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Abstract
LetH be a Hilbert space with inner product 〈·, ·〉 and let T be a non-densely defined
linear relation inH with domain D(T ). We prove that if T is sectorial then it can be
expressed in terms of some sectorial operator A with domain D(A) = D(T ) and that T
is maximal sectorial if and only if A is maximal sectorial in D(T ). The operator A has the
property that for every u ∈ D(A) and every v ∈ D(T ) and any u′ ∈ T (u), 〈Au, v〉 = 〈u′, v〉.
We use this representation to show that every sectorial linear relation T is form
closable, meaning that the form associated with T has a closed extension. We also
prove a result similar to Kato’s first representation theorem for sectorial linear relations.
Unlike the results available in the literature, we do not assume that the graph of the

linear relation T is a closed subspace ofH×H.
MSC: Primary 47A06; 47A07; 47A12; secondary 47B44
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1 Introduction
Let H be a Hilbert space, S be a closed linear subspace of H × H, and consider the set
D(S) = {x ∈ H : (x, u) ∈ S for some u ∈ H}. If s ∈ D(S), denote by Ss the collection of all
elements v ∈ H such that the pair (s, v) ∈ S . It is shown in [, ] and [] that there exists
some closed linear operator A in H with domain D(A) = D(S) such that

Ss = S + As (.)

for every s ∈ D(S), where the right-hand side of (.) is understood to represent the set
{w + As : w ∈ S}. Representation (.) easily follows from the decomposition of S as a
direct orthogonal sum of two of its subspaces, a result that is based on the closed nature
of S . A natural question that arises is whether a representation of the form (.) exists for
non-closed subspaces S . In this case there is no guarantee that a decomposition of S that
leads to this representation does exist.

Instead of considering non-closed subspaces S of H×H one can in general consider, as
we do, linear relations in H whose graphs are not necessarily closed subspaces of H×H.

The main objective of this paper is to show that an operator representation of the form
(.) holds for maximal sectorial linear relations T whose graphs are not necessarily closed
in H×H. The key idea in obtaining this result is the fact that the numerical range of such
a linear relation is a proper subset of the complex plane. We use this result to prove a
theorem similar to Kato’s first representation theorem.
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Since every densely defined linear relation T in a Hilbert space H is an operator, all the
relations T considered in here are assumed to be non-densely defined. We will use the
term operator to mean a linear operator unless stated otherwise.

The paper is organized as follows. In Section  we recall some basic definitions and
known results on sesquilinear forms. Most of the results given here can be found in [].
Section  is devoted to some background information on linear relations, while Section 
contains the main results. In particular we show that every maximal sectorial linear re-
lation T in H has an operator representation of the form (.) and that every sectorial
linear relation in H is form closable. Finally we show that a result similar to Kato’s first
representation theorem holds in the case of sectorial linear relations.

2 Sesquilinear forms and related results
We are concerned with sesquilinear forms t(u, v) defined for both u and v belonging to
a linear manifold D of a Hilbert H. Hence t(u, v) is complex-valued and linear in u ∈ D
for each fixed v ∈ D and semilinear in v ∈ D for each fixed u ∈ D. The linear manifold D
will be called the domain of t, and we will denote it by D(t). The form t(u, u) is called the
quadratic form associated with t(u, v). We denote this form by t(u). We shall refer to the
sesquilinear form t(u, v) as the form t.

Let H be a Hilbert space and let t be a form on H. We say that t is symmetric if

t(u, v) = t(v, u)

for all u, v ∈H. If A is a bounded operator on H, the function

t(u, v) = 〈Au, v〉 (.)

represents a bounded sesquilinear form onH. Conversely, an arbitrary bounded sesquilin-
ear form t on H can be expressed in this form by a suitable choice of a bounded operator
A on H. The form defined by (.) is called the form associated with the operator A.

A symmetric sesquilinear form t on a Hilbert space H is called nonnegative (in symbols
t ≥ ) if the associated quadratic form t(u) is nonnegative (t(u) ≥ ) for all u, and positive
if t(u) >  for all u �= .

The lower bound γ of a symmetric form t is defined as the largest real number γ such
that

t(u) ≥ γ ‖u‖.

The upper bound γ ′ is defined in a similar way. We say that the form t is semi-bounded if
it is either bounded from below or from above. It can be shown (see []) that

∣
∣t(u, v)

∣
∣ ≤ M‖u‖‖v‖, M = max

(|γ |, ∣∣γ ′∣∣).

Hence a sesquilinear form t which is bounded both from below and above is bounded.
Similarly, a symmetric operator A is said to be bounded from below if

〈Au, u〉 ≥ γ 〈u, u〉
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holds for all u ∈ D(A) with ‖u‖ = . The largest γ with this property is called the lower
bound of A. Notions of boundedness from above and upper bound are similarly defined.
Like in the case of a symmetric form, a symmetric operator bounded from below or from
above is said to be semi-bounded.

For a nonsymmetric form t, the set of values of the quadratic form t(u) for all u ∈ D(t)
such that ‖u‖ =  is called the numerical range of t, and we denote this set by �(t). If t
is a symmetric form, then t is bounded from below if and only if �(t) is a finite or semi-
infinite interval of the real line bounded from the left. Generalizing this, we say that a form
t is bounded from the left if �(t) is a subset of a half plane of the form Re z ≥ γ , z ∈ C,
γ ∈ R. We say that t is sectorially bounded from the left, or simply that t is sectorial, if its
numerical range �(t) is contained as a sector of the form

∣
∣arg(z – γ )

∣
∣ ≤ θ ,  ≤ θ <

π


,γ ∈R. (.)

The numbers γ and θ are not uniquely determined. We call γ a vertex and θ a correspond-
ing semi-angle of the form t.

For an operator A with domain D(A) in a Hilbert space H, the numerical range �(A) of
A is the set of complex numbers

�(A) =
{〈Au, u〉 : u ∈ D(A),‖u‖ = 

}

.

Let us recall that an operator A in H is said to be sectorial if its numerical range is a subset
of the sector of the form (.). If A is a sectorial operator inH with vertex γ and semi-angle
θ , then the form t defined in H by

t(u, v) = 〈Au, v〉 with D(t) = D(A) (.)

is obviously sectorial with the same vertex and semi-angle.
Let t be a sectorial form with domain D(t) in a Hilbert space H. A sequence {xn} of

elements of H is said to be t-convergent to an element x ∈H, denoted by

xn →
t

x as n → ∞,

if xn ∈ D(t) for all n, xn → x and t(xn – xm) →  as m, n → ∞. Note that x may or may not
belong to D(t). We say that t is closed if xn →

t
x implies that x ∈ D(t) and t(xn – x) → 

as n → ∞ and that it is closable if it has a closed extension. If t is closable, its closure t̄ is
defined to be its smallest closed extension. This closure t̄ is also defined in the following
way. The domain D(t̄) of t̄ is the set consisting of all x ∈H such that there exists a sequence
xn such that xn →

t
x and

t̄(x, y) = lim
n→∞ t(xn, yn) for any xn →

t
x, yn →

t
y.

Theorems ., ., and . below are taken from []. We note here that although we do
not make much use of the next theorem, we feel it is worth mentioning it here.

Theorem . Let t be a sectorial form and let t̄ be its closure. Then
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(i) t̄ is sectorial,
(ii) the numerical range �(t) of t is a dense subset of the numerical range �(t̄) of t̄,

(iii) a vertex α and a semi-angle θ for t̄ can be chosen equal to the corresponding values
for t.

Theorem . Let A be a sectorial operator in a Hilbert space H. Then A is form-closable,
that is, the form t defined by (.) above is closable.

Let t be a closed sectorial form in a Hilbert space H, D′ be a linear subspace of D(t), and
let t′ be the restriction of t to D′. The subspace D′ is called a core of t if the closure of t′ is
t, that is, t̄′ = t.

See [, p.] for the following remark.

Remark . If t is bounded, then D′ is a core of t if and only if D′ is dense in D(t).

Let H be a Hilbert space and let A : D(A) → D(A) be a sectorial operator in H. We say
that A is maximal sectorial in D(A) if it has no proper sectorial extension A in D(A). Max-
imal sectorial operators are useful in operator representations of sectorial forms as seen
from the following theorem which is referred to in the literature as Kato’s first represen-
tation theorem.

Theorem . Let t be a densely defined closed sectorial sesquilinear form in a Hilbert
space H. There exists a maximal sectorial operator A in H such that

(i) D(A) ⊂ D(t) and

t(u, v) = 〈Au, v〉

for every u ∈ D(A) and v ∈ D(t);
(ii) D(A) is a core of t;

(iii) if u ∈ D(t), w ∈H and

t(u, v) = 〈w, v〉

holds for every v belonging to a core of t, then u ∈ D(A) and Au = w.
The maximal sectorial operator A is uniquely determined by condition (i).

3 Relations on sets
3.1 Preliminaries
Let U andV be two nonempty sets. By a relation T fromU to V we mean a mapping whose
domain D(T ) is a nonempty subset of U , and taking values in V\∅, the collection of all
nonempty subsets of V . Such a mapping T is also referred to as a multi-valued operator
or at times as a set-valued function. If T maps the elements of its domain to singletons,
then T is said to be a single-valued mapping or operator. Let T be a relation from U to
V , and let T (u) denote the image of an element u ∈ U under T . If we define T (u) = ∅ for
u ∈ U and u /∈ D(T), then the domain D(T ) is given by

D(T ) =
{

u ∈ U : T (u) �= ∅}

.
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Denote by R(U ,V) the class of all relations from U to V . If T belongs to R(U ,V), the graph
of T , which we denote by G(T ), is the subset of U × V defined by

G(T ) =
{

(u, v) ∈ U × V : u ∈ D(T ), v ∈ T (u)
}

.

A relation T ∈ R(U ,V) is uniquely determined by its graph, and conversely any nonempty
subset of U × V uniquely determines a relation T ∈ R(U ,V).

For a relation T ∈ R(U ,V), we define its inverse T – as the relation from V to U whose
graph G(T –) is given by

G
(

T –) =
{

(v, u) ∈ V × U : (u, v) ∈ G(T)
}

. (.)

Let T ∈ R(U ,V). Given a subset M of U , we define the image of M, T(M) to be

T (M) =
⋃{

T(m) : m ∈M∩ D(T)
}

.

With this notation we define the range of T by

R(T ) := T (U ).

We say that T is surjective if R(T ) = V and that it is injective if T – is single-valued. It T is
injective then we have the implication

T (u) = T (u) ⇒ u = u for u, u ∈ D(T ).

Let N be a nonempty subset of V . The definition of T – given in (.) above implies that

T –(N ) =
{

u ∈ D(T ) : N ∩ T (u) �= ∅}

. (.)

If in particular v ∈ R(T ), then

T –(v) =
{

u ∈ D(T ) : v ∈ T (u)
}

.

Let T ∈ R(U ,V) and let M be a subset of U such that

M∩ D(T ) �= ∅.

We define the restriction of T to M to be the relation T |M ∈ R(U ,V) with domain
D(T |M) = D(T ) ∩M given by

T |M(w) = T (w) for w ∈M.

Given two relations S and T in R(U ,V), we say that T is an extension of S if

T |D(S) = S .

If T is an extension of S , then G(S) ⊂ G(T ). The converse is not necessarily true (see the
remark following Theorem .).

For a detailed study of relations, we refer to [–] and [].
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3.2 Linear relations
Let X and Y be linear spaces over a field K = R (or C) and let T ∈ R(X, Y ). We say that T
is a linear relation or a multi-valued linear operator if for all x, z ∈ D(T ) and any nonzero
scalar α we have

() T(x) + T (z) = T (x + z),
() αT (x) = T (αx).

The equalities in () and () above are understood to be set equalities. These two condi-
tions indirectly imply that the domain of a linear relation is a linear subspace. The class of
linear relations in R(X, Y ) will be denoted by LR(X, Y ). If X = Y then we denote LR(X, X)
by LR(X). We say that T is a linear relation in X if T ∈ LR(X). We shall use the term op-
erator to refer to a single-valued linear operator while a multi-valued linear operator will
be generally referred to as a linear relation.

Let T be a linear relation in a Hilbert H with inner product 〈·, ·〉. We define the adjoint
T ∗ of T in H by

G
(

T ∗) =
{

(s, w) ∈H×H : 〈v, s〉 = 〈u, w〉 for all (u, v) ∈ G(T )
}

.

We say that a linear relation T is symmetric if G(T ) ⊂ G(T ∗) and that it is selfadjoint if
G(T ) = G(T ∗). Note that if T is symmetric then 〈u, v〉 is real for every (u, v) ∈ G(T ).

Let T be a symmetric linear relation in H. We say that T is semi-bounded below by a
real number α if 〈k, h〉 ≥ α〈h, h〉 for all (h, k) ∈ G(T ). It is said to be semi-bounded above
by a real number β if 〈k, h〉 ≤ β〈h, h〉 for all (h, k) ∈ G(T ). We say that T is semi-bounded
if it is either bounded below or above.

For a linear relation T in H, we define its numerical range �(T ) by

�(T ) =
{〈v, u〉 : (u, v) ∈ G(T ),‖u‖ = 

}

.

By analogy with linear operators, see [], we say that T is accretive if

�(T ) ⊂ {z ∈C : Re z ≥ }

and that it is sectorial if it is accretive and �(T ) is contained in the sector

∣
∣arg(z – γ )

∣
∣ ≤ θ <

π


, γ ∈ R.

As before, the constants γ and θ , which are not unique, are referred to as a vertex and
the corresponding angle, respectively. The theory of numerical ranges and sectoriality of
operators and/or linear relations has been investigated by many authors. We mention [,
, , ] and [] where one can find a thorough account of some of these concepts.

We conclude this section with the following three theorems which are taken from [].

Theorem . Let T ∈ R(X, Y ). The following properties are equivalent.
(i) T is a linear relation.

(ii) G(T ) is a linear subspace of X × Y .
(iii) T – is a linear relation.
(iv) G(T –) is a linear subspace of Y × X .
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Corollary . Let T ∈ R(X, Y ).
(i) Then T is a linear relation if and only if

T (αx + βx) = αT (x) + βT (x)

holds for all x, x ∈ D(T ) and some nonzero scalars α and β .
(ii) If T is a linear relation, then T () and T –() are linear subspaces.

For a linear relation T , the subspace T –() is called the null space (or kernel) of T and
is denoted by N(T ).

Theorem . Let T be a linear relation in a Hilbert space H and let x ∈ D(T ). Then
y ∈ T (x) if and only if

T (x) = T () + y.

Theorem . shows that
(i) T is single-valued if and only if T() = {};

(ii) if S and T are two linear relations in a Hilbert space H such that G(S) ⊂ G(T ), then
T is an extension of S if and only if S() = T ().

Theorem . Let T ∈ R(X, Y ). Then T is a linear relation if and only if for all x, x ∈ D(T )
and all scalars α and β ,

αT (x) + βT (x) ⊂ T (αx + βx).

4 Operator representation of sectorial linear relations and applications
Let T be a sectorial linear relation in a Hilbert space H. As in the case of sectorial op-
erators, we say that T is maximal sectorial in H if there does not exist a sectorial linear
relation T in H such that G(T ) ⊂ G(T).

If H is a Hilbert space and S is a closed linear subspace of H × H, then (see [, ] and
[])

S = S∞ ⊕ S, (.)

where

S∞ = S ∩ ({} ⊕H
)

=
{

(, s) : (, s) ∈ S
}

and

S = S � S∞

are orthogonal closed linear subspaces with S being the graph of some closed linear op-
erator A. Let S be a linear relation in H whose graph is the linear subspace S, that is,
G(S) = S. If s ∈ D(S) then (.) implies that

S(s) = S() + As. (.)
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If the linear subspace S is not closed, then there is no guarantee that decomposition (.)
does exist, and therefore representation (.) may not exist. In this section, we show that
representation (.) holds for maximal sectorial relations T without requiring that G(T )
be closed. We also show that the operator A is maximal sectorial in D(A) if and only if T
is maximal sectorial.

For a sectorial linear relation T in a Hilbert space H and s ∈ D(T ), we show that there
exists a sectorial operator A in H with D(A) = D(T ) such that

T (s) ⊂ D(T )
⊥

+ As

without the maximality assumption and use it to show that every sectorial linear relation
T is form closable, meaning that the form associated with T has a closed extension.

Lemma . Let T be a linear relation in a Hilbert space H with domain D(T ), and let h
be an element of H such that h ∈ D(T )

⊥
but h /∈ T (). Let C be a linear subspace of C. The

relation T̃ defined on D(T ) by

T̃ (k) = T (k) + ζh ∀ζ ∈ C (.)

is a linear relation in H such that G(T ) ⊂ G(T̃ ) and �(T̃ ) = �(T ).

Note that the equality in (.) is an equality of sets. The plus sign on the right-hand side
of this equality is understood to mean that to each element of T(k) we add ζh for all ζ ∈ C.
In other words,

R(T̃ ) =
{

k′ + ζh : k′ ∈ R(T ), ζ ∈ C
}

.

Proof First we prove the linearity of T̃ . To do this we let

k, k ∈ D(T̃ ) = D(T ).

Then

T̃ (k + k) = T (k + k) + ζh ∀ζ ∈ C

=
[

T (k) + T (k)
]

+ ζh ∀ζ ∈ C

=
[

T (k) + αh ∀α ∈ C
]

+
[

T (k) + βh ∀β ∈ C
]

= T̃ (k) + T̃ (k).

We also have that for γ ∈C,

T̃ (γ k) = T (γ k) + ζh ∀ζ ∈ C

= γT (k) + ζh ∀ζ ∈ C

= γ
[

T (k) + ζ ′h
] ∀ζ ′ ∈ C

= γ T̃(k).
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The condition h /∈ T () implies that T () is a proper subset of T̃ (). It therefore follows
from Theorem . that G(T ) ⊂ G(T̃ ).

To prove the equality of the numerical ranges, we let k′ ∈ T̃ (k). Then there exist elements
l ∈ T (k) and δ ∈ C such that k′ = l + δh. Hence

〈

k′, k
〉

= 〈l + δh, k〉 = 〈l, k〉 + δ〈h, l〉 = 〈l, k〉.

Hence, given k′ ∈ T̃ (k), there exists an element l ∈ T (k) such that

〈

k′, k
〉

= 〈l, k〉. (.)

Similarly, given an element l ∈ T (k), there exists an element k′ ∈ T̃ (k) such that (.) holds.
This shows that

�(T̃ ) = �(T ). �

We know that the numerical range �(T ) of a sectorial linear relation T satisfies the
condition �(T ) �= C. The following theorem is particularly useful when dealing with this
type of linear relations.

Theorem . Let T be a linear relation in a Hilbert space H with domain D(T ) and
numerical range �(T ).

(i) If �(T ) �= C then T () ⊥ D(T ).
(ii) If T is a maximal sectorial linear relation, then T () = D(T )

⊥
.

Proof (i) Assume that �(T ) �= C. Then there is at least one element α ∈ C such that α /∈
�(T ). Since T is not single-valued, it follows that T () �= {}. Hence there exists a nonzero
element h of T (). Let k ∈ D(T ) with ‖k‖ = . Such k exists since D(T ) is a linear subspace
of H. Let k′ ∈ T (k). Then k′ + ξh ∈ T (k) for every ξ ∈ C. This follows from Theorem .
and the fact that T () is a linear subspace of H (see Corollary .). Hence

〈

k′ + ξh, k
〉 ∈ �(T ) ∀ξ ∈ C,

that is,

〈

k′, k
〉

+ ξ 〈h, k〉 ∈ �(T ) ∀ξ ∈C.

If 〈h, k〉 �=  then

〈

k′, k
〉

+ ξ 〈h, k〉 = α

for some suitable choice of ξ , contradicting the fact that α /∈ �(T ). Hence 〈h, k〉 =  for
every h ∈ T () and every k ∈ D(T ) with ‖k‖ = . The result then follows from the linearity
of D(T ) and the continuity of the inner product.

(ii) Since �(T ) �= C, it follows from part (i) that T () ⊂ D(T )
⊥

.
Now assume that there exists h ∈ D(T )

⊥
such that h /∈ T (). Lemma . implies that

there exists a sectorial linear relation T̃ in H such that G(T ) ⊂ G(T̃ ), contradicting the
maximality of T . Hence D(T )

⊥ ⊂ T (). It therefore follows that T () = D(T )
⊥

. �
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Part (i) of the preceding theorem also implies that if T() � D(T)
⊥

then

�(T) = C.

Corollary . Let T be a densely defined sectorial linear relation in a Hilbert space H.
Then T is an operator.

The lemma below is helpful in defining the sectorial form associated with a sectorial
linear relation T .

Lemma . Let T be a sectorial linear relation in a Hilbert space H with domain D(T ),
and let x, y ∈ D(T ). The equality

〈x, y〉 = 〈x, y〉

holds for all x, x ∈ T (x).

Proof Let x, y ∈ D(T ) and let x, x ∈ T (x). Theorem . implies that

x = x + z

for some z ∈ T (). Hence

〈x, y〉 = 〈x + z, y〉 = 〈x, y〉 + 〈z, y〉 = 〈x, y〉,

where the last equality follows from the fact that y ⊥ T() by Theorem .. �

Lemma . Let T be a sectorial linear relation in a Hilbert space H and assume that there
exists a sectorial operator A in H with D(A) = D(T ) and R(A) ⊂ D(A) such that

T (x) = D(T )
⊥

+ Ax (.)

for all x ∈ D(T ) = D(A). If T̃ is another sectorial linear relation inH such that G(T ) ⊂ G(T̃ )
and if (y, y′) is a pair such that (y, y′) ∈ G(T̃ ) but (y, y′) /∈ G(T ), then y ∈ D(T )\D(T ), the
orthogonal complement of D(T ) in D(T ).

Proof Since T is sectorial, Theorem . implies that T () ⊥ D(T ). Equality (.) together
with the condition A() =  (A is linear) imply that

T () = D(T )
⊥

. (.)

Let (y, y′) be a pair such that (y, y′) ∈ G(T̃ ) but (y, y′) /∈ G(T ) and decompose y and y′ as

y = y + y, y′ = y′
 + y′

,

where y, y′
 ∈ D(T )

⊥
and y, y′

 ∈ D(T ). Equality (.) implies that

y, y′
 ∈ T () ⊂ T̃ ().
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The linearity of T̃ () implies that –y′
 ∈ T̃ (). Since T̃ (y) = T̃ () + y′ (see Theorem .)

and –y′
 ∈ T̃(), it follows that –y′

 + y′ = y′
 ∈ T̃ (y), that is,

(

y, Py′) ∈ G(T̃ ), (.)

where P is the orthogonal projection of H onto D(T ).
The sectoriality of T̃ combined with Theorem . imply that

D(T̃ ) ⊥ T̃ () ⊃ T (),

and so

〈y, y〉 = . (.)

Since y ∈ T () and T () ⊥ D(T ), equality (.) implies that 〈y, y〉 = , and so y = .
Hence

y = y ∈ D(T ). (.)

It remains to show that

y /∈ D(T ) = D(A). (.)

We do this by contradiction.
First we note that (.) implies that D(T̃) ⊂ D(T ) and therefore D(T̃) ⊂ D(T ). Since

D(T ) ⊂ D(T̃ ) we see that D(T ) ⊂ D(T̃ ). Hence

D(T̃ ) = D(T ). (.)

To arrive at a contradiction, assume that (.) does not hold. Then y ∈ D(T ). Equality
(.) means that

Ay ∈ T(y) (.)

since  ∈ D(T )
⊥

. Furthermore, we have the situation

Py′ �= Ay, (.)

where as before P denotes the orthogonal projection of H onto D(T ). Otherwise y′ would
be decomposed as

y′ = ỹ + Ay, (.)

where ỹ ∈ D(T )
⊥

. Equality (.) would then mean that (y, y′) ∈ G(T ) (see (.)), which is
not the case.
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Now, condition (.) means that (y, Ay) ∈ G(T ) and that (y, Ay) ∈ G(T̃ ) since G(T ) ⊂
G(T̃ ). Since we also have that (y, Py′) ∈ G(T̃) (see (.)), the linearity of T̃ implies that

Ay – Py′ ∈ T̃ (y) – T̃ (y) = T̃ (y – y) = T̃ ().

It follows from (.) that Ay–Py′ �= . Since R(A) ⊂ D(T ) it follows that the two conditions

Ay – Py′ ∈ T̃ () (.)

and

 �= Ay – Py′ ∈ D(T ) = D(T̃ ) (.)

hold at the same time. The equality in (.) is obtained from (.). Theorem . implies
that (.) and (.) cannot hold simultaneously since T̃ is assumed to be a sectorial
linear relation. This contradiction shows that (.) holds and this concludes the proof.

�

Theorem . Let T be a linear relation in a Hilbert space H with domain D(T ).
(i) T is sectorial if and only if there exists a sectorial operator A in H with D(A) = D(T )

and R(A) ⊂ D(A) such that

T (x) ⊂ D(T )
⊥

+ Ax (.)

for all x ∈ D(T ).
(ii) T is maximal sectorial if and only if the operator A is maximal sectorial in D(T ) and

T (x) = T () + Ax (.)

for all x ∈ D(T ) = D(A).

Proof (i) Let T be a sectorial linear relation in H with domain D(T ) and decompose H as

H = D(T )
⊥ ⊕ D(T ). (.)

Let k ∈ D(T ) and let k′ ∈ T (k). Then k′ can be decomposed as

k′ = k′
 + k′

,

where k′
 ∈ D(T)

⊥
and k′

 ∈ D(T). Theorem . implies that

T(k) = T() + k′ =
[

T() + k′

]

+ k′
. (.)

Let P be the orthogonal projection of H onto D(T ). Since T () ⊂ D(T )
⊥

(see part (i)
of Theorem .) and D(T )

⊥
is a linear subspace of H, equality (.) shows that Px′ is

irrespective of the choice of x′ ∈ T (k), that is, if x′
, x′

 ∈ T (k) then Px′
 = Px′

. Armed with
this fact, we define an operator A on D(T ) by

Ak = Pk′, k′ ∈ T (k). (.)
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Equality (.) implies that R(A) ⊂ D(T ) = D(A). The linearity of both T and P implies
that A is a linear operator. Equality (.) then implies that (.) holds.

To show that A is sectorial, we show that the numerical ranges satisfy the equality

�(A) = �(T ). (.)

The validity of (.) implies that the reverse implication holds. Now let k ∈ D(T ) with
‖k‖ =  and let k̃ ∈ T (k). Relation (.) implies that k̃ can be decomposed as

k̃ = k̂ + Ak (.)

for some k̂ ∈ D(T )
⊥

. Hence

〈k̃, k〉 = 〈k̂ + Ak, k〉 = 〈Ak, k〉. (.)

The equality �(T ) = �(A) then follows from (.) and Lemma .. This shows that the
operator A is sectorial.

(ii) Now assume that T is a maximal sectorial linear relation in H with domain D(T ).
Theorem . implies that T () = D(T )

⊥
. In this case decomposition (.) becomes

H = T () ⊕ D(T ). (.)

Equality (.) can now be reformulated as

T (k) = T () + k′ =
[

T () + k′

]

+ k′
 = T () + k′

. (.)

The last equality in (.) is a result of the fact that T () is a linear subspace of H. With
A as defined in part (i) above, we see that (.) holds in this case.

We now consider the maximality question. If the operator A would have a proper secto-
rial extension Ã in D(A), then Ã would generate a proper sectorial extension T̃ of T with
�(T̃ ) = �(Ã) defined by

T̃ (x) = T () + Ã(x), x ∈ D(T ),

contradicting the maximality of T . Hence if T is a maximal sectorial linear relation in H,
then the operator A is maximal sectorial in D(T ).

Now let us assume that an operator A with the stated properties does exist and suppose
that T is not maximal sectorial in H. Then there exists a sectorial linear relation T̃ in H
such that G(T ) ⊂ G(T̃ ). Let (y, y′) be a pair such that (y, y′) ∈ G(T̃ ) but (y, y′) /∈ G(T ). As
in the proof of Lemma ., it can be shown that

(

y, Py′) ∈ G(T̃ ), (.)

where P is the orthogonal projection of H onto D(T ). Theorem . implies that we can
express T̃ (y) as

T̃ (y) = T̃ () + Py′. (.)
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Since T̃ is sectorial, it follows that T̃ () ⊥ D(T̃ ) and so (.) implies that

〈

y′, y
〉

=
〈

Py′, y
〉

. (.)

Let D(T )\D(T ) denote the complement of D(T ) in D(T ). Lemma . implies that

y ∈ D(T )\D(T ). (.)

Condition (.) shows that D(T̃ ) ⊂ D(T ). Define an operator B : D(T̃ ) → D(T ) by set-
ting By = Py′. Since R(A) ⊂ D(T ) and T () ⊥ D(T ), (.) ensures that B is well defined
on D(T ) and coincides with A on this domain while (.) ensures that it is well defined
on the whole of D(T̃ ). Since T̃ is sectorial, (.) implies that the operator B is also sec-
torial. Hence B is a sectorial extension of A. This contradicts the maximality of A. This
contradiction implies that T is a maximal sectorial linear relation in H. �

Theorem . Let T be a sectorial linear relation in a Hilbert space H with domain D(T ).
Then T is form closable, that is, the form

t(u, v) =
〈

u′, v
〉

, u′ ∈ T (u), u, v ∈ D(T ) (.)

is closable.

Note that the form t given by (.) is well defined since the inner product 〈u′, v〉 is
independent of the choice of the vector u′ ∈ T (u) by Lemma ..

Proof Let T be a sectorial linear relation inH and let u, v ∈ D(T ). Theorem . guarantees
the existence of a sectorial operator

A : D(T ) → D(T )

such that for every u ∈ D(T ) and every u′ ∈ T (u), there exists a vector w ∈ D(T )
⊥

such
that

u′ = w + Au. (.)

Equality (.) implies that for every v ∈ D(T ),

〈

u′, v
〉

= 〈Au, v〉.

The conclusion that the form t is closable then follows from Theorem .. �

In the next theorem we show that every closed sectorial sesquilinear form in a Hilbert
space H has an associated sectorial linear relation in H.

Theorem . Let t be a non-densely defined closed sectorial sesquilinear form in a Hilbert
space H with domain D(t).
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(a) (i) There exists a sectorial linear relation T in H such that D(T ) ⊂ D(t),
T () = D(t)

⊥
and

t(u, v) =
〈

u′, v
〉

(.)

for every u ∈ D(T ) and v ∈ D(t), where u′ is an arbitrary vector in T (u).
(ii) If u ∈ D(t), w ∈ D(t) and t(u, v) = 〈w, v〉 holds for every v belonging to a core of t,

then u ∈ D(T ) and

T (u) = D(t)
⊥

+ w.

(iii) The linear relation T in (i) is unique.
(b) If t is bounded, the relation T in (a) is maximal sectorial.

Proof Let H be a Hilbert space and let t be a closed sesquilinear form defined in H with
domain D(t). Since t is densely defined in D(t), Theorem .(i) implies that there exists a
maximal sectorial operator A in D(t) such that D(A) ⊂ D(t) and t(u, v) = 〈Au, v〉 for every
u ∈ D(A) and every v ∈ D(t). Define a linear relation T on D(T ) = D(A) by

T (x) = D(t)
⊥

+ Ax, x ∈ D(A). (.)

The linearity of the relation T follows from the fact that D(t)
⊥

is a linear subspace ofH and
that A is linear. The linearity of A also implies that T () = D(t)

⊥
. Definition (.) shows

that T inherits the sectoriality from A while the condition D(T ) ⊂ D(t) is a consequence
of the inclusion D(T ) = D(A) ⊂ D(t). Equality (.) is obtained using the fact that for
u ∈ D(T ) = D(A), u′ ∈ T (u) and v ∈ D(t),

〈

u′, v
〉

= 〈Au, v〉 = t(u, v). (.)

The first equality in (.) is a consequence of (.). This proves (a)(i).
Part (a)(ii) follows immediately from Theorem .(iii) and (.). To prove the unique-

ness assertion in part (a)(iii), we let S be another sectorial linear relation in H with
D(S) ⊂ D(t), S() = D(t)

⊥
and such that

t(u, v) =
〈

u′, v
〉

(.)

for every u ∈ D(S) and v ∈ D(t), where u′ is an arbitrary vector in S(u). Part (a)(ii) of the
theorem then implies that u ∈ D(T ) and

T (u) = D(t)
⊥

+ u′. (.)

Equality (.) implies that (u, u′) ∈ G(T ) and that G(S) ⊂ G(T ). Since S() = T () it
follows that T is an extension of S .

To prove part (b) of the theorem, note that if t is bounded then Remark . implies that
D(A) = D(t) since D(A) is a core of t by part (ii) of Theorem .. In this case (.) can be
written in the form

T (x) = D(A)
⊥

+ Ax, x ∈ D(A). (.)
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The maximality of T defined by (.) follows from part (ii) of Theorem .. This con-
cludes the proof of the theorem. �

Competing interests
The author declares that he has no competing interests.

Received: 7 November 2014 Accepted: 29 January 2015

References
1. Arens, R: Operational calculus of linear relations. Pac. J. Math. 11, 9-23 (1961)
2. Coddington, EA, de Snoo, HSV: Positive selfadjoint extensions of positive symmetric subspaces. Math. Z. 159, 203-214

(1978)
3. Coddington, EA: Extension theory of formally normal and symmetric subspaces. Mem. Am. Math. Soc. 134, 1-80 (1973)
4. Kato, T: Perturbation Theory for Linear Operators. Springer, New York (1980)
5. Cross, R: Multivalued Linear Operators. Dekker, New York (1998)
6. Arlinskii, YM: Boundary conditions for maximal sectorial extensions of sectorial operators. Math. Nachr. 209, 5-36

(2000)
7. Arlinskii, YM, Popov, AB: On sectorial matrices. Linear Algebra Appl. 370, 133-146 (2003)
8. Malamud, M: Operator holes and extensions of sectorial operators and dual pairs of contractions. Math. Nachr. 279,

625-655 (2006)


	Operator representation of sectorial linear relations and applications
	Abstract
	MSC
	Keywords

	Introduction
	Sesquilinear forms and related results
	Relations on sets
	Preliminaries
	Linear relations

	Operator representation of sectorial linear relations and applications
	Competing interests
	References


