ≥ . Then, for all x ∈ R
n and nonzero real num-

bers θ, . . . , θk ,

∫
Rn

∣∣f(x – θy)f(x – θy) · · · fk(x – θky)
∣∣dy ≤ Cθ

∫ ∞


f ∗
 (t)f ∗

 (t) · · · f ∗
k (t) dt, (.)

where Cθ = |θ . . . θk|–n.

Let f = (f, f, . . . , fk) and define

f∗(t) = f ∗
 (t) · · · f ∗

k (t), f∗∗(t) =

t

∫ t


f ∗
 (τ ) · · · f ∗

k (τ ) dτ , t > .

In the following, we give the O’Neil inequality for rearrangements of the multilinear
convolution operator f ⊗ g proved in [].

Lemma . [] Let f, f, . . . , fk , g ∈ L(Rn). Then, for all  < t < ∞, the following inequality
holds:

(f ⊗ g)∗∗(t) ≤ Cθ

(
tf∗∗(t)g∗∗(t) +

∫ ∞

t
f∗(s)g∗(s) ds

)
. (.)

Corollary . [] Let f, f, . . . , fk ∈ L(Rn) and g ∈ WLm(Rn),  < m < ∞. Then

(f ⊗ g)∗(t) ≤ (f ⊗ g)∗∗(t)

≤ Cθ‖g‖WLm

(
m′t–/m

∫ t


f∗(τ ) dτ +

∫ ∞

t
τ–/mf∗(τ ) dτ

)
. (.)
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Lemma . [] Let f, f, . . . , fk , g ∈ L(Rn). Then for any t > 

(f ⊗ g)∗∗(t) ≤ Cθ

∫ ∞

t
f∗∗(t)g∗∗(t) dt. (.)

Corollary . Let f, f, . . . , fk ∈ L(Rn) and g ∈ WLm(Rn),  < m < ∞. Then

(f ⊗ g)∗(t) ≤ (f ⊗ g)∗∗(t) ≤ m′Cθ‖g‖WLm

∫ ∞

t
τ–/mf∗∗(τ ) dτ . (.)

3 O’Neil inequality for the multilinear convolutions in the Lorentz spaces
In this section, we prove the O’Neil inequality for the multilinear convolutions in the
Lorentz spaces. It is said that p is the harmonic mean of p, p, . . . , pk >  if /p = /p +/p +
· · · + /pk . If fj ∈ Lpjrj (Rn), j = , , . . . , k, then we say that f ∈ Lpr × Lpr × · · · × Lpk rk (Rn).

Theorem . (O’Neil inequality for k-linear convolution in the Lorentz spaces) Suppose
that  < m < ∞, g ∈ WLm(Rn), p and r are the harmonic means of p, p, . . . , pk >  and
r, r, . . . , rk > , respectively. If  < p < m′,  < r ≤ s < ∞ or m′/( + m′) ≤ p ≤ ,  < r ≤ , r ≤
s < ∞ or p = m′,  < r < ∞, s = ∞ or p = m′,  < r ≤ , s = ∞ f ∈ Lpr ×Lpr ×· · ·×Lpk rk (Rn)
and /p – /q = /m′, then f ⊗ g ∈ Lqs(Rn) and

‖f ⊗ g‖qs � Cθ K(p, q, r, s, m)
k∏

j=

‖fj‖pjrj‖g‖WLm ,

where K(p, q, r, s, m) = κ and

κ ≈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

m′A + m′A + A + A, if  < p < m′,  < r ≤ s < ∞,
m′A + m′A + A, if m′

+m′ ≤ p ≤ ,  < r ≤ , r ≤ s < ∞
m′A + m′A, if p = m′,  < r < ∞, s = ∞,
m′A + m′A, if p = m′,  < r ≤ , s = ∞

and

A =
(

m′q
s(m′ + q)

)/s( r
p

)/r

, A =
r
p

(
mq

s(q – m)

)/s(p′

r′

)/r′

,

A =
(

r
p

)/r( mq
s(q – m)

)/s

, A =
(
m′)+/s

(
r
p

)/r(
B
(
s + , sm′/q

))/s,

A =
(
m′)+/r′ r

p

(
q
s

)/s(
B
(
r′ + , r′m′/p – r′))/r′ , A = m′

(
r
p

)/r

,

A =
(
m′)+/r′(B

(
r′ + , r′m′/p – r′))/r′ ,

A =
(

r
p

)/r( p
p – r

)+/r′(
B
(

r′ + ,
r

p – r

))/r′

, A =
(

r
p

)/r

.

Here B(s, r) =
∫ 

 ( – τ )s–τ r– dτ is the beta function.

Proof Let  < m < ∞, m′/( + m′) ≤ p < m′, /p – /q = /m′, p be the harmonic mean
of p, p, . . . , pk > , r be the harmonic mean of r, r, . . . , rk > ,  < r ≤ s ≤ ∞ and f ∈
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Lpr × Lpr × · · · × Lpk rk (Rn). By using inequality (.), we have

‖f ⊗ g‖qs =
∥∥(f ⊗ g)∗(t)t/q–/s∥∥

Ls(,∞)

≤ Cθ

(∫ ∞



(
m′t–/m

∫ t


f∗(τ ) dτ +

∫ ∞

t
τ–/mf∗(τ ) dτ

)s

ts/q– dt
)/s

≤ Cθ m′
(∫ ∞



(∫ t


f∗(τ ) dτ

)s

t–s/m+s/q– dt
)/s

+ Cθ

(∫ ∞



(∫ ∞

t
τ–/mf∗(τ ) dτ

)s

ts/q– dt
)/s

.

Case I. Suppose that  < p < m′ (equivalently m < q < ∞),  < r ≤ s < ∞. From Lemma .,
for the validity of the inequality for  < r ≤ s < ∞

(∫ ∞



(

t

∫ t


f∗(τ ) dτ

)s

ts–s/m+s/q– dt
)/s

≤ C

(∫ ∞



(
t/pf∗(t)

)r dt
t

)/r

, (.)

the necessary and sufficient condition is

A = sup
t>

W /s(t)V –/r(t) =
(

m′q
s(m′ + q)

)/s( r
p

)/r

sup
t>

t/m′+/q–/p < ∞

⇔ /p – /q = /m′ and A =
(

m′q
s(m′ + q)

)/s( r
p

)/r

and

A = sup
t>

(∫ ∞

t

w(τ )
τ s dτ

)/s(∫ t



v(τ )τ r′

V p′ (τ )
dτ

)/r′

=
r
p

sup
t>

(∫ ∞

t
τ–s/m+s/q– dτ

)/s(∫ t


τ r/p–+r′–rr′/p dτ

)/r′

=
r
p

(
mq

s(q – m)

)/s(p′

r′

)/r′

sup
t>

t–/m+/q–/p′
< ∞

⇔ /p – /q = /m′ and A =
r
p

(
mq

s(q – m)

)/s(p′

r′

)/r′

.

Note that the best constant C in (.) satisfies C ≈ A + A. Furthermore, from
Lemma . for the validity of the inequality for  < r ≤ s < ∞

(∫ ∞



(∫ ∞

t
τ–/mf∗(τ ) dτ

)s

ts/q– dt
)/s

≤ C

(∫ ∞



(
t/pf∗(t)

)r dt
t

)/r

, (.)

the necessary and sufficient condition is

A = m′ sup
t>

(∫ t



(
t/m′

– τ /m′)s
τ s/q– dτ

)/s(∫ t


τ r/p– dτ

)–/r

= m′
(

r
p

)/r

sup
t>

(∫ t



(
t/m′ – τ /m′)s

τ s/q– dτ

)/s

t–/p
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=
(
m′)+/s

(
r
p

)/r(
B
(
s + , sm′/q

))/s
sup
t>

t–/m′+/q–/p < ∞

⇔ /p – /q = /m′ and A =
(
m′)+/s

(
r
p

)/r(
B
(
s + , sm′/q

))/s

and

A = sup
t>

W /s(t)
(∫ ∞

t
Ur′ (τ , t)V –r′ (τ )v(τ ) dτ

)/r′

=
m′r

p

(
q
s

)/s

sup
t>

t/q
(∫ ∞

t

(
τ /m′

– t/m′)r′
τ–rr′/p+r/p– dτ

)/r′

=
m′r

p

(
q
s

)/s(∫ ∞



(
λ/m′

– 
)r′

λ–r′/p– dλ

)/r′

sup
t>

t/q+/m′–/p

=
(
m′)+/r′ r

p

(
q
s

)/s(∫ 



(
 – λ/m′)r′

λ–r′/m′+r′/p– dλ

)/r′

sup
t>

t/q+/m′–/p

=
(
m′)+/r′ r

p

(
q
s

)/s(∫ 


( – τ )r′τ–r′+r′m′/p– dτ

)/r′

sup
t>

t/q+/m′–/p

=
(
m′)+/r′ r

p

(
q
s

)/s(
B
(
r′ + , r′m′/p – r′))/r′

sup
t>

t/q+/m′–/p < ∞

⇔ /p – /q = /m′ and A =
(
m′)+/r′ r

p

(
q
s

)/s(
B
(
r′ + , r′m′/p – r′))/r′ .

Note that the best constant C in (.) satisfies C ≈A + A.
Case II. Let m′/(+m′) ≤ p ≤ ,  < r ≤  and r ≤ s < ∞. From Lemma ., for the validity

of inequality (.), the necessary and sufficient condition is A < ∞ and

A = sup
t>

t
(∫ ∞

t

w(τ )
τ s dτ

)/s

V –/r(t)

=
(

r
p

)/r

sup
t>

t
(∫ ∞

t
τ–s/m+s/q– dτ

)/s

t–/p

=
(

r
p

)/r( mq
s(q – m)

)/s

sup
t>

t–/m+/q–/p

⇔ /p – /q = /m′ and A =
(

r
p

)/r( mq
s(q – m)

)/s

.

Note that the best constant C in (.) satisfies C ≈ A + A. From Lemma ., for the
validity of inequality (.), the necessary and sufficient condition isA < ∞. Consequently,
using inequalities (.), (.) and applying the Hölder inequality, we obtain

‖f ⊗ g‖qs ≤ Cθ

(
m′C + C

)(∫ ∞



(
t/pf∗(t)

)r dt
t

)/r

‖g‖WLm

= Cθ K(p, q, r, s, m)

(∫ ∞



k∏
j=

(
f ∗
j (t)t/pj

)r dt
t

)/r

‖g‖WLm
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≤ Cθ K(p, q, r, s, m)
k∏

j=

(∫ ∞



(
f ∗
j (t)t/pj

)rj dt
t

)/rj

‖g‖WLm

= Cθ K(p, q, r, s, m)
k∏

j=

‖fj‖pjrj‖g‖WLm .

Case III. Let p = m′, q = s = ∞,  < r < ∞ or p = m′, q = s = ∞,  < r ≤  and f ∈ Lpr ×
Lpr × · · · × Lpk rk (Rn). By using inequality (.), we have

‖f ⊗ g‖∞ = sup
t>

(f ⊗ g)∗(t)

≤ Cθ sup
t>

(
m′t–/m

∫ t


f∗(τ ) dτ +

∫ ∞

t
τ–/mf∗(τ ) dτ

)
‖g‖WLm

≤ Cθ m′ sup
t>

(
t–/m

∫ t


f∗(τ ) dτ

)
+ sup

t>

(∫ ∞

t
τ–/mf∗(τ ) dτ

)
‖g‖WLm

≤ Cθ m′
(∫ ∞



(
t/pf∗(t)

)r dt
t

)
‖g‖WLm .

From Lemma ., for the validity of the inequality for  < r < ∞

sup
t>

(
t–/m

∫ t


f∗(τ ) dτ

)
≤ C

(∫ ∞



(
t/pf∗(t)

)r dt
t

)/r

, (.)

the necessary and sufficient condition is

A =
(

r
p

)/r

sup
t>

t–/m
(∫ t



(∫ t

s
τ–r/p dτ

)r′

sr/p– ds
)/r′

=
(

r
p

)/r r
p – r

sup
t>

t–/m
(∫ t



(
t–r/p – τ –r/p)r′

τ r/p– dτ

)/r′

=
(

r
p

)/r( p
p – r

)+/r′(∫ 



(
 – τ –r/p)s

τ r/p– dτ

)/r′

sup
t>

t–/m–/p+

=
(

r
p

)/r( p
p – r

)+/r′(
B
(

r′ + ,
r

p – r

))/r′

sup
t>

t–/m–/p+ < ∞

⇔ p = m′ and A =
(

r
p

)/r( p
p – r

)+/r′(
B
(

r′ + ,
r

p – r

))/r′

.

From Lemma ., for the validity of the inequality for  < r ≤ 

sup
t>

(
t–/m

∫ t


f∗(τ ) dτ

)
≤ C

(∫ ∞



(
t/pf∗(t)

)r dt
t

)/r

, (.)

the necessary and sufficient condition is

A = sup
t>

sup
τ>

K
(
t, min(τ , t)

)
w(τ )V –/r(t) =

(
r
p

)/r

sup
t>

t/m′–/p < ∞

⇔ p = m′ and A =
(

r
p

)/r

.
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From Lemma ., for the validity of the inequality for  < r < ∞

sup
t>

(∫ ∞

t
τ–/mf∗(τ ) dτ

)
≤ C

(∫ ∞



(
t/pf∗(t)

)r dt
t

)/r

, (.)

the necessary and sufficient condition is A

A = sup
t>

(∫ ∞

t
Ur′ (τ , t)V –r′ (τ )v(τ ) dτ

)/r′

=
(∫ ∞

t

(
τ /m′ – t/m′)r′

τ–rr′/p+r/p– dτ

)/r′

=
(∫ ∞



(
λ/m′

– 
)r′

λ–r′/p– dλ

)/r′

sup
t>

t/m′–/p

=
m′r

p

(∫ 



(
 – λ/m′)r′

λ–r′/m′+r′/p– dλ

)/r′

sup
t>

t/m′–/p

=
m′r

p

(∫ 


( – τ )r′τ–r′+r′m′/p– dτ

)/r′

sup
t>

t/m′–/p

=
m′r

p
(
B
(
r′ + , r′m′/p – r′))/r′

sup
t>

t/m′–/p < ∞

⇔ p = m′ and A =
m′r

p
(
B
(
r′ + , r′m′/p – r′))/r′ .

Furthermore, from Lemma ., for the validity of the inequality for  < r ≤ 

sup
t>

(∫ ∞

t
τ–/mf∗(τ ) dτ

)
≤ C

(∫ ∞



(
t/pf∗(t)

)r dt
t

)/r

, (.)

the necessary and sufficient condition is

A = sup
t>

sup
<τ<t

U(τ , t)w(τ )V –/r(t)

= m′ sup
t>

sup
<τ<t

(
t/m′

– τ /m′)(∫ t


τ r/p– dτ

)–/r

= m′
(

r
p

)/r

sup
t>

sup
<τ<t

(
t/m′

– τ /m′)
t–/p

= m′
(

r
p

)/r

sup
t>

t/m′–/p < ∞

⇔ p = m′ and A = m′
(

r
p

)/r

.

Thus the proof of Theorem . is completed. �

Corollary . [] Suppose that  < m < ∞, g ∈ WLm(Rn) and p is the harmonic mean
of p, p, . . . , pk > . If m′/( + m′) ≤ p < m′, f ∈ Lp × Lp × · · · × Lpk (Rn) and q satisfy
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/p – /q = /m′, then f ⊗ g ∈ Lq(Rn) and

‖f ⊗ g‖q ≤ Cθ K(p, q, m)
k∏

j=

‖fj‖pj‖g‖WLm ,

where in the case  < p = r < m′, q = s

K(p, q, m) = m′
(

m′

m′ + q

)/q

+ m′
(

m
q – m

)/q

+
(
m′)+/q(B

(
q + , m′))/q +

(
m′)+/p′(

B
(
p′ + , p′m′/p – p′))/p′

,

and in the case m′/( + m′) ≤ p = r ≤ , m < q = s

K(p, q, m) = m′
(

m′

m′ + q

)/q

+
(
m′ + 

)( m
q – m

)/q

+
(
m′)+/q(B

(
q + , m′))/q.

4 The Lp1r1 × Lp2r2 × ···× Lpk rk boundedness of rough multilinear fractional
integral operators

In this section, we prove the Sobolev type theorem for the rough multilinear fractional
integral I�,αf .

Lemma . Let  < α < n, � be homogeneous of degree zero on R
n, � ∈ Ln/(n–α)(Sn–) and

g(x) =
�(x)
|x|n–α

.

Then g ∈ WLn/(n–α)(Rn) and

‖g‖WLn/(n–α) = nα/n–‖�‖Ln/(n–α) , (.)

where

‖�‖Ln/(n–α) =
(∫

Sn–

∣∣�(
x′)∣∣n/(n–α) dσ

(
x′))(n–α)/n

.

Proof Note that

g∗(t) = (nt)α/n–‖�‖Ln/(n–α) , g∗∗(t) =
n
α

g∗(t),

therefore g ∈ WLn/(n–α)(Rn) and equality (.) is valid. �

Lemma . Suppose that  < α < n, � ∈ Ls(Sn–) and s ≥ . Then

M�,αf(x) ≤ I|�|,α
(|f|)(x), (.)

where |f| = (|f|, . . . , |fk|).
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Proof Indeed, for all r > , we have

I|�|,α
(|f |)(x) ≥

∫
E(,r)

|�(y)|
|y|n–α

∣∣f(x – θy) . . . fk(x – θky)
∣∣dy

≥ 
rn–α

∫
E(,r)

∣∣�(y)
∣∣∣∣f(x – θy) . . . fk(x – θky)

∣∣dy,

where E(, r) is the open ball centered at the origin of radius r. Taking supremum over all
r > , we get (.). �

By Lemmas . and ., we obtain a pointwise rearrangement estimate of the rough
k-sublinear fractional maximal integral M�,αf and k-linear fractional integral I�,αf .

Lemma . [] Suppose that � is homogeneous of degree zero onR
n and � ∈ Ln/(n–α)(Sn–),

 < α < n. Then the following inequalities hold:

(I�,αf)∗(t) ≤ (I�,αf)∗∗(t)

≤ Cθ nα/n–‖�‖Ln/(n–α)

(
n
α

tα/n–
∫ t


f∗(τ ) dτ +

∫ ∞

t
τα/n–f∗(τ ) dτ

)
,

(M�,αf)∗(t) ≤ (M�,αf)∗∗(t)

≤ Cθ nα/n–‖�‖Ln/(n–α)

(
n
α

tα/n–
∫ t


f∗(τ ) dτ +

∫ ∞

t
τα/n–f∗(τ ) dτ

)
.

From Theorem . and Lemma ., we get the following.

Theorem . Let � be homogeneous of degree zero on R
n, � ∈ Ln/(n–α)(Sn–),  < α < n,

p and r be the harmonic means of p, p, . . . , pk >  and r, r, . . . , rk > , respectively, and
 < r ≤ s ≤ ∞, q satisfy /q = /p – α/n. If  < p < n/α,  < r ≤ s < ∞ or n/(n + α) ≤ p ≤ ,
 < r ≤ s < ∞ or p = n/α, r = , then I�,α is a bounded operator from Lpr × Lpr × · · · ×
Lpk rk (Rn) to Lqs(Rn) and

‖I�,αf‖qs ≤ Cθ nα/n–K
(
p, q, r, s, n/(n – α)

)‖�‖Ln/(n–α)

k∏
j=

‖fj‖pjrj .

Corollary . [] Let � be homogeneous of degree zero on R
n, � ∈ Ln/(n–α)(Sn–),  < α < n,

p be the harmonic mean of p, p, . . . , pk > , and q satisfy /q = /p – α/n. Then I�,α is a
bounded operator from Lp × Lp × · · · × Lpk (Rn) to Lq(Rn) for n/(n + α) ≤ p < n/α (equiv-
alently  ≤ q < ∞) and

‖I�,αf‖q ≤ Cθ nα/n–K
(
p, q, n/(n – α)

)‖�‖Ln/(n–α)

k∏
j=

‖fj‖pj .

Corollary . [] Let � be homogeneous of degree zero on R
n, � ∈ Ln/(n–α)(Sn–),  < α < n,

p be the harmonic mean of p, p, . . . , pk > , and q satisfy /q = /p – α/n. Then M�,α is a
bounded operator from Lp × Lp × · · · × Lpk (Rn) to Lq(Rn) for n/(n + α) ≤ p ≤ n/α (equiv-
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alently  ≤ q ≤ ∞) and

‖M�,αf‖q ≤ Cθ nα/n–K
(
p, q, n/(n – α)

)‖�‖Ln/(n–α)

k∏
j=

‖fj‖pj ,

when n/(n + α) ≤ p < n/α, and

‖M�,αf‖∞ ≤ Cθ‖�‖Ln/(n–α)

k∏
j=

‖fj‖pj , p = n/α.

Finally, in the following theorem we obtain the necessary and sufficient conditions for
the rough k-linear fractional integral operator I�,α to be bounded from the Lorentz spaces
Lpr × Lpr × · · · × Lpk rk (Rn) to Lqs(Rn), n/(n + α) ≤ p < q < ∞,  < r ≤ s < ∞.

Theorem . Let  < α < n, � be homogeneous of degree zero on R
n, � ∈ Ln/(n–α)(Sn–),

p and r be the harmonic means of p, p, . . . , pk >  and r, r, . . . , rk > , respectively. If  <
p < n/α,  < r ≤ s < ∞ or n/(n +α) ≤ p ≤ ,  < r ≤ s < ∞, then the condition /p – /q = α/n
is necessary and sufficient for the boundedness of I�,α from Lpr × Lpr × · · · × Lpk rk (Rn)
to Lqs(Rn).

Proof Sufficiency of the theorem follows from Theorem ..
Necessity. Suppose that the operator I�,α is bounded from Lpr × Lpr × · · · × Lpk rk (Rn)

to Lqs(Rn), and n/(n + α) ≤ p < n/α (equivalently  ≤ q < ∞). Define ft(x) =: f(tx) for t > 
and ‖f‖pr =

∏k
j= ‖fj‖pjrj . Then it can be easily shown that

‖ft‖pr =
k∏

j=

∥∥(fj)t
∥∥

pjrj
=

k∏
j=

t–n/pj‖fj‖pjrj = t–n/p‖f‖pr

and

I�,αft(x) = t–αI�,αf(tx), ‖I�,αft‖qs = t–α–n/q‖I�,αf‖qs.

Since the operator I�,α is bounded from Lpr × Lpr × · · · × Lpk rk (Rn) to Lqs(Rn), we have

‖I�,αf‖qs ≤ C‖f‖pr ,

where C is independent of f . Then we get

‖I�,αf‖qs = tα+n/q‖I�,αft‖qs ≤ Ctα+n/q‖ft‖pr = Ctα+n/q–n/p‖f ‖pr .

If /p < /q + α/n, then for all f ∈ Lpr × Lpr × · · · × Lpk rk (Rn) we have ‖I�,αf‖Lq,s =  as
t → . If /p > /q +α/n, then for all f ∈ Lpr ×Lpr ×· · ·×Lpk rk (Rn) we have ‖I�,αf‖qs = 
as t → ∞. Therefore we get /p = /q + α/n. �

Corollary . [] Let  < α < n, p be the harmonic mean of p, p, . . . , pk > , � be ho-
mogeneous of degree zero on R

n and � ∈ Ln/(n–α)(Sn–). If n/(n + α) ≤ p < n/α, then the
condition /p – /q = α/n is necessary and sufficient for the boundedness of I�,α from
Lp × Lp × · · · × Lpk (Rn) to Lq(Rn).
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Remark . Note that the sufficiency part of Corollary . was proved in [] and in the
case � ≡  in [], and in the case � ∈ Ls(Sn–), s > n/(n – α) in [].

Theorem . Let  < α < n, � be homogeneous of degree zero on R
n, � ∈ Ln/(n–α)(Sn–),

p and r be the harmonic means of p, p, . . . , pk >  and r, r, . . . , rk > , respectively. If  <
p < n/α,  < r ≤ s < ∞ or n/(n +α) ≤ p ≤ ,  < r ≤ s < ∞, then the condition /p – /q = α/n
is necessary and sufficient for the boundedness of M�,α from Lpr × Lpr × · · · × Lpk rk (Rn)
to Lqs(Rn).

Proof Sufficiency part of the theorem follows from Theorem . and Lemma ..
Necessity. Suppose that the operator M�,α is bounded from Lpr ×Lpr ×· · ·×Lpk rk (Rn)

to Lqs(Rn), and n/(n + α) ≤ p < n/α,  < r ≤ s < ∞. Then we have

M�,αft(x) = t–αM�,αf (tx)

and

‖M�,αft‖qs = t–α– n
q ‖M�,αf ‖qs.

By the same argument in Theorem ., we obtain 
p – 

q = α
n . �

Corollary . [] Let  < α < n, p be the harmonic mean of p, p, . . . , pk > , � be ho-
mogeneous of degree zero on R

n and � ∈ Ln/(n–α)(Sn–). If n/(n + α) ≤ p ≤ n/α, then the
condition /p – /q = α/n is necessary and sufficient for the boundedness of M�,α from
Lp × Lp × · · · × Lpk (Rn) to Lq(Rn).
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