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Abstract
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1 Introduction and main results
Let Rn+

+ = R
n × (,∞) and ϕt(x) = t–nϕ(x/t). The classical square function (Lusin area

integral) is a familiar object. If u(x, t) = Pt ∗ f (x) is the Poisson integral of f , where Pt(x) =
cnt

(t+|x|)(n+)/ denotes the Poisson kernel inR
n+
+ , then we define the classical square function

(Lusin area integral) S(f ) by (see [] and [])

S(f )(x) =
(∫∫

�(x)

∣∣∇u(y, t)
∣∣t–n dy dt

)/

,

where �(x) denotes the usual cone of aperture one

�(x) =
{

(y, t) ∈ R
n+
+ : |x – y| < t

}

and

∣∣∇u(y, t)
∣∣ =

∣∣∣∣∂u
∂t

∣∣∣∣


+
n∑

j=

∣∣∣∣ ∂u
∂yj

∣∣∣∣


.

We can similarly define a cone of aperture γ for any γ > 

�γ (x) =
{

(y, t) ∈R
n+
+ : |x – y| < γ t

}
,

and corresponding square function

Sγ (f )(x) =
(∫∫

�γ (x)

∣∣∇u(y, t)
∣∣t–n dy dt

)/

.
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The Littlewood-Paley g-function (could be viewed as a ‘zero-aperture’ version of S(f ))
and the g∗

λ-function (could be viewed as an ‘infinite aperture’ version of S(f )) are defined
respectively by (see, for example, [] and [])

g(f )(x) =
(∫ ∞



∣∣∇u(x, t)
∣∣t dt

)/

and

g∗
λ(f )(x) =

(∫∫
R

n+
+

(
t

t + |x – y|
)λn∣∣∇u(y, t)

∣∣t–n dy dt
)/

, λ > .

The modern (real-variable) variant of Sγ (f ) can be defined in the following way (here
we drop the subscript γ if γ = ). Let ψ ∈ C∞(Rn) be real, radial, have support contained
in {x : |x| ≤ }, and

∫
Rn ψ(x) dx = . The continuous square function Sψ ,γ (f ) is defined by

(see, for instance, [] and [])

Sψ ,γ (f )(x) =
(∫∫

�γ (x)

∣∣f ∗ ψt(y)
∣∣ dy dt

tn+

)/

.

In , Wilson [] introduced a new square function called intrinsic square function
which is universal in a sense (see also []). This function is independent of any particular
kernel ψ , and it dominates pointwise all the above-defined square functions. On the other
hand, it is not essentially larger than any particular Sψ ,γ (f ). For  < β ≤ , let Cβ be the
family of functions ϕ defined onR

n such that ϕ has support containing in {x ∈R
n : |x| ≤ },∫

Rn ϕ(x) dx = , and for all x, x′ ∈R
n,

∣∣ϕ(x) – ϕ
(
x′)∣∣ ≤ ∣∣x – x′∣∣β .

For (y, t) ∈R
n+
+ and f ∈ L

loc(Rn), we set

Aβ (f )(y, t) = sup
ϕ∈Cβ

∣∣f ∗ ϕt(y)
∣∣ = sup

ϕ∈Cβ

∣∣∣∣
∫
Rn

ϕt(y – z)f (z) dz
∣∣∣∣. (.)

Then we define the intrinsic square function of f (of order β) by the formula

Sβ (f )(x) =
(∫∫

�(x)

(
Aβ (f )(y, t)

) dy dt
tn+

)/

. (.)

We can also define varying-aperture versions of Sβ (f ) by the formula

Sβ ,γ (f )(x) =
(∫∫

�γ (x)

(
Aβ (f )(y, t)

) dy dt
tn+

)/

. (.)

The intrinsic Littlewood-Paley G-function and the intrinsic G∗
λ-function will be given re-

spectively by

Gβ (f )(x) =
(∫ ∞



(
Aβ (f )(x, t)

) dt
t

)/

(.)
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and

G∗
λ,β (f )(x) =

(∫∫
R

n+
+

(
t

t + |x – y|
)λn(

Aβ (f )(y, t)
) dy dt

tn+

)/

, λ > . (.)

In [], Wilson showed the following weighted Lp boundedness of the intrinsic square
functions.

Theorem A Let  < β ≤ ,  < p < ∞ and w ∈ Ap (Muckenhoupt weight class). Then there
exists a constant C >  independent of f such that

∥∥Sβ (f )
∥∥

Lp
w

≤ C‖f ‖Lp
w

.

Moreover, in [], Lerner obtained sharp Lp
w norm inequalities for the intrinsic square

functions in terms of the Ap characteristic constant of w for all  < p < ∞. For further dis-
cussions about the boundedness of intrinsic square functions on various function spaces,
we refer the readers to [–].

The aim of this paper is to discuss the boundedness properties of intrinsic square func-
tions on the homogeneous (non-homogeneous) weighted Herz-type Hardy spaces (see
Section  below for the definitions). Moreover, at the endpoint case, we will obtain their
weak type estimates. Our main results are stated as follows.

Theorem . Let w, w ∈ A,  < p < ∞,  < q < ∞,  < β ≤  and n( – /q) ≤ α <
n( – /q) + β . Then Sβ is bounded from HK̇α,p

q (w, w) (HKα,p
q (w, w)) into K̇α,p

q (w, w)
(Kα,p

q (w, w)).

Theorem . Let w, w ∈ A,  < p ≤ ,  < q < ∞,  < β <  and α = n( – /q) + β . Then
Sβ is bounded from HK̇α,p

q (w, w) (HKα,p
q (w, w)) into W K̇α,p

q (w, w) (WKα,p
q (w, w)).

Theorem . Let w, w ∈ A,  < p < ∞,  < q < ∞,  < β ≤  and n( – /q) ≤ α <
n( – /q) + β . Suppose that λ >  + (β)/n, then G∗

λ,β is bounded from HK̇α,p
q (w, w)

(HKα,p
q (w, w)) into K̇α,p

q (w, w) (Kα,p
q (w, w)).

Theorem . Let w, w ∈ A,  < p ≤ ,  < q < ∞,  < β <  and α = n( – /q) + β .
Suppose that λ >  + (β)/n, then G∗

λ,β is bounded from HK̇α,p
q (w, w) (HKα,p

q (w, w)) into
W K̇α,p

q (w, w) (WKα,p
q (w, w)).

In [], Wilson also showed that for any  < β ≤ , the functions Sβ (f )(x) and Gβ (f )(x) are
pointwise comparable, with comparability constants depending only on β and n. Thus, as
a direct consequence of Theorems . and ., we obtain the following.

Corollary . Let w, w ∈ A,  < p < ∞,  < q < ∞,  < β ≤  and n( – /q) ≤ α <
n( – /q) + β . Then Gβ is bounded from HK̇α,p

q (w, w) (HKα,p
q (w, w)) into K̇α,p

q (w, w)
(Kα,p

q (w, w)).

Corollary . Let w, w ∈ A,  < p ≤ ,  < q < ∞,  < β <  and α = n( – /q) + β . Then
Gβ is bounded from HK̇α,p

q (w, w) (HKα,p
q (w, w)) into W K̇α,p

q (w, w) (WKα,p
q (w, w)).
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2 Notations and preliminaries
2.1 Ap weights
Let us first recall some standard definitions and notations. The classical Ap weight theory
was first introduced by Muckenhoupt in the study of weighted Lp boundedness of Hardy-
Littlewood maximal functions in []. A weight w is a locally integrable function on R

n

which takes values in (,∞) almost everywhere. B = B(x, R) denotes the ball with the
center x and radius R. Given a ball B and λ > , λB stands for the ball concentric with
B whose radius is λ times as long. For a given weight function w and a measurable set E,
we also denote the Lebesgue measure of E by |E| and the weighted measure of E by w(E),
where w(E) =

∫
E w(x) dx. We say that w is in the Muckenhoupt class Ap with  < p < ∞ if

(


|B|
∫

B
w(x) dx

)(


|B|
∫

B
w(x)–/(p–) dx

)p–

≤ C for every ball B ⊆R
n,

where C is a positive constant which is independent of the choice of B. For the case p = ,
w ∈ A, if


|B|

∫
B

w(x) dx ≤ C · ess inf
x∈B

w(x) for every ball B ⊆R
n.

The smallest value of C such that the above inequality holds is called the A characteristic
constant of w and is denoted by [w]A . A weight function w is said to belong to the reverse
Hölder class RHr if there exist two constants r >  and C >  such that the following reverse
Hölder inequality holds:

(


|B|
∫

B
w(x)r dx

)/r

≤ C
(


|B|

∫
B

w(x) dx
)

for every ball B ⊆R
n.

It is well known that if w ∈ Ap with  < p < ∞, then w ∈ Ar for all r > p, and w ∈ Aq

for some  < q < p. Moreover, if w ∈ Ap with  ≤ p < ∞, then there exists r >  such that
w ∈ RHr .

We state the following results that we will use frequently in the sequel.

Lemma . ([]) Let w ∈ A. Then, for any ball B, there exists an absolute constant C > 
such that

w(B) ≤ Cw(B).

More precisely, for any λ > , we have

w(λB) ≤ [w]A · λnw(B).

Lemma . ([, ]) Let w ∈ A ∩ RHr , r > . Then there exist two constants C, C >  such
that

C

( |E|
|B|

)
≤ w(E)

w(B)
≤ C

( |E|
|B|

)(r–)/r

for any measurable subset E of a ball B.
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2.2 Weighted Herz-type Hardy spaces
Next we shall give the definitions of the weighted Herz space, weighted weak Herz space
and weighted Herz-type Hardy space. In , Beurling [] first introduced some funda-
mental form of Herz spaces to study convolution algebras. Later Herz [] gave versions
of the spaces defined below in a slightly different setting. Since then, the theory of Herz
spaces has been significantly developed, and these spaces have turned out to be quite use-
ful in harmonic analysis. For instance, they were used by Baernstein and Sawyer [] to
characterize the multipliers on the classical Hardy spaces, and used by Lu and Yang [,
] in the study of partial differential equations. The weighted version of Herz spaces was
also introduced and investigated in [, –].

On the other hand, a theory of Hardy spaces associated with Herz spaces has been devel-
oped in [, ]. These new Herz-type Hardy spaces may be regarded as a local version at
the origin of the classical Hardy spaces Hp(Rn) and are good substitutes for Hp(Rn) when
we study the boundedness of non-translation invariant operators (see [–]). For the
weighted case, in , Lu and Yang [, ] introduced the following weighted Herz-type
Hardy spaces HK̇α,p

q (w, w) (HKα,p
q (w, w)) and established their central atomic decom-

positions. For further details about the properties and boundedness of some operators
on weighted Herz-type Hardy spaces, we refer the readers to [–] and the references
therein.

Let Bk = {x ∈R
n : |x| ≤ k} and Ck = Bk\Bk– for k ∈ Z. Denote χk = χCk for k ∈ Z, χ̃k = χk

if k ∈N and χ̃ = χB , where χE is the characteristic function of a set E. For any given weight
function w on R

n and  < q < ∞, we denote by Lq
w(Rn) the space of all functions f satisfying

‖f ‖Lq
w

=
(∫

Rn

∣∣f (x)
∣∣qw(x) dx

)/q

< ∞. (.)

Definition . ([]) Let α ∈R,  < p, q < ∞ and w, w be two weight functions on R
n.

(a) The homogeneous weighted Herz space K̇α,p
q (w, w) is defined by

K̇α,p
q (w, w) =

{
f ∈ Lq

loc
(
R

n\{}, w
)

: ‖f ‖K̇α,p
q (w,w) < ∞}

,

where

‖f ‖K̇α,p
q (w,w) =

(∑
k∈Z

[
w(Bk)

]αp/n‖f χk‖p
Lq

w

)/p

. (.)

(b) The non-homogeneous weighted Herz space Kα,p
q (w, w) is defined by

Kα,p
q (w, w) =

{
f ∈ Lq

loc
(
R

n, w
)

: ‖f ‖Kα,p
q (w,w) < ∞}

,

where

‖f ‖Kα,p
q (w,w) =

( ∞∑
k=

[
w(Bk)

]αp/n‖f χ̃k‖p
Lq

w

)/p

. (.)

For any k ∈ Z, λ >  and any measurable function f on R
n, we set Ek(λ, f ) = {x ∈ Ck :

|f (x)| > λ}. Let Ẽk(λ, f ) = Ek(λ, f ) for k ∈N and Ẽ(λ, f ) = {x ∈ B(, ) : |f (x)| > λ}.
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Definition . ([]) Let α ∈R,  < p, q < ∞ and w, w be two weight functions on R
n.

(c) A measurable function f (x) on R
n is said to belong to the homogeneous weighted

weak Herz space W K̇α,p
q (w, w) if

‖f ‖W K̇α,p
q (w,w) = sup

λ>
λ

(∑
k∈Z

[
w(Bk)

]αp/n[w
(
Ek(λ, f )

)]p/q
)/p

< ∞. (.)

(d) A measurable function f (x) on R
n is said to belong to the non-homogeneous

weighted weak Herz space WKα,p
q (w, w) if

‖f ‖WKα,p
q (w,w) = sup

λ>
λ

( ∞∑
k=

[
w(Bk)

]αp/n[w
(̃
Ek(λ, f )

)]p/q
)/p

< ∞. (.)

Let S (Rn) be the class of Schwartz functions and let S ′(Rn) be its dual space. For any
given f ∈ S ′(Rn), then the grand maximal function of f is defined by

G(f )(x) = sup
ϕ∈AN

sup
|y–x|<t

∣∣ϕt ∗ f (y)
∣∣,

where AN = {ϕ ∈ S (Rn) : sup|α|,|β|≤N |xαDβϕ(x)| ≤ } and N ∈N is sufficiently large.

Definition . ([]) Let  < α < ∞,  < p < ∞,  < q < ∞ and w, w be two weight func-
tions on R

n.
(e) The homogeneous weighted Herz-type Hardy space HK̇α,p

q (w, w) associated with
the space K̇α,p

q (w, w) is defined by

HK̇α,p
q (w, w) =

{
f ∈ S ′(

R
n) : G(f ) ∈ K̇α,p

q (w, w)
}

,

and we define ‖f ‖HK̇α,p
q (w,w) = ‖G(f )‖K̇α,p

q (w,w).
(f ) The non-homogeneous weighted Herz-type Hardy space HKα,p

q (w, w) associated
with the space Kα,p

q (w, w) is defined by

HKα,p
q (w, w) =

{
f ∈ S ′(

R
n) : G(f ) ∈ Kα,p

q (w, w)
}

,

and we define ‖f ‖HKα,p
q (w,w) = ‖G(f )‖Kα,p

q (w,w).

In this article, we will use Lu and Yang’s central atomic decomposition theory for
weighted Herz-type Hardy spaces in [, ] (see also []). We characterize weighted
Herz-type Hardy spaces in terms of central atoms in the following way.

Definition . ([]) Let  < q < ∞, n( – /q) ≤ α < ∞ and s ≥ [α + n(/q – )].
(i) A function a(x) on R

n is said to be a central (α, q, s)-atom with respect to (w, w)
(or a central (α, q, s; w, w)-atom) if it satisfies
(a) supp a ⊆ B(, R) = {x ∈R

n : |x| ≤ R}, R > ;
(b) ‖a‖Lq

w
≤ [w(B(, R))]–α/n;

(c)
∫
Rn a(x)xγ dx =  for every multi-index γ with |γ | ≤ s.

(ii) A function a(x) on R
n is said to be a central (α, q, s)-atom of restricted type with

respect to (w, w) (or a central (α, q, s; w, w)-atom of restricted type) if it satisfies
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the conditions (b), (c) above and

(a′) supp a ⊆ B(, R) for some R > .

Theorem . ([]) Let w, w ∈ A,  < p < ∞,  < q < ∞, n( – /q) ≤ α < ∞ and s ≥
[α + n(/q – )]. Then we have

(i) f ∈ HK̇α,p
q (w, w) if and only if

f (x) =
∑
j∈Z

λjaj(x), in the sense of S ′(
R

n),

where
∑

j∈Z |λj|p < ∞, each aj is a central (α, q, s; w, w)-atom with supp aj ⊆ Bj = B(, j).
Moreover,

‖f ‖HK̇α,p
q (w,w) ≈ inf

(∑
j∈Z

|λj|p
)/p

,

where the infimum is taken over all the above decompositions of f .
(ii) f ∈ HKα,p

q (w, w) if and only if

f (x) =
∞∑
j=

λjaj(x), in the sense of S ′(
R

n),

where
∑∞

j= |λj|p < ∞, each aj is a central (α, q, s; w, w)-atom of restricted type with
supp aj ⊆ Bj = B(, j). Moreover,

‖f ‖HKα,p
q (w,w) ≈ inf

( ∞∑
j=

|λj|p
)/p

,

where the infimum is taken over all the above decompositions of f .

Throughout this article, we will use C to denote a positive constant, which is indepen-
dent of the main parameters and not necessarily the same at each occurrence.

3 Proofs of Theorems 1.1 and 1.2

Proof of Theorem . First we note that the assumptions n( – /q) ≤ α < n( – /q) + β and
 < β ≤  imply that N = [α + n(/q – )] = .

We start with the case of  < p ≤ . For any central (α, q, ; w, w)-atom a with supp a ⊆
B� = B(, �), � ∈ Z, we are going to show that ‖Sβ (a)‖K̇α,p

q (w,w) ≤ C, where C >  is a
universal constant independent of the choice of a. By definition,

∥∥Sβ (a)
∥∥p

K̇α,p
q (w,w) =

∑
k∈Z

[
w(Bk)

]αp/n∥∥Sβ (a)χk
∥∥p

Lq
w

=
�+∑

k=–∞

[
w(Bk)

]αp/n∥∥Sβ (a)χk
∥∥p

Lq
w

+
∞∑

k=�+

[
w(Bk)

]αp/n∥∥Sβ (a)χk
∥∥p

Lq
w

= I + I.
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Since w ∈ A, then w ∈ Aq for any  < q < ∞. It follows from Theorem A that

I ≤
�+∑

k=–∞

[
w(Bk)

]αp/n∥∥Sβ (a)
∥∥p

Lq
w

≤ C
�+∑

k=–∞

[
w(Bk)

]αp/n‖a‖p
Lq

w
.

Since w ∈ A, we know that w ∈ RHr for some r > . When k ≤ � + , Bk ⊆ B�+. Conse-
quently, by Lemma ., we have

w(Bk)
w(B�+)

≤ C ·
( |Bk|

|B�+|
)δ

, (.)

where δ = (r – )/r > . Thus, by using the size condition of central atom a and (.), we
obtain

I ≤ C
�+∑

k=–∞
(k–�–)αδp

= C
∑

k=–∞
kαδp

≤ C.

To estimate the other term I, we first claim that for any (y, t) ∈ R
n+
+ , the following in-

equality holds:

Aβ (a)(y, t) ≤ C · �(n+β)

tn+β

[
w(B�)

]–α/n[w(B�)
]–/q. (.)

In fact, for any ϕ ∈ Cβ with  < β ≤ , by the vanishing moment condition of central atom a,
we have

∣∣a ∗ ϕt(y)
∣∣ =

∣∣∣∣
∫

B�

[
ϕt(y – z) – ϕt(y)

]
a(z) dz

∣∣∣∣
≤

∫
B�

|z|β
tn+β

∣∣a(z)
∣∣dz

≤ β�

tn+β

∫
B�

∣∣a(z)
∣∣dz. (.)

Denote the conjugate exponent of q >  by q′ = q/(q – ). Using Hölder’s inequality, Aq con-
dition and the size condition of central atom a, we can get

∫
B�

∣∣a(z)
∣∣dz ≤

(∫
B�

∣∣a(z)
∣∣qw(z) dz

)/q(∫
B�

w(z)–q′/q dz
)/q′

≤ C · ‖a‖Lq
w

|B�|
[
w(B�)

]–/q

≤ C · |B�|
[
w(B�)

]–α/n[w(B�)
]–/q. (.)

Substituting the above inequality (.) into (.) and then taking the supremum over all
functions ϕ ∈ Cβ , we obtain the desired inequality (.).
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Observe that if x ∈ Ck = Bk\Bk–, k ≥ � +  and z ∈ B�, then we have |z| ≤ 
 |x|. We also

note that suppϕ ⊆ {x ∈ R
n : |x| ≤ }, then for any z ∈ B� ∩ B(y, t), (y, t) ∈ �(x) and x ∈ Ck

with k ≥ � + , we can deduce that

t > |x – y| + |y – z| ≥ |x – z| ≥ |x| – |z| ≥ |x|


.

Hence, for any x ∈ Ck = Bk\Bk– with k ≥ � + , by using inequality (.), we obtain

∣∣Sβ (a)(x)
∣∣ ≤ C

(
�(n+β)[w(B�)

]–α/n[w(B�)
]–/q)(∫ ∞

|x|


∫
|y–x|<t

dy dt
tn+β+n+

)/

≤ C
(
�(n+β)[w(B�)

]–α/n[w(B�)
]–/q)(∫ ∞

|x|


dt
tn+β+

)/

≤ C · �(n+β)[w(B�)
]–α/n[w(B�)

]–/q · 
|x|n+β

. (.)

Substituting the above inequality (.) into the term I, we can see that

I =
∞∑

k=�+

[
w(Bk)

]αp/n
(∫

k–<|x|≤k

∣∣Sβ (a)(x)
∣∣qw(x) dx

)p/q

≤ C
∞∑

k=�+

[
w(Bk)

]αp/n(�(n+β)[w(B�)
]–α/n[w(B�)

]–/q)p

×
(∫

k–<|x|≤k

w(x)
|x|q(n+β) dx

)p/q

≤ C
∞∑

k=�+

(
�p(n+β)

kp(n+β)

)(
w(Bk)
w(B�)

)αp/n(w(Bk)
w(B�)

)p/q

.

In this case, when k ≥ �+, we have Bk ⊇ B�+ ⊇ B�. Since w, w ∈ A, by using Lemma .
again, we can get

wi(Bk)
wi(B�)

≤ C · |Bk|
|B�| for i =  and . (.)

Hence, from inequality (.) it follows that

I ≤ C
∞∑

k=�+

(
�p(n+β)

kp(n+β)

)(
kn

�n

)αp/n(kn

�n

)p/q

= C
∞∑

k=

(


k

)p(n+β)–αp–np/q

≤ C,

where the last series is convergent since α < n( – /q) + β . Combining the above esti-
mates for I and I, we get the desired result. In the general case, let f ∈ HK̇α,p

q (w, w).
We have the decomposition f =

∑
�∈Z λ�a�, where

∑
�∈Z |λ�|p < ∞ and each a� is a central
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(α, q, ; w, w)-atom with supp a� ⊆ B� = B(, �), according to Theorem .. Therefore

∥∥Sβ (f )
∥∥p

K̇α,p
q (w,w) ≤ C

∑
k∈Z

[
w(Bk)

]αp/n
(∑

�∈Z
|λ�|

∥∥Sβ (a�)χk
∥∥

Lq
w

)p

≤ C
∑
k∈Z

[
w(Bk)

]αp/n
(∑

�∈Z
|λ�|p

∥∥Sβ (a�)χk
∥∥p

Lq
w

)

≤ C
∑
�∈Z

|λ�|p

≤ C‖f ‖p
HK̇α,p

q (w,w)
.

We now consider the case  < p < ∞. As above, we write

∥∥Sβ (f )
∥∥p

K̇α,p
q (w,w) ≤ C

∑
k∈Z

[
w(Bk)

]αp/n
( ∞∑

�=k–

|λ�|
∥∥Sβ (a�)χk

∥∥
Lq

w

)p

+ C
∑
k∈Z

[
w(Bk)

]αp/n
( k–∑

�=–∞
|λ�|

∥∥Sβ (a�)χk
∥∥

Lq
w

)p

= I ′
 + I ′

.

Let us first deal with I ′
. Applying Hölder’s inequality, Theorem A and the size condition

of central atom a� with supp a� ⊆ B�, we have

I ′
 ≤ C

∑
k∈Z

[
w(Bk)

]αp/n
( ∞∑

�=k–

|λ�|‖a�‖Lq
w

)p

≤ C
∑
k∈Z

[
w(Bk)

]αp/n
( ∞∑

�=k–

|λ�|
[
w(B�)

]–α/n
)p

≤ C
∑
k∈Z

[
w(Bk)

]αp/n
( ∞∑

�=k–

|λ�|p
[
w(B�)

]–αp/n
)( ∞∑

�=k–

[
w(B�)

]–αp′/n
)p/p′

.

When � ≥ k –  with k ∈ Z, Bk– ⊆ B�. Since w ∈ A, as before, there exists a number r > 
such that w ∈ RHr . Setting δ = (r – )/r > . Thus, by Lemma ., we can see that

∞∑
�=k–

[
w(B�)

]–αp′/n =
[
w(Bk–)

]–αp′/n
∞∑

�=k–

(
w(Bk–)
w(B�)

)αp′/n

≤ C · [w(Bk–)
]–αp′/n

∞∑
�=k–

(
(k–)–�

)αδp′/

≤ C · [w(Bk–)
]–αp′/n

∞∑
�=

–�αδp′/

≤ C · [w(Bk–)
]–αp′/n.
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Similarly,

�+∑
k=–∞

[
w(Bk–)

]αp/n[w(B�)
]–αp/n ≤ C,

where C >  is an absolute constant which is independent of � ∈ Z. Thus, we obtain

I ′
 ≤ C

∑
k∈Z

[
w(Bk–)

]αp/n
( ∞∑

�=k–

|λ�|p
[
w(B�)

]–αp/n
)

= C
∑
�∈Z

|λ�|p
(

�+∑
k=–∞

[
w(Bk–)

]αp/n[w(B�)
]–αp/n

)

≤ C
∑
�∈Z

|λ�|p

≤ C‖f ‖p
HK̇α,p

q (w,w)
.

We now turn our attention to the estimate of I ′
. Observe that when � ≤ k – , that is,

k ≥ � + , it follows immediately from the pointwise inequality (.) that

I ′
 ≤ C

∑
k∈Z

[
w(Bk)

]αp/n
( k–∑

�=–∞
|λ�| · �(n+β)

k(n+β)

[
w(B�)

]–α/n[w(B�)
]–/q[w(Bk)

]/q
)p

= C
∑
k∈Z

[
w(Bk)

]αp/n[w(Bk)
]p/q

( k–∑
�=–∞

|λ�| · �(n+β)

k(n+β)

[
w(B�)

]–α/n[w(B�)
]–/q

)p

.

By using Hölder’s inequality, we obtain that the above expression in the brackets is
bounded by

( k–∑
�=–∞

|λ�|p ·
(

�

k

)p(n+β)/[
w(B�)

]–αp/n[w(B�)
]–p/q

)

×
( k–∑

�=–∞

(
�

k

)p′(n+β)/[
w(B�)

]–αp′/n[w(B�)
]–p′/q

)p/p′

.

When � ≤ k –  with k ∈ Z, we have B� ⊆ Bk– ⊆ Bk . Since w, w ∈ A, it follows directly
from Lemma . that

k–∑
�=–∞

(
�

k

)p′(n+β)/[
w(B�)

]–αp′/n[w(B�)
]–p′/q

=
[
w(Bk)

]–αp′/n[w(Bk)
]–p′/q

×
k–∑

�=–∞

(
�

k

)p′(n+β)/(w(Bk)
w(B�)

)αp′/n(w(Bk)
w(B�)

)p′/q

≤ C · [w(Bk)
]–αp′/n[w(Bk)

]–p′/q
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×
k–∑

�=–∞

(
�

k

)p′(n+β)/(kn

�n

)αp′/n(kn

�n

)p′/q

≤ C · [w(Bk)
]–αp′/n[w(Bk)

]–p′/q ·
∞∑
�=

(

�

)p′(n+β)/–αp′/–p′n/q

≤ C · [w(Bk)
]–αp′/n[w(Bk)

]–p′/q,

where the last inequality holds under our assumption that α < n( – /q) + β . Similarly,

∞∑
k=�+

(
�

k

)p(n+β)/(w(Bk)
w(B�)

)αp/n(w(Bk)
w(B�)

)p/q

≤ C,

where C >  is an absolute constant which is independent of � ∈ Z. Hence, we finally obtain

I ′
 ≤ C

∑
k∈Z

[
w(Bk)

]αp/n[w(Bk)
]p/q

×
( k–∑

�=–∞
|λ�|p ·

(
�

k

)p(n+β)/[
w(B�)

]–αp/n[w(B�)
]–p/q

)

≤ C
∑
�∈Z

|λ�|p
[ ∞∑

k=�+

(
�

k

)p(n+β)/(w(Bk)
w(B�)

)αp/n(w(Bk)
w(B�)

)p/q
]

≤ C
∑
�∈Z

|λ�|p

≤ C‖f ‖p
HK̇α,p

q (w,w)
.

Therefore, summing up the above estimates for I ′
 and I ′

, we get the desired result. This
completes the proof of Theorem .. �

Proof of Theorem . First we note that our assumptions α = n( – /q) + β and  <
β <  imply that N = [α + n(/q – )] = [β] = . According to Theorem ., for every
f ∈ HK̇α,p

q (w, w), we have the decomposition f =
∑

�∈Z λ�a�, where
∑

�∈Z |λ�|p < ∞ and
each a� is a central (α, q, ; w, w)-atom with supp a� ⊆ B� = B(, �). Then, for any given
σ > , we write

σ p ·
∑
k∈Z

[
w(Bk)

]αp/nw
({

x ∈ Ck :
∣∣Sβ (f )(x)

∣∣ > σ
})p/q

≤ σ p ·
∑
k∈Z

[
w(Bk)

]αp/nw

({
x ∈ Ck :

∞∑
�=k–

|λ�|
∣∣Sβ (a�)(x)

∣∣ > σ /

})p/q

+ σ p ·
∑
k∈Z

[
w(Bk)

]αp/nw

({
x ∈ Ck :

k–∑
�=–∞

|λ�|
∣∣Sβ (a�)(x)

∣∣ > σ /

})p/q

= J + J.
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Since w ∈ A, we have w ∈ Aq for any  < q < ∞. Note that  < p ≤ . Applying Cheby-
shev’s inequality and Theorem A, we get

J ≤ p
∑
k∈Z

[
w(Bk)

]αp/n
( ∞∑

�=k–

|λ�|
∥∥Sβ (a�)χk

∥∥
Lq

w

)p

≤ p
∑
k∈Z

[
w(Bk)

]αp/n
( ∞∑

�=k–

|λ�|p
∥∥Sβ (a�)

∥∥p
Lq

w

)

≤ C
∑
k∈Z

[
w(Bk)

]αp/n
( ∞∑

�=k–

|λ�|p‖a�‖p
Lq

w

)
.

Changing the order of summation yields

J ≤ C
∑
�∈Z

|λ�|p
(

�+∑
k=–∞

[
w(Bk)

]αp/n‖a�‖p
Lq

w

)
.

Following along the same lines as in Theorem ., we can also show that the series in
the brackets is convergent. Furthermore, it is bounded by an absolute constant which is
independent of � ∈ Z. Hence

J ≤ C
∑
�∈Z

|λ�|p ≤ C‖f ‖p
HK̇α,p

q (w,w)
.

On the other hand, observe that when � ≤ k – , for any x ∈ Ck = Bk\Bk–, by the pointwise
inequality (.), we deduce that

∣∣Sβ (a�)(x)
∣∣ ≤ C · �(n+β)[w(B�)

]–α/n[w(B�)
]–/q · 

|x|n+β

≤ C · �(n+β)

k(n+β)

[
w(B�)

]–α/n[w(B�)
]–/q.

Since Bj ⊆ Bk– ⊆ Bk and w, w ∈ A, it follows from our assumption α = n( – /q) + β

and inequality (.) that

∣∣Sβ (a�)(x)
∣∣ ≤ C · [w(Bk)

]–α/n[w(Bk)
]–/q

(
�

k

)n+β(
kn

�n

)α/n(kn

�n

)/q

≤ C · [w(Bk)
]–α/n[w(Bk)

]–/q. (.)

Set Ak = [w(Bk)]–α/n[w(Bk)]–/q. We will consider the following two cases. If {x ∈ Ck :∑k–
�=–∞ |λ�||Sβ (a�)(x)| > σ /} = ∅, then the inequality

J ≤ C‖f ‖p
HK̇α,p

q (w,w)

holds trivially. Now we assume that {x ∈ Ck :
∑k–

�=–∞ |λ�||Sβ (a�)(x)| > σ /} �= ∅, then by the
above inequality (.) and the fact that  < p ≤ , we have

σ < C · Ak

(∑
�∈Z

|λ�|
)

≤ C · Ak

(∑
�∈Z

|λ�|p
)/p

≤ C · Ak‖f ‖HK̇α,p
q (w,w).
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It is easy to verify that limk→∞ Ak = . Then, for any fixed σ > , we are able to find a
maximal positive integer Kσ such that

σ < C · AKσ ‖f ‖HK̇α,p
q (w,w).

From the above discussions, we know that Bk ⊆ BKσ . Furthermore, by using Lemma .
again, we obtain

wi(Bk)
wi(BKσ )

≤ C ·
( |Bk|

|BKσ |
)δi

for i =  and ,

where δi > , i = , . Therefore

J ≤ σ p ·
Kσ∑

k=–∞

[
w(Bk)

]αp/n[w(Bk)
]p/q

≤ C‖f ‖p
HK̇α,p

q (w,w)

Kσ∑
k=–∞

(
w(Bk)

w(BKσ )

)αp/n( w(Bk)
w(BKσ )

)p/q

≤ C‖f ‖p
HK̇α,p

q (w,w)

Kσ∑
k=–∞

(


(Kσ –k)n

)αδp/n+δp/q

≤ C‖f ‖p
HK̇α,p

q (w,w)
.

Combining the above estimates for J and J, and then taking the supremum over all σ > ,
we complete the proof of Theorem .. �

4 Proofs of Theorems 1.3 and 1.4
In this section, we first establish the following three estimates which will be used in the
proofs of our main theorems.

Proposition . Let w ∈ A and  < β ≤ . Then, for any j ∈ Z+, we have
∥∥Sβ ,j (a)

∥∥
L

w
≤ C · jn/∥∥Sβ (a)

∥∥
L

w
.

Proof Since w ∈ A, by Lemma . we know that for any (y, t) ∈R
n+
+ ,

w
(
B
(
y, jt

))
= w

(
jB(y, t)

) ≤ C · jnw
(
B(y, t)

)
, j = , , . . . .

Therefore, for any j ∈ Z+ and  < β ≤ , we have

∥∥Sβ ,j (a)
∥∥

L
w

=
∫
Rn

(∫∫
R

n+
+

(
Aβ (a)(y, t)

)
χ|x–y|<jt

dy dt
tn+

)
w(x) dx

=
∫∫

R
n+
+

(∫
|x–y|<jt

w(x) dx
)(

Aβ (a)(y, t)
) dy dt

tn+

≤ C · jn
∫∫

R
n+
+

(∫
|x–y|<t

w(x) dx
)(

Aβ (a)(y, t)
) dy dt

tn+

= C · jn∥∥Sβ (a)
∥∥

L
w

.

Taking square-roots on both sides of the above inequality, we are done. �
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Proposition . Let w ∈ A,  < β ≤  and  < q < ∞. Then, for any j ∈ Z+, we have

∥∥Sβ ,j (a)
∥∥

Lq
w

≤ C · jn/∥∥Sβ (a)
∥∥

Lq
w

.

Proof For any j ∈ Z+ and  < β ≤ , it is easy to see that

∥∥Sβ ,j (a)
∥∥

Lq
w

=
∥∥Sβ ,j (a)∥∥

Lq/
w

. (.)

Since q/ > , by the duality argument, we then have

∥∥Sβ ,j (a)∥∥
Lq/

w

= sup
‖b‖

L(q/)′
w

≤

∣∣∣∣
∫
Rn

Sβ ,j (a)(x)b(x)w(x) dx
∣∣∣∣

= sup
‖b‖

L(q/)′
w

≤

∣∣∣∣
∫
Rn

(∫∫
R

n+
+

(
Aβ (a)(y, t)

)
χ|x–y|<jt

dy dt
tn+

)
b(x)w(x) dx

∣∣∣∣

= sup
‖b‖

L(q/)′
w

≤

∣∣∣∣
∫∫

R
n+
+

(∫
|x–y|<jt

b(x)w(x) dx
)(

Aβ (a)(y, t)
) dy dt

tn+

∣∣∣∣. (.)

For w ∈ A, we denote the weighted maximal operator by Mw; that is,

Mw(f )(x) = sup
x∈B


w(B)

∫
B

∣∣f (y)
∣∣w(y) dy,

where the supremum is taken over all balls B which contain x. Hence, by using Lemma .,
we can get

∫
|x–y|<jt

∣∣b(x)
∣∣w(x) dx ≤ C · jnw

(
B(y, t)

) · 
w(B(y, jt))

∫
B(y,jt)

∣∣b(x)
∣∣w(x) dx

≤ C · jnw
(
B(y, t)

)
inf

x∈B(y,jt)
Mw(b)(x)

≤ C · jn
∫

|x–y|<t
Mw(b)(x)w(x) dx. (.)

Substituting the above inequality (.) into (.) and then using Hölder’s inequality to-
gether with the L(q/)′

w boundedness of Mw, we thus obtain

∥∥Sβ ,j (a)∥∥
Lq/

w
≤ C · jn sup

‖b‖
L(q/)′

w
≤

∣∣∣∣
∫
Rn

Sβ (a)(x)Mw(b)(x)w(x) dx
∣∣∣∣

≤ C · jn∥∥Sβ (a)∥∥
Lq/

w
sup

‖b‖
L(q/)′

w
≤

∥∥Mw(b)
∥∥

L(q/)′
w

≤ C · jn∥∥Sβ (a)∥∥
Lq/

w

= C · jn∥∥Sβ (a)
∥∥

Lq
w

.

This estimate together with (.) implies the desired result. �
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Proposition . Let w ∈ A,  < β ≤  and  < q < . Then, for any j ∈ Z+, we have

∥∥Sβ ,j (a)
∥∥

Lq
w

≤ C · jn/q∥∥Sβ (a)
∥∥

Lq
w

.

Proof We will adopt the same method given in [] to deal with the weighted case. For any
j ∈ Z+ and  < β ≤ , set �λ = {x ∈ R

n : Sβ (a)(x) > λ} and �λ,j = {x ∈ R
n : Sβ ,j (a)(x) > λ}.

We also set

�∗
λ =

{
x ∈R

n : Mw(χ�λ
)(x) >


(jn+) · [w]A

}
.

Observe that w(�λ,j) ≤ w(�∗
λ) + w(�λ,j ∩ (Rn\�∗

λ)). Thus, for any j ∈ Z+,

∥∥Sβ ,j (a)
∥∥q

Lq
w

=
∫ ∞


qλq– · w(�λ,j) dλ

≤
∫ ∞


qλq– · w

(
�∗

λ

)
dλ +

∫ ∞


qλq– · w

(
�λ,j ∩

(
R

n\�∗
λ

))
dλ

= I + II.

The weighted weak type estimate of Mw implies

I ≤ C · jn
∫ ∞


qλq– · w(�λ) dλ ≤ C · jn∥∥Sβ (a)

∥∥q
Lq

w
. (.)

To estimate II , we now claim that the following inequality holds.

∫
Rn\�∗

λ

Sβ ,j (a)(x)w(x) dx ≤ C · jn
∫
Rn\�λ

Sβ (a)(x)w(x) dx. (.)

Assuming this claim for the moment, we have from Chebyshev’s inequality and inequality
(.) that

w
(
�λ,j ∩

(
R

n\�∗
λ

)) ≤ λ–
∫

�λ,j∩(Rn\�∗
λ)
Sβ ,j (a)(x)w(x) dx

≤ λ–
∫
Rn\�∗

λ

Sβ ,j (a)(x)w(x) dx

≤ C · jnλ–
∫
Rn\�λ

Sβ (a)(x)w(x) dx.

Hence

II ≤ C · jn
∫ ∞


qλq–

(
λ–

∫
Rn\�λ

Sβ (a)(x)w(x) dx
)

dλ.

Changing the order of integration yields

II ≤ C · jn
∫
Rn

Sβ (a)(x)
(∫ ∞

|Sβ (a)(x)|
qλq– dλ

)
w(x) dx

≤ C · jn · q
 – q

∥∥Sβ (a)
∥∥q

Lq
w

. (.)
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Combining the above estimate (.) with (.) and taking qth roots on both sides, we
are done. So it remains to prove inequality (.). Set �j (Rn\�∗

λ) =
⋃

x∈Rn\�∗
λ
�j (x) and

�(Rn\�λ) =
⋃

x∈Rn\�λ
�(x). For each given (y, t) ∈ �j (Rn\�∗

λ), by Lemma . we have

w
(
B
(
y, jt

) ∩ (
R

n\�∗
λ

)) ≤ C · jnw
(
B(y, t)

)
.

It is not difficult to check that w(B(y, t) ∩ �λ) ≤ w(B(y,t))
 and �j (Rn\�∗

λ) ⊆ �(Rn\�λ). In
fact, for any (y, t) ∈ �j (Rn\�∗

λ), there exists a point x ∈R
n\�∗

λ so that (y, t) ∈ �j (x). Then
by Lemma . we can deduce

w
(
B(y, t) ∩ �λ

) ≤ w
(
B
(
y, jt

) ∩ �λ

)
=

∫
B(y,jt)

χ�λ
(z)w(z) dz

≤ [w]A · jnw
(
B(y, t)

) · 
w(B(y, jt))

∫
B(y,jt)

χ�λ
(z)w(z) dz.

Notice that x ∈ B(y, jt) ∩ (Rn\�∗
λ). So we have

w
(
B(y, t) ∩ �λ

) ≤ [w]A · jnw
(
B(y, t)

) · Mw(χ�λ
)(x) ≤ w(B(y, t))


.

Hence

w
(
B(y, t)

)
= w

(
B(y, t) ∩ �λ

)
+ w

(
B(y, t) ∩ (

R
n\�λ

))

≤ w(B(y, t))


+ w
(
B(y, t) ∩ (

R
n\�λ

))
,

which is equivalent to

w
(
B(y, t)

) ≤  · w
(
B(y, t) ∩ (

R
n\�λ

))
.

The above inequality implies in particular that there is a point z ∈ B(y, t) ∩ (Rn\�λ) �= ∅.
In this case, we have (y, t) ∈ �(z) with z ∈R

n\�λ, which implies �j (Rn\�∗
λ) ⊆ �(Rn\�λ).

Thus we obtain

w
(
B
(
y, jt

) ∩ (
R

n\�∗
λ

)) ≤ C · jnw
(
B(y, t) ∩ (

R
n\�λ

))
.

Therefore∫
Rn\�∗

λ

Sβ ,j (a)(x)w(x) dx

=
∫
Rn\�∗

λ

(∫∫
�j (x)

(
Aβ (a)(y, t)

) dy dt
tn+

)
w(x) dx

≤
∫∫

�j (Rn\�∗
λ)

(∫
B(y,jt)∩(Rn\�∗

λ)
w(x) dx

)(
Aβ (a)(y, t)

) dy dt
tn+

≤ C · jn
∫∫

�(Rn\�λ)

(∫
B(y,t)∩(Rn\�λ)

w(x) dx
)(

Aβ (a)(y, t)
) dy dt

tn+

≤ C · jn
∫
Rn\�λ

Sβ (a)(x)w(x) dx,

which is just what we want. This finishes the proof of Proposition .. �
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We are now in a position to give the proof of Theorem ..

Proof of Theorem . In view of Theorem ., as in the proof of Theorem . for the
case of  < p ≤ , we only need to show that for any central (α, q, ; w, w)-atom a with
supp a ⊆ B� = B(, �), � ∈ Z, there exists a constant C >  independent of a such that
‖G∗

λ,β (a)‖K̇α,p
q (w,w) ≤ C. As before, we write

∥∥G∗
λ,β (a)

∥∥p
K̇α,p

q (w,w) =
�+∑

k=–∞

[
w(Bk)

]αp/n∥∥G∗
λ,β (a)χk

∥∥p
Lq

w

+
∞∑

k=�+

[
w(Bk)

]αp/n∥∥G∗
λ,β(a)χk

∥∥p
Lq

w

= K + K.

First, from the definition of G∗
λ,β , we readily see that

∣∣G∗
λ,β (a)(x)

∣∣ =
∫∫

R
n+
+

(
t

t + |x – y|
)λn(

Aβ (a)(y, t)
) dy dt

tn+

=
∫ ∞



∫
|x–y|<t

(
t

t + |x – y|
)λn(

Aβ (a)(y, t)
) dy dt

tn+

+
∞∑
j=

∫ ∞



∫
j–t≤|x–y|<jt

(
t

t + |x – y|
)λn(

Aβ (a)(y, t)
) dy dt

tn+

≤ C

[
Sβ (a)(x) +

∞∑
j=

–jλnSβ ,j (a)(x)

]
. (.)

Since λ >  > max{, /q} and w ∈ A. Thus, by applying Propositions .-., Theorem A
and inequality (.), we obtain

∥∥G∗
λ,β (a)

∥∥
Lq

w
≤ C

(∥∥Sβ (a)
∥∥

Lq
w

+
∞∑
j=

– jλn


∥∥Sβ ,j (a)
∥∥

Lq
w

)

≤ C

(∥∥Sβ (a)
∥∥

Lq
w

+
∞∑
j=

– jλn
 · [

jn
 + 

jn
q
]∥∥Sβ (a)

∥∥
Lq

w

)

≤ C‖a‖Lq
w

(
 +

∞∑
j=

– jλn
 · [

jn
 + 

jn
q
])

≤ C‖a‖Lq
w

. (.)

Hence, for the term K, it follows directly from the above inequality (.) that

K ≤
�+∑

k=–∞

[
w(Bk)

]αp/n∥∥G∗
λ,β (a)

∥∥p
Lq

w
≤ C

�+∑
k=–∞

[
w(Bk)

]αp/n‖a‖p
Lq

w
.

Following along the same lines as in Theorem ., we can also prove that K ≤ C. On the
other hand, in the proof of Theorem ., for any fixed � with � ≤ k – and x ∈ Ck = Bk\Bk–,
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we have already proved

∣∣Sβ (a)(x)
∣∣ ≤ C · (�(n+β)[w(B�)

]–α/n[w(B�)
]–/q) · |x|–n–β . (.)

We are now going to estimate |Sβ ,j (a)(x)| for j = , , . . . . Observe that if x ∈ Ck = Bk\Bk–,
k ≥ � +  and z ∈ B�, then we have |z| ≤ 

 |x|. We also note that suppϕ ⊆ {x ∈R
n : |x| ≤ },

then for any given z ∈ B� ∩ B(y, jt), (y, t) ∈ �j (x) and x ∈ Ck with k ≥ � + , by a simple
calculation, we can see that

t + jt > |x – y| + |y – z| ≥ |x – z| ≥ |x| – |z| ≥ |x|


.

For every j ∈ Z+ and for all x ∈ Bk\Bk– with k ≥ � + , it then follows from the preceding
inequality (.) that

∣∣Sβ ,j (a)(x)
∣∣ ≤ C

(
�(n+β)[w(B�)

]–α/n[w(B�)
]–/q)(∫ ∞

|x|
j+

∫
|y–x|<jt

dy dt
tn+β+n+

)/

≤ C
(
�(n+β)[w(B�)

]–α/n[w(B�)
]–/q)(∫ ∞

|x|
j+

jn · dt
tn+β+

)/

≤ C
(
�(n+β)[w(B�)

]–α/n[w(B�)
]–/q) · 

j(n+β)


|x|n+β
. (.)

Consequently
∥∥Sβ ,j (a)χk

∥∥
Lq

w
≤ C · �(n+β)[w(B�)

]–α/n[w(B�)
]–/q · 

j(n+β)


×
(∫

k–<|x|≤k

w(x)
|x|(n+β)q dx

)/q

≤ C · 
j(n+β)


[
w(B�)

]–α/n
(

�(n+β)

k(n+β)

)(
w(Bk)
w(B�)

)/q

.

Hence
∞∑
j=

– jλn


∥∥Sβ ,j (a)χk
∥∥

Lq
w

≤ C · [w(B�)
]–α/n

(
�(n+β)

k(n+β)

)(
w(Bk)
w(B�)

)/q ∞∑
j=

– j(λn–n–β)


≤ C · [w(B�)
]–α/n

(
�(n+β)

k(n+β)

)(
w(Bk)
w(B�)

)/q

, (.)

where the last inequality follows from the assumption that λ >  + (β)/n. Substituting the
above inequality (.) into the term K and using (.), we thus obtain

K ≤ C
∞∑

k=�+

[
w(Bk)

]αp/n
{∥∥Sβ (a)χk

∥∥p
Lq

w
+

( ∞∑
j=

– jλn


∥∥Sβ ,j (a)χk
∥∥

Lq
w

)p}

≤ C
∞∑

k=�+

(
�p(n+β)

kp(n+β)

)(
w(Bk)
w(B�)

)αp/n(w(Bk)
w(B�)

)p/q

.

The rest of the proof is exactly the same as that of Theorem ., we can get K ≤ C. There-
fore, we conclude the proof of Theorem . for the case  < p ≤  by combining the above
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estimates for K and K. Finally, by using the same arguments as in Theorem ., we can
also obtain the desired results for the case of  < p < ∞. We leave the details to the reader.

�

Proof of Theorem . According to Theorem . again, for every f ∈ HK̇α,p
q (w, w), we

have the decomposition f =
∑

�∈Z λ�a�, where
∑

�∈Z |λ�|p < ∞ and each a� is a central
(α, q, ; w, w)-atom with supp a� ⊆ B� = B(, �). Then, for any fixed σ > , as in the proof
of Theorem ., we write

σ p ·
∑
k∈Z

[
w(Bk)

]αp/nw
({

x ∈ Ck :
∣∣G∗

λ,β (f )(x)
∣∣ > σ

})p/q

≤ σ p ·
∑
k∈Z

[
w(Bk)

]αp/nw

({
x ∈ Ck :

∞∑
�=k–

|λ�|
∣∣G∗

λ,β (a�)(x)
∣∣ > σ /

})p/q

+ σ p ·
∑
k∈Z

[
w(Bk)

]αp/nw

({
x ∈ Ck :

k–∑
�=–∞

|λ�|
∣∣G∗

λ,β (a�)(x)
∣∣ > σ /

})p/q

= K ′
 + K ′

.

Note that  < p ≤  and λ >  > max{, /q}. Applying Chebyshev’s inequality and inequal-
ity (.), we get

K ′
 ≤ p

∑
k∈Z

[
w(Bk)

]αp/n
( ∞∑

�=k–

|λ�|
∥∥G∗

λ,β (a�)χk
∥∥

Lq
w

)p

≤ p
∑
k∈Z

[
w(Bk)

]αp/n
( ∞∑

�=k–

|λ�|p
∥∥G∗

λ,β (a�)
∥∥p

Lq
w

)

≤ C
∑
k∈Z

[
w(Bk)

]αp/n
( ∞∑

�=k–

|λ�|p‖a�‖p
Lq

w

)
.

Changing the order of summation gives us that

K ′
 ≤ C

∑
�∈Z

|λ�|p
(

�+∑
k=–∞

[
w(Bk)

]αp/n‖a�‖p
Lq

w

)
.

Arguing as in the proof of Theorem ., we can also show that

K ′
 ≤ C‖f ‖p

HK̇α,p
q (w,w)

.

We now turn to deal with K ′
. In this situation, it follows from inequalities (.), (.) and

(.) that

∣∣G∗
λ,β (a�)(x)

∣∣ ≤ C

(∣∣Sβ (a�)(x)
∣∣ +

∞∑
j=

– jλn


∣∣Sβ ,j (a�)(x)
∣∣
)

≤ C
(
�(n+β)[w(B�)

]–α/n[w(B�)
]–/q)|x|–n–β

(
 +

∞∑
j=

– j(λn–n–β)


)

≤ C
(
�(n+β)[w(B�)

]–α/n[w(B�)
]–/q)|x|–n–β ,
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where in the last inequality we have used the fact that λ >  + (β)/n. Again, the rest of the
proof is exactly the same as that of Theorem ., we finally obtain

K ′
 ≤ C‖f ‖p

HK̇α,p
q (w,w)

.

Therefore, we conclude the proof of Theorem .. �

Remark The corresponding results for non-homogeneous weighted Herz-type Hardy
spaces can also be proved by atomic decomposition theory. The arguments are similar,
so the details are omitted here.
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