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Abstract
In this paper, we give three different characterizations for the boundedness and
compactness of generalized weighted composition operators on Bloch-type spaces,
especially we characterize them in terms of the sequence of Bloch-type norms of the
generalized weighted composition operator applied to the functions Ij(z) = zj .
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1 Introduction
Let D be an open unit disk in the complex plane C and H(D) be the space of analytic
functions on D. For  < α < ∞, the Bloch-type space (or α-Bloch space) Bα is the space
that consists of all analytic functions f on D such that

Bα(f ) = sup
z∈D

(
 – |z|)α∣∣f ′(z)

∣∣ < ∞.

Bα becomes a Banach space under the norm ‖f ‖Bα = |f ()| + Bα(f ). When α = , B = B is
the well-known Bloch space. See [, ] for more information on Bloch-type spaces.

Throughout this paper, ϕ denotes a nonconstant analytic self-map of D. The composi-
tion operator Cϕ induced by ϕ is defined by Cϕ f = f ◦ϕ for f ∈ H(D). For a fixed u ∈ H(D),
define a linear operator uCϕ as follows:

uCϕ f = u(f ◦ ϕ), f ∈ H(D).

The operator uCϕ is called the weighted composition operator. The weighted composition
operator is a generalization of the composition operator and the multiplication operator
defined by Muf = uf .

A basic problem concerning composition operators on various Banach function spaces
is to relate the operator theoretic properties of Cϕ to the function theoretic properties of
the symbol ϕ, which attracted a lot of attention recently; the reader can refer to [].

The differentiation operator D is defined by Df = f ′, f ∈ H(D). For a nonnegative inte-
ger n, we define

(
Df

)
(z) = f (z),

(
Dnf

)
(z) = f (n)(z), n ≥ , f ∈ H(D).
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Let ϕ be an analytic self-map of D, u ∈ H(D), and let n be a nonnegative integer. Define the
linear operator Dn

ϕ,u, called the generalized weighted composition operator, by (see [–])

(
Dn

ϕ,uf
)
(z) = u(z) · (Dnf

)(
ϕ(z)

)
, f ∈ H(D), z ∈D.

When n =  and u(z) = , Dn
ϕ,u is the composition operator Cϕ . If n = , then Dn

ϕ,u is the
weighted composition operator uCϕ . If n = , u(z) = ϕ′(z), then Dn

ϕ,u = DCϕ , which was
studied in [–]. For u(z) = , Dn

ϕ,u = CϕDn, which was studied in [, –]. For the study
of the generalized weighted composition operator on various function spaces, see, for ex-
ample, [–, –].

It is well known that the composition operator is bounded on the Bloch space by the
Schwarz-Pick lemma. Composition operators and weighted composition operators on
Bloch-type spaces were studied, for example, in [–]. The product-type operators on
or into Bloch-type spaces have been studied in many papers recently, see [–, , , ,
–] for example. In [], Wulan et al. obtained a characterization for the compactness
of the composition operators acting on the Bloch space as follows.

Theorem A Let ϕ be an analytic self-map of D. Then Cϕ : B → B is compact if and only if

lim
j→∞

∥
∥ϕj∥∥

B = .

In [], Wu and Wulan obtained two characterizations for the compactness of the prod-
uct of differentiation and composition operators acting on the Bloch space as follows.

Theorem B Let ϕ be an analytic self-map of D, n ∈ N. Then the following statements are
equivalent.

(a) CϕDn : B → B is compact.
(b) limj→∞ ‖CϕDnIj‖B = , where Ij(z) = zj.
(c) lim|a|→ ‖CϕDnσa(z)‖B = , where σa(z) = (a – z)/( – az) is the Möbius map on D.

Motivated by Theorems A and B, in this work we show that Dn
ϕ,u : Bα → Bβ is bounded

(respectively, compact) if and only if the sequence (jα–‖Dn
ϕ,uIj‖Bβ )∞j=n is bounded (respec-

tively, convergent to  as j → ∞), where Ij(z) = zj. Moreover, we use two families of func-
tions to characterize the boundedness and compactness of the operator Dn

ϕ,u.
Throughout the paper, we denote by C a positive constant which may differ from one

occurrence to the next. In addition, we say that A 	 B if there exists a constant C such that
A ≤ CB. The symbol A ≈ B means that A 	 B 	 A.

2 Main results and proofs
In this section, we give our main results and proofs. First we characterize the boundedness
of the operator Dn

ϕ,u : Bα → Bβ .

Theorem  Let n be a positive integer,  < α,β < ∞, u ∈ H(D) and ϕ be an analytic self-
map of D. Then the following statements are equivalent.



Zhu Journal of Inequalities and Applications  (2015) 2015:59 Page 3 of 9

(a) The operator Dn
ϕ,u : Bα → Bβ is bounded.

(b) supj≥n jα–‖Dn
ϕ,uIj(z)‖Bβ < ∞, where Ij(z) = zj.

(c) u ∈ Bβ , supz∈D( – |z|)β |u(z)||ϕ′(z)| < ∞ and

sup
a∈D

∥
∥Dn

ϕ,ufa
∥
∥
Bβ < ∞, sup

a∈D

∥
∥Dn

ϕ,uha
∥
∥
Bβ < ∞,

where

fa(z) =
 – |a|

( – az)α
and ha(z) =

( – |a|)

( – az)α+ , z ∈D.

(d)

sup
z∈D

( – |z|)β |u(z)||ϕ′(z)|
( – |ϕ(z)|)α+n < ∞ and sup

z∈D
( – |z|)β |u′(z)|
( – |ϕ(z)|)α+n– < ∞.

Proof (a) ⇒ (b) This implication is obvious, since for j ∈N, the function jα–Ij is bounded
in Bα and jα–‖Ij‖Bα ≈ .

(b) ⇒ (c) Assume that (b) holds and let Q = supj≥n jα–‖Dn
ϕ,uIj‖Bβ . For any a ∈ D, it is

easy to see that fa and ha have bounded norms in Bα . It is clear that

fa(z) =
(
 – |a|)

∞∑

j=

�(j + α)
j!�(α)

ajzj,

ha(z) =
(
 – |a|)

∞∑

j=

�(j +  + α)
j!�(α + )

ajzj.

By Stirling’s formula, we have �(j+α)
j!�(α) ≈ jα– as j → ∞. Using linearity we get

∥
∥Dn

ϕ,ufa
∥
∥
Bβ ≤ C

(
 – |a|)

∞∑

j=

|a|jjα–∥∥Dn
ϕ,uIj∥∥

Bβ 	 Q and

∥∥Dn
ϕ,uha

∥∥
Bβ ≤ C

(
 – |a|)

∞∑

j=

(j + )|a|jjα–∥∥Dn
ϕ,uIj∥∥

Bβ 	 Q.

Therefore, by the arbitrariness of a ∈ D,

sup
a∈D

∥
∥Dn

ϕ,ufa
∥
∥
Bβ < ∞, sup

a∈D

∥
∥Dn

ϕ,uha
∥
∥
Bβ < ∞.

In addition, applying the operator Dn
ϕ,u to Ij with j = n, n + , we obtain

(
Dn

ϕ,uIn)′(z) = u′(z)n! and
(
Dn

ϕ,uIn+)′(z) = u′(z)(n + )!ϕ(z) + u(z)(n + )!ϕ′(z),

while for j < n, (Dn
ϕ,uIj)′(z) = . Thus, using the boundedness of the function ϕ, we have

u ∈ Bβ and supz∈D( – |z|)β |u(z)||ϕ′(z)| < ∞.
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(c) ⇒ (d) Assume that (c) holds. Let

C := sup
a∈D

∥∥Dn
ϕ,ufa

∥∥
Bβ , C := sup

a∈D

∥∥Dn
ϕ,uha

∥∥
Bβ .

For w ∈ D, set

gw(z) =
 – |w|

( – wz)α
–

α

α + n
( – |w|)

( – wz)α+ , w ∈D.

It is easy to check that gw ∈ Bα , ‖gw‖Bα < ∞ for every w ∈D. Moreover,

sup
w∈D

∥∥Dn
ϕ,ugw

∥∥
Bβ ≤ sup

w∈D

∥∥Dn
ϕ,ufw

∥∥
Bβ +

α

α + n
sup
w∈D

∥∥Dn
ϕ,uhw

∥∥
Bβ

≤ C +
α

α + n
C < ∞.

In addition,

g(n)
ϕ(λ)

(
ϕ(λ)

)
= ,

∣∣g(n+)
ϕ(λ)

(
ϕ(λ)

)∣∣ = α(α + ) · · · (α + n – )
|ϕ(λ)|n+

( – |ϕ(λ)|)α+n .

It follows that

C +
α

α + n
C >

∥
∥Dn

ϕ,ugϕ(λ)
∥
∥
Bβ

≥ α(α + ) · · · (α + n – )
( – |λ|)β |u(λ)||ϕ′(λ)||ϕ(λ)|n+

( – |ϕ(λ)|)α+n (.)

for any λ ∈D. For any fixed r ∈ (, ), from (.) we have

sup
|ϕ(λ)|>r

( – |λ|)β |u(λ)||ϕ′(λ)|
( – |ϕ(λ)|)α+n ≤ sup

|ϕ(λ)|>r


rn+

( – |λ|)β |u(λ)||ϕ′(λ)||ϕ(λ)|n+

( – |ϕ(λ)|)α+n

≤ C + α
α+n C

rn+α(α + ) · · · (α + n – )
< ∞. (.)

From the assumption that supz∈D( – |z|)β |u(z)||ϕ′(z)| < ∞, we get

sup
|ϕ(λ)|≤r

( – |λ|)β |u(λ)||ϕ′(λ)|
( – |ϕ(λ)|)α+n ≤ sup|ϕ(λ)|≤r( – |λ|)β |u(λ)||ϕ′(λ)|

( – r)α+n < ∞. (.)

Therefore, (.) and (.) yield the first inequality of (d).
Next, note that

C ≥ ∥∥Dn
ϕ,ufϕ(λ)

∥∥
Bβ

≥ α(α + ) · · · (α + n – )
( – |λ|)β |u′(λ)||ϕ(λ)|n

( – |ϕ(λ)|)α+n–

– α(α + ) · · · (α + n)
( – |λ|)β |u(λ)||ϕ′(λ)||ϕ(λ)|n+

( – |ϕ(λ)|)α+n
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for any λ ∈D. From (.) we get

( – |λ|)β |u′(λ)||ϕ(λ)|n
( – |ϕ(λ)|)α+n–

≤ ‖Dn
ϕ,ufϕ(λ)‖Bβ

α(α + ) · · · (α + n – )
+

(α + n)( – |λ|)β |u(λ)||ϕ′(λ)||ϕ(λ)|n+

( – |ϕ(λ)|)α+n

≤ C

α(α + ) · · · (α + n – )
+

(α + n)C + αC

α(α + ) · · · (α + n – )

≤ (α + n + )C + αC

α(α + ) · · · (α + n – )
.

By arbitrary λ ∈D, we get

sup
λ∈D

( – |λ|)β |u′(λ)||ϕ(λ)|n
( – |ϕ(λ)|)α+n– < ∞. (.)

Combining (.) with the fact that u ∈ Bβ , similarly to the former proof, we get the second
inequality of (d).

(d) ⇒ (a) For any f ∈ Bα , we have

(
 – |z|)β ∣

∣(Dn
ϕ,uf

)′(z)
∣
∣

=
(
 – |z|)β ∣

∣(f (n)(ϕ)u
)′(z)

∣
∣

≤ (
 – |z|)β ∣∣u(z)

∣∣∣∣ϕ′(z)
∣∣∣∣f (n+)(ϕ(z)

)∣∣ +
(
 – |z|)β ∣∣u′(z)

∣∣∣∣f (n)(ϕ(z)
)∣∣

≤ C
( – |z|)β |u(z)||ϕ′(z)|

( – |ϕ(z)|)α+n ‖f ‖Bα + C
( – |z|)β |u′(z)|
( – |ϕ(z)|)α+n– ‖f ‖Bα , (.)

where in the last inequality we used the fact that for f ∈ Bα (see [])

sup
z∈D

(
 – |z|)α∣

∣f ′(z)
∣
∣  ∣

∣f ′()
∣
∣ + · · · +

∣
∣f (n)()

∣
∣ + sup

z∈D

(
 – |z|)α+n∣∣f (n+)(z)

∣
∣.

Moreover

∣∣(Dn
ϕ,uf

)
()

∣∣ =
∣∣f (n)(ϕ()

)
u()

∣∣ ≤ |u()|
( – |ϕ()|)α+n– ‖f ‖Bα .

From (d) we see that

∥
∥Dn

ϕ,uf
∥
∥
Bβ =

∣
∣(Dn

ϕ,uf
)
()

∣
∣ + sup

z∈D

(
 – |z|)β ∣

∣(Dn
ϕ,uf

)′(z)
∣
∣ < ∞.

Therefore the operator Dn
ϕ,u : Bα → Bβ is bounded. The proof is complete. �

For the study of the compactness of Dn
ϕ,u : Bα → Bβ , we need the following lemma, which

can be proved in a standard way; see, for example, Proposition . in [].

Lemma  Let n be a positive integer,  < α,β < ∞, u ∈ H(D) and ϕ be an analytic self-map
of D. Then Dn

ϕ,u : Bα → Bβ is compact if and only if Dn
ϕ,u : Bα → Bβ is bounded and for any
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bounded sequence (fj)j∈N in Bα which converges to zero uniformly on compact subsets of D,
‖Dn

ϕ,ufj‖Bβ →  as j → ∞.

Theorem  Let n be a positive integer,  < α,β < ∞, u ∈ H(D) and ϕ be an analytic self-
map of D such that Dn

ϕ,u : Bα → Bβ is bounded. Then the following statements are equiva-
lent.

(a) Dn
ϕ,u : Bα → Bβ is compact.

(b) limj→∞ jα–‖Dn
ϕ,uIj‖Bβ = , where Ij(z) = zj .

(c) lim|ϕ(a)|→ ‖Dn
ϕ,ufϕ(a)‖Bβ =  and lim|ϕ(a)|→ ‖Dn

ϕ,uhϕ(a)‖Bβ = .
(d)

lim
|ϕ(z)|→

( – |z|)β |u(z)||ϕ′(z)|
( – |ϕ(z)|)n+α

=  and lim
|ϕ(z)|→

( – |z|)β |u′(z)|
( – |ϕ(z)|)n+α– = .

Proof (a) ⇒ (b) Assume that Dn
ϕ,u : Bα → Bβ is compact. Since the sequence {jα–Ij} is

bounded in Bα and converges to  uniformly on compact subsets, by Lemma  it follows
that jα–‖Dn

ϕ,uIj‖Bβ →  as j → ∞.
(b) ⇒ (c) Suppose that (b) holds. Fix ε >  and choose N ∈N such that jα–‖Dn

ϕ,uIj‖Bβ <
ε for all j ≥ N . Let zk ∈ D such that |ϕ(zk)| →  as k → ∞. Arguing as in the proof of
Theorem , we have

∥∥Dn
ϕ,ufϕ(zk )

∥∥
Bβ

≤ C
(
 –

∣∣ϕ(zk)
∣∣)

∞∑

j=

∣∣ϕ(zk)
∣∣jjα–∥∥Dn

ϕ,uIj∥∥
Bβ

= C
(
 –

∣∣ϕ(zk)
∣∣)

(N–∑

j=

∣∣ϕ(zk)
∣∣jjα–∥∥Dn

ϕ,uIj∥∥
Bβ +

∞∑

j=N

∣∣ϕ(zk)
∣∣jjα–∥∥Dn

ϕ,uIj∥∥
Bβ

)

≤ CQ
(
 –

∣
∣ϕ(zk)

∣
∣N)

+ Cε,

where Q = supj≥n jα–‖Dn
ϕ,uIj‖Bβ . Since |ϕ(zk)| →  as k → ∞, from the last inequality and

the arbitrariness of ε, we get limk→∞ ‖Dn
ϕ,ufϕ(zk )‖Bβ = , i.e., lim|ϕ(a)|→ ‖Dn

ϕ,ufϕ(a)‖Bβ = .
Notice that

N–∑

j=

(j + )rj =
 – rN – NrN ( – r)

( – r) ,  ≤ r < ,

arguing as in the proof of Theorem , we get

∥∥Dn
ϕ,uhϕ(zk )

∥∥
Bβ ≤ C

(
 –

∣∣ϕ(zk)
∣∣)

∞∑

j=

∣∣ϕ(zk)
∣∣jjα

∥∥Dn
ϕ,uIj∥∥

Bβ

≤ C
(
 –

∣
∣ϕ(zk)

∣
∣)

N–∑

j=

(j + )
∣
∣ϕ(zk)

∣
∣jjα–∥∥Dn

ϕ,uIj∥∥
Bβ

+ C
(
 –

∣∣ϕ(zk)
∣∣)

∞∑

j=N

(j + )
∣∣ϕ(zk)

∣∣jjα–∥∥Dn
ϕ,uIj∥∥

Bβ

≤ C( –
∣∣ϕ(zk)

∣∣N – N
∣∣ϕ(zk)

∣∣N(
 –

∣∣ϕ(zk)
∣∣) + Cε.
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Therefore, limk→∞ ‖Dn
ϕ,uhϕ(zk )‖Bβ ≤ Cε. By the arbitrariness of ε, we obtain the desired

result.
(c) ⇒ (d) To prove (d) we only need to show that if (zk)k∈N is a sequence in D such that

|ϕ(zk)| →  as k → ∞, then

lim
k→∞

( – |zk|)β |u(zk)||ϕ′(zk)|
( – |ϕ(zk)|)α+n = , lim

k→∞
( – |zk|)β |u′(zk)|
( – |ϕ(zk)|)α+n– = .

Let (zk)k∈N be such a sequence that |ϕ(zk)| →  as k → ∞. Arguing as in the proof of
Theorem , we obtain

lim
k→∞

∥
∥Dn

ϕ,ugϕ(zk )
∥
∥
Bβ ≤ lim

k→∞
∥
∥Dn

ϕ,ufϕ(zk )
∥
∥
Bβ +

α

n + α
lim

k→∞
∥
∥Dn

ϕ,uhϕ(zk )
∥
∥
Bβ = .

Hence limk→∞ ‖Dn
ϕ,ugϕ(zk )‖Bβ = . Similarly to the proof of Theorem , we have

n!( – |zk|)β |u(zk)||ϕ′(zk)||ϕ(zk)|n+

( – |ϕ(zk)|)α+n ≤ ∥∥Dn
ϕ,ugϕ(zk )

∥∥
Bβ →  as k → ∞,

which implies

lim
k→∞

( – |zk|)β |u(zk)||ϕ′(zk)|
( – |ϕ(zk)|)α+n = lim

k→∞
( – |zk|)β |u(zk)||ϕ′(zk)||ϕ(zk)|n+

( – |ϕ(zk)|)α+n = . (.)

In addition,

∥∥Dn
ϕ,ufϕ(zk )

∥∥
Bβ +

(n + )!( – |zk|)β |u(zk)||ϕ′(zk)||ϕ(zk)|n+

( – |ϕ(zk)|)α+n

≥ n!( – |zk|)β |u′(zk)||ϕ(zk)|n
( – |ϕ(zk)|)α+n– .

From (.) and the assumption that ‖Dn
ϕ,ufϕ(zk )‖Bβ →  as k → ∞, we have

lim
k→∞

( – |zk|)β |u′(zk)|
( – |ϕ(zk)|)n = lim

k→∞
( – |zk|)β |u′(zk)||ϕ(zk)|n

( – |ϕ(zk)|)α+n– = ,

as desired.
(d) ⇒ (a) Assume that (fk)k∈N is a bounded sequence in Bα converging to  uniformly

on compact subsets of D. By the assumption, for any ε > , there exists δ ∈ (, ) such that

( – |z|)β |ϕ′(z)||u(z)|
( – |ϕ(z)|)α+n < ε and

( – |z|)β |u′(z)|
( – |ϕ(z)|)α+n– < ε (.)

when δ < |ϕ(z)| < . Suppose that Dn
ϕ,u : Bα → Bβ is bounded, by Theorem , we have

C = sup
z∈D

(
 – |z|)β ∣∣u′(z)

∣∣ < ∞ (.)

and

C = sup
z∈D

(
 – |z|)β ∣∣u(z)

∣∣∣∣ϕ′(z)
∣∣ < ∞. (.)
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Let K = {z ∈D : |ϕ(z)| ≤ δ}. Then by (.) and (.) we have that

sup
z∈D

(
 – |z|)β ∣

∣(Dn
ϕ,ufk

)′(z)
∣
∣

≤ sup
z∈K

(
 – |z|)β ∣∣u(z)

∣∣∣∣ϕ′(z)
∣∣∣∣f (n+)

k
(
ϕ(z)

)∣∣ + sup
z∈K

(
 – |z|)β ∣∣u′(z)

∣∣∣∣f (n)
k

(
ϕ(z)

)∣∣

+ C sup
z∈D\K

( – |z|)β |u(z)||ϕ′(z)|
( – |ϕ(z)|)α+n ‖fk‖Bα + C sup

z∈D\K

( – |z|)β |u′(z)|
( – |ϕ(z)|)α+n– ‖fk‖Bα

≤ C sup
z∈K

∣
∣f (n+)

k
(
ϕ(z)

)∣∣ + C sup
z∈K

∣
∣f (n)

k
(
ϕ(z)

)∣∣ + Cε‖fk‖Bα ,

i.e., we get

∥
∥Dn

ϕ,ufk
∥
∥
Bβ = C sup

|w|≤δ

∣
∣f (n+)

k (w)
∣
∣ + C sup

|w|≤δ

∣
∣f (n)

k (w)
∣
∣

+ Cε‖fk‖Bα +
∣
∣u()

∣
∣
∣
∣f (n)

k
(
ϕ()

)∣∣. (.)

Since fk converges to  uniformly on compact subsets of D as k → ∞, Cauchy’s estimate
gives that f (n)

k →  as k → ∞ on compact subsets of D. Hence, letting k → ∞ in (.) and
using the fact that ε is an arbitrary positive number, we obtain ‖Dn

ϕ,ufk‖Bβ →  as k → ∞.
Applying Lemma  the result follows. �
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12. Stević, S: Products of composition and differentiation operators on the weighted Bergman space. Bull. Belg. Math.

Soc. Simon Stevin 16, 623-635 (2009)
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