Open Access

Generalized weighted composition operators on Bloch-type spaces

Xiangling Zhu^{*}

*Correspondence: jyuzxl@163.com Faculty of Information Technology, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China

Abstract

In this paper, we give three different characterizations for the boundedness and compactness of generalized weighted composition operators on Bloch-type spaces, especially we characterize them in terms of the sequence of Bloch-type norms of the generalized weighted composition operator applied to the functions $l^{i}(z) = z^{i}$. **MSC:** 47B38; 30H30

Keywords: generalized weighted composition operators; composition operator; differentiation operator; Bloch-type space

1 Introduction

Let \mathbb{D} be an open unit disk in the complex plane \mathbb{C} and $H(\mathbb{D})$ be the space of analytic functions on \mathbb{D} . For $0 < \alpha < \infty$, the Bloch-type space (or α -Bloch space) \mathcal{B}^{α} is the space that consists of all analytic functions f on \mathbb{D} such that

$$B_{\alpha}(f) = \sup_{z \in \mathbb{D}} \left(1 - |z|^2\right)^{\alpha} \left| f'(z) \right| < \infty.$$

 \mathcal{B}^{α} becomes a Banach space under the norm $||f||_{\mathcal{B}^{\alpha}} = |f(0)| + B_{\alpha}(f)$. When $\alpha = 1$, $\mathcal{B}^{1} = \mathcal{B}$ is the well-known Bloch space. See [1, 2] for more information on Bloch-type spaces.

Throughout this paper, φ denotes a nonconstant analytic self-map of \mathbb{D} . The composition operator C_{φ} induced by φ is defined by $C_{\varphi}f = f \circ \varphi$ for $f \in H(\mathbb{D})$. For a fixed $u \in H(\mathbb{D})$, define a linear operator uC_{φ} as follows:

 $uC_{\varphi}f = u(f \circ \varphi), \quad f \in H(\mathbb{D}).$

The operator uC_{φ} is called the weighted composition operator. The weighted composition operator is a generalization of the composition operator and the multiplication operator defined by $M_{u}f = uf$.

A basic problem concerning composition operators on various Banach function spaces is to relate the operator theoretic properties of C_{φ} to the function theoretic properties of the symbol φ , which attracted a lot of attention recently; the reader can refer to [3].

The differentiation operator *D* is defined by $Df = f', f \in H(\mathbb{D})$. For a nonnegative integer *n*, we define

$$(D^0 f)(z) = f(z),$$
 $(D^n f)(z) = f^{(n)}(z), \quad n \ge 1, f \in H(\mathbb{D}).$

© 2015 Zhu; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.

Let φ be an analytic self-map of \mathbb{D} , $u \in H(\mathbb{D})$, and let n be a nonnegative integer. Define the linear operator $D_{\varphi,u}^n$, called the generalized weighted composition operator, by (see [4–6])

$$(D_{\varphi,u}^n f)(z) = u(z) \cdot (D^n f)(\varphi(z)), \quad f \in H(\mathbb{D}), z \in \mathbb{D}.$$

When n = 0 and u(z) = 1, $D_{\varphi,u}^n$ is the composition operator C_{φ} . If n = 0, then $D_{\varphi,u}^n$ is the weighted composition operator uC_{φ} . If n = 1, $u(z) = \varphi'(z)$, then $D_{\varphi,u}^n = DC_{\varphi}$, which was studied in [7–10]. For u(z) = 1, $D_{\varphi,u}^n = C_{\varphi}D^n$, which was studied in [7, 11–14]. For the study of the generalized weighted composition operator on various function spaces, see, for example, [4–6, 15–19].

It is well known that the composition operator is bounded on the Bloch space by the Schwarz-Pick lemma. Composition operators and weighted composition operators on Bloch-type spaces were studied, for example, in [20–28]. The product-type operators on or into Bloch-type spaces have been studied in many papers recently, see [7–11, 13, 14, 18, 29–36] for example. In [27], Wulan *et al.* obtained a characterization for the compactness of the composition operators acting on the Bloch space as follows.

Theorem A Let φ be an analytic self-map of \mathbb{D} . Then $C_{\varphi} : \mathcal{B} \to \mathcal{B}$ is compact if and only if

$$\lim_{j\to\infty} \left\|\varphi^j\right\|_{\mathcal{B}} = 0$$

In [14], Wu and Wulan obtained two characterizations for the compactness of the product of differentiation and composition operators acting on the Bloch space as follows.

Theorem B Let φ be an analytic self-map of \mathbb{D} , $n \in \mathbb{N}$. Then the following statements are equivalent.

- (a) $C_{\varphi}D^n: \mathcal{B} \to \mathcal{B}$ is compact.
- (b) $\lim_{j\to\infty} \|C_{\varphi}D^nI^j\|_{\mathcal{B}} = 0$, where $I^j(z) = z^j$.
- (c) $\lim_{|a|\to 1} \|C_{\varphi}D^n\sigma_a(z)\|_{\mathcal{B}} = 0$, where $\sigma_a(z) = (a-z)/(1-\overline{a}z)$ is the Möbius map on \mathbb{D} .

Motivated by Theorems A and B, in this work we show that $D_{\varphi,u}^n : \mathcal{B}^\alpha \to \mathcal{B}^\beta$ is bounded (respectively, compact) if and only if the sequence $(j^{\alpha-1} || D_{\varphi,u}^n I^j ||_{\mathcal{B}^\beta})_{j=n}^\infty$ is bounded (respectively, convergent to 0 as $j \to \infty$), where $I^j(z) = z^j$. Moreover, we use two families of functions to characterize the boundedness and compactness of the operator $D_{\varphi,u}^n$.

Throughout the paper, we denote by *C* a positive constant which may differ from one occurrence to the next. In addition, we say that $A \leq B$ if there exists a constant *C* such that $A \leq CB$. The symbol $A \approx B$ means that $A \leq B \leq A$.

2 Main results and proofs

In this section, we give our main results and proofs. First we characterize the boundedness of the operator $D^n_{\varphi,\mu}: \mathcal{B}^{\alpha} \to \mathcal{B}^{\beta}$.

Theorem 1 Let *n* be a positive integer, $0 < \alpha, \beta < \infty, u \in H(\mathbb{D})$ and φ be an analytic selfmap of \mathbb{D} . Then the following statements are equivalent.

(a) The operator
$$D_{\varphi,u}^{n}: \mathcal{B}^{\alpha} \to \mathcal{B}^{\beta}$$
 is bounded.
(b) $\sup_{j\geq n} j^{\alpha-1} \|D_{\varphi,u}^{n} J^{j}(z)\|_{\mathcal{B}^{\beta}} < \infty$, where $I^{j}(z) = z^{j}$.
(c) $u \in \mathcal{B}^{\beta}$, $\sup_{z\in\mathbb{D}} (1-|z|^{2})^{\beta} |u(z)| |\varphi'(z)| < \infty$ and

$$\sup_{a\in\mathbb{D}}\left\|D_{\varphi,u}^{n}f_{a}\right\|_{\mathcal{B}^{\beta}}<\infty,\qquad \sup_{a\in\mathbb{D}}\left\|D_{\varphi,u}^{n}h_{a}\right\|_{\mathcal{B}^{\beta}}<\infty,$$

where

$$f_a(z) = \frac{1 - |a|^2}{(1 - \overline{a}z)^{\alpha}}$$
 and $h_a(z) = \frac{(1 - |a|^2)^2}{(1 - \overline{a}z)^{\alpha + 1}}, \quad z \in \mathbb{D}.$

(d)

$$\sup_{z\in\mathbb{D}}\frac{(1-|z|^2)^{\beta}|u(z)||\varphi'(z)|}{(1-|\varphi(z)|^2)^{\alpha+n}}<\infty\quad and\quad \sup_{z\in\mathbb{D}}\frac{(1-|z|^2)^{\beta}|u'(z)|}{(1-|\varphi(z)|^2)^{\alpha+n-1}}<\infty.$$

Proof (a) \Rightarrow (b) This implication is obvious, since for $j \in \mathbb{N}$, the function $j^{\alpha-1}I^j$ is bounded in \mathcal{B}^{α} and $j^{\alpha-1} ||I^j||_{\mathcal{B}^{\alpha}} \approx 1$.

(b) \Rightarrow (c) Assume that (b) holds and let $Q = \sup_{j \ge n} j^{\alpha-1} \|D_{\varphi,u}^n I^j\|_{\mathcal{B}^{\beta}}$. For any $a \in \mathbb{D}$, it is easy to see that f_a and h_a have bounded norms in \mathcal{B}^{α} . It is clear that

$$\begin{split} f_a(z) &= \left(1 - |a|^2\right) \sum_{j=0}^{\infty} \frac{\Gamma(j+\alpha)}{j! \Gamma(\alpha)} \overline{a}^j z^j, \\ h_a(z) &= \left(1 - |a|^2\right)^2 \sum_{j=0}^{\infty} \frac{\Gamma(j+1+\alpha)}{j! \Gamma(\alpha+1)} \overline{a}^j z^j. \end{split}$$

By Stirling's formula, we have $\frac{\Gamma(j+\alpha)}{j!\Gamma(\alpha)} \approx j^{\alpha-1}$ as $j \to \infty$. Using linearity we get

$$\begin{split} \left\|D_{\varphi,u}^{n}f_{a}\right\|_{\mathcal{B}^{\beta}} &\leq C\left(1-|a|^{2}\right)\sum_{j=0}^{\infty}|a|^{j}j^{\alpha-1}\left\|D_{\varphi,u}^{n}I^{j}\right\|_{\mathcal{B}^{\beta}} \leq Q \quad \text{and} \\ \\ \left\|D_{\varphi,u}^{n}h_{a}\right\|_{\mathcal{B}^{\beta}} &\leq C\left(1-|a|^{2}\right)^{2}\sum_{j=0}^{\infty}(j+1)|a|^{j}j^{\alpha-1}\left\|D_{\varphi,u}^{n}I^{j}\right\|_{\mathcal{B}^{\beta}} \leq Q \end{split}$$

Therefore, by the arbitrariness of $a \in \mathbb{D}$,

$$\sup_{a\in\mathbb{D}}\left\|D_{\varphi,u}^{n}f_{a}\right\|_{\mathcal{B}^{\beta}}<\infty,\qquad \sup_{a\in\mathbb{D}}\left\|D_{\varphi,u}^{n}h_{a}\right\|_{\mathcal{B}^{\beta}}<\infty.$$

In addition, applying the operator $D_{\varphi,u}^n$ to I^j with j = n, n + 1, we obtain

$$(D_{\varphi,u}^n I^n)'(z) = u'(z)n!$$
 and
 $(D_{\varphi,u}^n I^{n+1})'(z) = u'(z)(n+1)!\varphi(z) + u(z)(n+1)!\varphi'(z),$

while for j < n, $(D^n_{\varphi,u}I^j)'(z) = 0$. Thus, using the boundedness of the function φ , we have $u \in \mathcal{B}^{\beta}$ and $\sup_{z \in \mathbb{D}} (1 - |z|^2)^{\beta} |u(z)| |\varphi'(z)| < \infty$.

$$C_1 := \sup_{a \in \mathbb{D}} \left\| D_{\varphi, u}^n f_a \right\|_{\mathcal{B}^{\beta}}, \qquad C_2 := \sup_{a \in \mathbb{D}} \left\| D_{\varphi, u}^n h_a \right\|_{\mathcal{B}^{\beta}}.$$

For $w \in \mathbb{D}$, set

$$g_w(z) = \frac{1-|w|^2}{(1-\overline{w}z)^{\alpha}} - \frac{\alpha}{\alpha+n} \frac{(1-|w|^2)^2}{(1-\overline{w}z)^{\alpha+1}}, \quad w \in \mathbb{D}.$$

It is easy to check that $g_w \in \mathcal{B}^{\alpha}$, $\|g_w\|_{\mathcal{B}^{\alpha}} < \infty$ for every $w \in \mathbb{D}$. Moreover,

$$\begin{split} \sup_{w\in\mathbb{D}} \left\| D_{\varphi,u}^{n} g_{w} \right\|_{\mathcal{B}^{\beta}} &\leq \sup_{w\in\mathbb{D}} \left\| D_{\varphi,u}^{n} f_{w} \right\|_{\mathcal{B}^{\beta}} + \frac{\alpha}{\alpha+n} \sup_{w\in\mathbb{D}} \left\| D_{\varphi,u}^{n} h_{w} \right\|_{\mathcal{B}^{\beta}} \\ &\leq C_{1} + \frac{\alpha}{\alpha+n} C_{2} < \infty. \end{split}$$

In addition,

$$g_{\varphi(\lambda)}^{(n)}(\varphi(\lambda)) = 0, \qquad \left|g_{\varphi(\lambda)}^{(n+1)}(\varphi(\lambda))\right| = \alpha(\alpha+1)\cdots(\alpha+n-1)\frac{|\varphi(\lambda)|^{n+1}}{(1-|\varphi(\lambda)|^2)^{\alpha+n}}.$$

It follows that

$$C_{1} + \frac{\alpha}{\alpha + n} C_{2} > \left\| D_{\varphi, u}^{n} g_{\varphi(\lambda)} \right\|_{\mathcal{B}^{\beta}}$$

$$\geq \alpha(\alpha + 1) \cdots (\alpha + n - 1) \frac{(1 - |\lambda|^{2})^{\beta} |u(\lambda)| |\varphi'(\lambda)| |\varphi(\lambda)|^{n+1}}{(1 - |\varphi(\lambda)|^{2})^{\alpha + n}}$$
(2.1)

for any $\lambda \in \mathbb{D}$. For any fixed $r \in (0, 1)$, from (2.1) we have

$$\sup_{|\varphi(\lambda)|>r} \frac{(1-|\lambda|^2)^{\beta} |u(\lambda)| |\varphi'(\lambda)|}{(1-|\varphi(\lambda)|^2)^{\alpha+n}} \leq \sup_{|\varphi(\lambda)|>r} \frac{1}{r^{n+1}} \frac{(1-|\lambda|^2)^{\beta} |u(\lambda)| |\varphi'(\lambda)| |\varphi(\lambda)|^{n+1}}{(1-|\varphi(\lambda)|^2)^{\alpha+n}} \\
\leq \frac{C_1 + \frac{\alpha}{\alpha+n} C_2}{r^{n+1} \alpha(\alpha+1) \cdots (\alpha+n-1)} < \infty.$$
(2.2)

From the assumption that $\sup_{z\in\mathbb{D}}(1-|z|^2)^\beta|u(z)||\varphi'(z)|<\infty,$ we get

$$\sup_{|\varphi(\lambda)| \le r} \frac{(1-|\lambda|^2)^{\beta} |u(\lambda)| |\varphi'(\lambda)|}{(1-|\varphi(\lambda)|^2)^{\alpha+n}} \le \frac{\sup_{|\varphi(\lambda)| \le r} (1-|\lambda|^2)^{\beta} |u(\lambda)| |\varphi'(\lambda)|}{(1-r^2)^{\alpha+n}} < \infty.$$
(2.3)

Therefore, (2.2) and (2.3) yield the first inequality of (d). Next, note that

$$C_{1} \geq \left\| D_{\varphi,u}^{n} f_{\varphi(\lambda)} \right\|_{\mathcal{B}^{\beta}}$$

$$\geq \alpha(\alpha+1)\cdots(\alpha+n-1)\frac{(1-|\lambda|^{2})^{\beta}|u'(\lambda)||\varphi(\lambda)|^{n}}{(1-|\varphi(\lambda)|^{2})^{\alpha+n-1}}$$

$$-\alpha(\alpha+1)\cdots(\alpha+n)\frac{(1-|\lambda|^{2})^{\beta}|u(\lambda)||\varphi'(\lambda)||\varphi(\lambda)|^{n+1}}{(1-|\varphi(\lambda)|^{2})^{\alpha+n}}$$

for any $\lambda \in \mathbb{D}$. From (2.1) we get

$$\begin{split} &\frac{(1-|\lambda|^2)^{\beta}|u'(\lambda)||\varphi(\lambda)|^n}{(1-|\varphi(\lambda)|^2)^{\alpha+n-1}} \\ &\leq \frac{\|D_{\varphi,u}^n f_{\varphi(\lambda)}\|_{\mathcal{B}^{\beta}}}{\alpha(\alpha+1)\cdots(\alpha+n-1)} + \frac{(\alpha+n)(1-|\lambda|^2)^{\beta}|u(\lambda)||\varphi'(\lambda)||\varphi(\lambda)|^{n+1}}{(1-|\varphi(\lambda)|^2)^{\alpha+n}} \\ &\leq \frac{C_1}{\alpha(\alpha+1)\cdots(\alpha+n-1)} + \frac{(\alpha+n)C_1+\alpha C_2}{\alpha(\alpha+1)\cdots(\alpha+n-1)} \\ &\leq \frac{(\alpha+n+1)C_1+\alpha C_2}{\alpha(\alpha+1)\cdots(\alpha+n-1)}. \end{split}$$

By arbitrary $\lambda \in \mathbb{D}$, we get

$$\sup_{\lambda \in \mathbb{D}} \frac{(1-|\lambda|^2)^{\beta} |u'(\lambda)| |\varphi(\lambda)|^n}{(1-|\varphi(\lambda)|^2)^{\alpha+n-1}} < \infty.$$
(2.4)

Combining (2.4) with the fact that $u \in B^{\beta}$, similarly to the former proof, we get the second inequality of (d).

(d) \Rightarrow (a) For any $f \in \mathcal{B}^{\alpha}$, we have

$$\begin{aligned} \left(1 - |z|^{2}\right)^{\beta} \left| \left(D_{\varphi,u}^{n}f\right)'(z) \right| \\ &= \left(1 - |z|^{2}\right)^{\beta} \left| \left(f^{(n)}(\varphi)u\right)'(z) \right| \\ &\leq \left(1 - |z|^{2}\right)^{\beta} \left|u(z)\right| \left|\varphi'(z)\right| \left|f^{(n+1)}(\varphi(z))\right| + \left(1 - |z|^{2}\right)^{\beta} \left|u'(z)\right| \left|f^{(n)}(\varphi(z))\right| \\ &\leq C \frac{\left(1 - |z|^{2}\right)^{\beta} \left|u(z)\right| \left|\varphi'(z)\right|}{\left(1 - |\varphi(z)|^{2}\right)^{\alpha+n}} \|f\|_{\mathcal{B}^{\alpha}} + C \frac{\left(1 - |z|^{2}\right)^{\beta} \left|u'(z)\right|}{\left(1 - |\varphi(z)|^{2}\right)^{\alpha+n-1}} \|f\|_{\mathcal{B}^{\alpha}}, \end{aligned}$$
(2.5)

where in the last inequality we used the fact that for $f \in \mathcal{B}^{\alpha}$ (see [2])

$$\sup_{z\in\mathbb{D}} (1-|z|^2)^{\alpha} |f'(z)| \asymp |f'(0)| + \dots + |f^{(n)}(0)| + \sup_{z\in\mathbb{D}} (1-|z|^2)^{\alpha+n} |f^{(n+1)}(z)|.$$

Moreover

$$ig|ig(D^n_{arphi,u}fig)(0)ig|=ig|f^{(n)}ig(arphi(0)ig)u(0)ig|\leq rac{|u(0)|}{(1-|arphi(0)|^2)^{lpha+n-1}}\|f\|_{\mathcal{B}^lpha}.$$

From (d) we see that

$$\left\|D_{\varphi,u}^nf\right\|_{\mathcal{B}^\beta}=\left|\left(D_{\varphi,u}^nf\right)(0)\right|+\sup_{z\in\mathbb{D}}\left(1-|z|^2\right)^\beta\left|\left(D_{\varphi,u}^nf\right)'(z)\right|<\infty.$$

Therefore the operator $D^n_{\varphi,u}: \mathcal{B}^{\alpha} \to \mathcal{B}^{\beta}$ is bounded. The proof is complete.

For the study of the compactness of $D^n_{\varphi,\mu}: \mathcal{B}^{\alpha} \to \mathcal{B}^{\beta}$, we need the following lemma, which can be proved in a standard way; see, for example, Proposition 3.11 in [3].

Lemma 2 Let *n* be a positive integer, $0 < \alpha, \beta < \infty, u \in H(\mathbb{D})$ and φ be an analytic self-map of \mathbb{D} . Then $D^n_{\varphi,u} : \mathcal{B}^{\alpha} \to \mathcal{B}^{\beta}$ is compact if and only if $D^n_{\varphi,u} : \mathcal{B}^{\alpha} \to \mathcal{B}^{\beta}$ is bounded and for any

bounded sequence $(f_j)_{j\in\mathbb{N}}$ in \mathcal{B}^{α} which converges to zero uniformly on compact subsets of \mathbb{D} , $\|D^n_{\varphi,u}f_j\|_{\mathcal{B}^{\beta}} \to 0$ as $j \to \infty$.

Theorem 3 Let *n* be a positive integer, $0 < \alpha, \beta < \infty, u \in H(\mathbb{D})$ and φ be an analytic selfmap of \mathbb{D} such that $D^n_{\varphi,u} : \mathcal{B}^{\alpha} \to \mathcal{B}^{\beta}$ is bounded. Then the following statements are equivalent.

(a) $D_{\varphi,\mu}^{n}: \mathcal{B}^{\alpha} \to \mathcal{B}^{\beta} \text{ is compact.}$ (b) $\lim_{j\to\infty} j^{\alpha-1} \|D_{\varphi,\mu}^{n}I^{j}\|_{\mathcal{B}^{\beta}} = 0$, where $I^{j}(z) = z^{j}$. (c) $\lim_{|\varphi(a)|\to 1} \|D_{\varphi,\mu}^{n}f_{\varphi(a)}\|_{\mathcal{B}^{\beta}} = 0$ and $\lim_{|\varphi(a)|\to 1} \|D_{\varphi,\mu}^{n}h_{\varphi(a)}\|_{\mathcal{B}^{\beta}} = 0$. (d)

$$\lim_{|\varphi(z)| \to 1} \frac{(1-|z|^2)^{\beta} |u(z)| |\varphi'(z)|}{(1-|\varphi(z)|^2)^{n+\alpha}} = 0 \quad and \quad \lim_{|\varphi(z)| \to 1} \frac{(1-|z|^2)^{\beta} |u'(z)|}{(1-|\varphi(z)|^2)^{n+\alpha-1}} = 0.$$

Proof (a) \Rightarrow (b) Assume that $D_{\varphi,\mu}^n : \mathcal{B}^{\alpha} \to \mathcal{B}^{\beta}$ is compact. Since the sequence $\{j^{\alpha-1}I^j\}$ is bounded in \mathcal{B}^{α} and converges to 0 uniformly on compact subsets, by Lemma 2 it follows that $j^{\alpha-1} \|D_{\varphi,\mu}^n I^j\|_{\mathcal{B}^{\beta}} \to 0$ as $j \to \infty$.

(b) \Rightarrow (c) Suppose that (b) holds. Fix $\varepsilon > 0$ and choose $N \in \mathbb{N}$ such that $j^{\alpha-1} ||D_{\varphi,u}^n I^j||_{\mathcal{B}^{\beta}} < \varepsilon$ for all $j \ge N$. Let $z_k \in \mathbb{D}$ such that $|\varphi(z_k)| \to 1$ as $k \to \infty$. Arguing as in the proof of Theorem 1, we have

$$\begin{split} \left\| D_{\varphi,u}^{n} f_{\varphi(z_{k})} \right\|_{\mathcal{B}^{\beta}} \\ &\leq C \left(1 - \left| \varphi(z_{k}) \right|^{2} \right) \sum_{j=0}^{\infty} \left| \varphi(z_{k}) \right|^{j} j^{\alpha-1} \left\| D_{\varphi,u}^{n} I^{j} \right\|_{\mathcal{B}^{\beta}} \\ &= C \left(1 - \left| \varphi(z_{k}) \right|^{2} \right) \left(\sum_{j=0}^{N-1} \left| \varphi(z_{k}) \right|^{j} j^{\alpha-1} \left\| D_{\varphi,u}^{n} I^{j} \right\|_{\mathcal{B}^{\beta}} + \sum_{j=N}^{\infty} \left| \varphi(z_{k}) \right|^{j} j^{\alpha-1} \left\| D_{\varphi,u}^{n} I^{j} \right\|_{\mathcal{B}^{\beta}} \right) \\ &\leq CQ \left(1 - \left| \varphi(z_{k}) \right|^{N} \right) + C\varepsilon, \end{split}$$

where $Q = \sup_{j \ge n} f^{\alpha-1} \|D_{\varphi,u}^n I^j\|_{\mathcal{B}^{\beta}}$. Since $|\varphi(z_k)| \to 1$ as $k \to \infty$, from the last inequality and the arbitrariness of ε , we get $\lim_{k\to\infty} \|D_{\varphi,u}^n f_{\varphi(z_k)}\|_{\mathcal{B}^{\beta}} = 0$, *i.e.*, $\lim_{|\varphi(a)|\to 1} \|D_{\varphi,u}^n f_{\varphi(a)}\|_{\mathcal{B}^{\beta}} = 0$. Notice that

$$\sum_{j=0}^{N-1} (j+1)r^j = \frac{1-r^N - Nr^N(1-r)}{(1-r)^2}, \quad 0 \le r < 1,$$

arguing as in the proof of Theorem 1, we get

$$\begin{split} \|D_{\varphi,u}^{n}h_{\varphi(z_{k})}\|_{\mathcal{B}^{\beta}} &\leq C\big(1-|\varphi(z_{k})|^{2}\big)^{2}\sum_{j=0}^{\infty}|\varphi(z_{k})|^{j}j^{\alpha}\|D_{\varphi,u}^{n}I^{j}\|_{\mathcal{B}^{\beta}} \\ &\leq C\big(1-|\varphi(z_{k})|^{2}\big)^{2}\sum_{j=0}^{N-1}(j+1)|\varphi(z_{k})|^{j}j^{\alpha-1}\|D_{\varphi,u}^{n}I^{j}\|_{\mathcal{B}^{\beta}} \\ &+ C\big(1-|\varphi(z_{k})|^{2}\big)^{2}\sum_{j=N}^{\infty}(j+1)|\varphi(z_{k})|^{j}j^{\alpha-1}\|D_{\varphi,u}^{n}I^{j}\|_{\mathcal{B}^{\beta}} \\ &\leq C(1-|\varphi(z_{k})|^{N}-N|\varphi(z_{k})|^{N}\big(1-|\varphi(z_{k})|\big)+C\varepsilon. \end{split}$$

Therefore, $\lim_{k\to\infty} \|D_{\varphi,u}^n h_{\varphi(z_k)}\|_{\mathcal{B}^{\beta}} \leq C\varepsilon$. By the arbitrariness of ε , we obtain the desired result.

(c) \Rightarrow (d) To prove (d) we only need to show that if $(z_k)_{k \in \mathbb{N}}$ is a sequence in \mathbb{D} such that $|\varphi(z_k)| \rightarrow 1$ as $k \rightarrow \infty$, then

$$\lim_{k \to \infty} \frac{(1 - |z_k|^2)^{\beta} |u(z_k)| |\varphi'(z_k)|}{(1 - |\varphi(z_k)|^2)^{\alpha + n}} = 0, \qquad \lim_{k \to \infty} \frac{(1 - |z_k|^2)^{\beta} |u'(z_k)|}{(1 - |\varphi(z_k)|^2)^{\alpha + n - 1}} = 0$$

Let $(z_k)_{k\in\mathbb{N}}$ be such a sequence that $|\varphi(z_k)| \to 1$ as $k \to \infty$. Arguing as in the proof of Theorem 1, we obtain

$$\lim_{k\to\infty} \left\| D_{\varphi,u}^n g_{\varphi(z_k)} \right\|_{\mathcal{B}^{\beta}} \leq \lim_{k\to\infty} \left\| D_{\varphi,u}^n f_{\varphi(z_k)} \right\|_{\mathcal{B}^{\beta}} + \frac{\alpha}{n+\alpha} \lim_{k\to\infty} \left\| D_{\varphi,u}^n h_{\varphi(z_k)} \right\|_{\mathcal{B}^{\beta}} = 0.$$

Hence $\lim_{k\to\infty} \|D_{\varphi,u}^n g_{\varphi(z_k)}\|_{\mathcal{B}^{\beta}} = 0$. Similarly to the proof of Theorem 1, we have

$$\frac{n!(1-|z_k|^2)^{\beta}|u(z_k)||\varphi'(z_k)||\varphi(z_k)|^{n+1}}{(1-|\varphi(z_k)|^2)^{\alpha+n}} \le \left\|D_{\varphi,u}^n g_{\varphi(z_k)}\right\|_{\mathcal{B}^{\beta}} \to 0 \quad \text{as } k \to \infty,$$

which implies

$$\lim_{k \to \infty} \frac{(1 - |z_k|^2)^{\beta} |u(z_k)| |\varphi'(z_k)|}{(1 - |\varphi(z_k)|^2)^{\alpha + n}} = \lim_{k \to \infty} \frac{(1 - |z_k|^2)^{\beta} |u(z_k)| |\varphi'(z_k)| |\varphi(z_k)|^{n+1}}{(1 - |\varphi(z_k)|^2)^{\alpha + n}} = 0.$$
(2.6)

In addition,

$$\begin{split} \left\| D_{\varphi,u}^{n} f_{\varphi(z_{k})} \right\|_{\mathcal{B}^{\beta}} &+ \frac{(n+1)!(1-|z_{k}|^{2})^{\beta} |u(z_{k})| |\varphi'(z_{k})| |\varphi(z_{k})|^{n+1}}{(1-|\varphi(z_{k})|^{2})^{\alpha+n}} \\ &\geq \frac{n!(1-|z_{k}|^{2})^{\beta} |u'(z_{k})| |\varphi(z_{k})|^{n}}{(1-|\varphi(z_{k})|^{2})^{\alpha+n-1}}. \end{split}$$

From (2.6) and the assumption that $\|D_{\varphi,u}^n f_{\varphi(z_k)}\|_{\mathcal{B}^{\beta}} \to 0$ as $k \to \infty$, we have

$$\lim_{k \to \infty} \frac{(1 - |z_k|^2)^{\beta} |u'(z_k)|}{(1 - |\varphi(z_k)|^2)^n} = \lim_{k \to \infty} \frac{(1 - |z_k|^2)^{\beta} |u'(z_k)| |\varphi(z_k)|^n}{(1 - |\varphi(z_k)|^2)^{\alpha + n - 1}} = 0,$$

as desired.

(d) \Rightarrow (a) Assume that $(f_k)_{k \in \mathbb{N}}$ is a bounded sequence in \mathcal{B}^{α} converging to 0 uniformly on compact subsets of \mathbb{D} . By the assumption, for any $\varepsilon > 0$, there exists $\delta \in (0, 1)$ such that

$$\frac{(1-|z|^2)^{\beta}|\varphi'(z)||u(z)|}{(1-|\varphi(z)|^2)^{\alpha+n}} < \varepsilon \quad \text{and} \quad \frac{(1-|z|^2)^{\beta}|u'(z)|}{(1-|\varphi(z)|^2)^{\alpha+n-1}} < \varepsilon$$
(2.7)

when $\delta < |\varphi(z)| < 1$. Suppose that $D_{\varphi,\mu}^n : \mathcal{B}^{\alpha} \to \mathcal{B}^{\beta}$ is bounded, by Theorem 1, we have

$$C_{3} = \sup_{z \in \mathbb{D}} \left(1 - |z|^{2} \right)^{\beta} \left| u'(z) \right| < \infty$$
(2.8)

and

$$C_4 = \sup_{z \in \mathbb{D}} (1 - |z|^2)^{\beta} |u(z)| |\varphi'(z)| < \infty.$$
(2.9)

Let $K = \{z \in \mathbb{D} : |\varphi(z)| \le \delta\}$. Then by (2.8) and (2.9) we have that

$$\begin{split} \sup_{z \in \mathbb{D}} &(1 - |z|^2)^{\beta} \left| \left(D_{\varphi,u}^n f_k \right)'(z) \right| \\ &\leq \sup_{z \in K} (1 - |z|^2)^{\beta} \left| u(z) \right| \left| \varphi'(z) \right| \left| f_k^{(n+1)}(\varphi(z)) \right| + \sup_{z \in K} (1 - |z|^2)^{\beta} \left| u'(z) \right| \left| f_k^{(n)}(\varphi(z)) \right| \\ &+ C \sup_{z \in \mathbb{D} \setminus K} \frac{(1 - |z|^2)^{\beta} |u(z)| |\varphi'(z)|}{(1 - |\varphi(z)|^2)^{\alpha + n}} \| f_k \|_{\mathcal{B}^{\alpha}} + C \sup_{z \in \mathbb{D} \setminus K} \frac{(1 - |z|^2)^{\beta} |u'(z)|}{(1 - |\varphi(z)|^2)^{\alpha + n - 1}} \| f_k \|_{\mathcal{B}^{\alpha}} \\ &\leq C_4 \sup_{z \in K} \left| f_k^{(n+1)}(\varphi(z)) \right| + C_3 \sup_{z \in K} \left| f_k^{(n)}(\varphi(z)) \right| + C \varepsilon \| f_k \|_{\mathcal{B}^{\alpha}}, \end{split}$$

i.e., we get

$$\begin{aligned} \left\| D_{\varphi,u}^{n} f_{k} \right\|_{\mathcal{B}^{\beta}} &= C_{4} \sup_{|w| \le \delta} \left| f_{k}^{(n+1)}(w) \right| + C_{3} \sup_{|w| \le \delta} \left| f_{k}^{(n)}(w) \right| \\ &+ C\varepsilon \left\| f_{k} \right\|_{\mathcal{B}^{\alpha}} + \left| u(0) \right| \left| f_{k}^{(n)}(\varphi(0)) \right|. \end{aligned}$$
(2.10)

Since f_k converges to 0 uniformly on compact subsets of \mathbb{D} as $k \to \infty$, Cauchy's estimate gives that $f_k^{(n)} \to 0$ as $k \to \infty$ on compact subsets of \mathbb{D} . Hence, letting $k \to \infty$ in (2.10) and using the fact that ε is an arbitrary positive number, we obtain $\|D_{\varphi,u}^n f_k\|_{\mathcal{B}^\beta} \to 0$ as $k \to \infty$. Applying Lemma 2 the result follows.

Competing interests

The author declares that they have no competing interests.

Acknowledgements

The author was partially supported by the Macao Science and Technology Development Fund (No. 098/2013/A3), NSF of Guangdong Province (No. S2013010011978) and NNSF of China (No. 11471143).

Received: 5 December 2014 Accepted: 28 January 2015 Published online: 19 February 2015

References

- 1. Zhu, K: Operator Theory in Function Spaces. Dekker, New York (1990)
- 2. Zhu, K: Bloch type spaces of analytic functions. Rocky Mt. J. Math. 23, 1143-1177 (1993)
- 3. Cowen, CC, MacCluer, BD: Composition Operators on Spaces of Analytic Functions. CRC Press, Boca Raton (1995)
- Zhu, X: Products of differentiation, composition and multiplication from Bergman type spaces to Bers type space. Integral Transforms Spec. Funct. 18, 223-231 (2007)
- Zhu, X: Generalized weighted composition operators on weighted Bergman spaces. Numer. Funct. Anal. Optim. 30, 881-893 (2009)
- Zhu, X: Generalized weighted composition operators from Bloch spaces into Bers-type spaces. Filomat 26, 1163-1169 (2012)
- Hibschweiler, R, Portnoy, N: Composition followed by differentiation between Bergman and Hardy spaces. Rocky Mt. J. Math. 35, 843-855 (2005)
- Li, S, Stević, S: Composition followed by differentiation between Bloch type spaces. J. Comput. Anal. Appl. 9, 195-205 (2007)
- Li, S, Stević, S: Composition followed by differentiation between H[∞] and α-Bloch spaces. Houst. J. Math. 35, 327-340 (2009)
- Yang, W: Products of composition differentiation operators from Q_k(p, q) spaces to Bloch-type spaces. Abstr. Appl. Anal. 2009, Article ID 741920 (2009)
- 11. Liang, Y, Zhou, Z: Essential norm of the product of differentiation and composition operators between Bloch-type space. Arch. Math. 100, 347-360 (2013)
- 12. Stević, S: Products of composition and differentiation operators on the weighted Bergman space. Bull. Belg. Math. Soc. Simon Stevin 16, 623-635 (2009)
- 13. Stević, S: Norm and essential norm of composition followed by differentiation from α -Bloch spaces to H^{∞}_{μ} . Appl. Math. Comput. **207**, 225-229 (2009)
- Wu, Y, Wulan, H: Products of differentiation and composition operators on the Bloch space. Collect. Math. 63, 93-107 (2012)
- 15. Li, H, Fu, X: A new characterization of generalized weighted composition operators from the Bloch space into the Zygmund space. J. Funct. Spaces Appl. **2013**, Article ID 925901 (2013)

- Stević, S: Weighted differentiation composition operators from mixed-norm spaces to weighted-type spaces. Appl. Math. Comput. 211, 222-233 (2009)
- 17. Stević, S: Weighted differentiation composition operators from mixed-norm spaces to the *n*-th weighted-type space on the unit disk. Abstr. Appl. Anal. **2010**, Article ID 246287 (2010)
- Stević, S: Weighted differentiation composition operators from H[∞] and Bloch spaces to n-th weighted-type spaces on the unit disk. Appl. Math. Comput. 216, 3634-3641 (2010)
- 19. Yang, W, Zhu, X: Generalized weighted composition operators from area Nevanlinna spaces to Bloch-type spaces. Taiwan. J. Math. **3**, 869-883 (2012)
- 20. Lou, Z: Composition operators on Bloch type spaces. Analysis 23, 81-95 (2003)
- 21. Maccluer, B, Zhao, R: Essential norm of weighted composition operators between Bloch-type spaces. Rocky Mt. J. Math. **33**, 1437-1458 (2003)
- 22. Madigan, K, Matheson, A: Compact composition operators on the Bloch space. Trans. Am. Math. Soc. 347, 2679-2687 (1995)
- Manhas, J, Zhao, R: New estimates of essential norms of weighted composition operators between Bloch type spaces. J. Math. Anal. Appl. 389, 32-47 (2012)
- 24. Ohno, S: Weighted composition operators between H^{∞} and the Bloch space. Taiwan. J. Math. 5, 555-563 (2001)
- Ohno, S, Stroethoff, K, Zhao, R: Weighted composition operators between Bloch-type spaces. Rocky Mt. J. Math. 33, 191-215 (2003)
- 26. Tjani, M: Compact composition operators on some Möbius invariant Banach space. Ph.D. dissertation, Michigan State University (1996)
- Wulan, H, Zheng, D, Zhu, K: Compact composition operators on BMOA and the Bloch space. Proc. Am. Math. Soc. 137, 3861-3868 (2009)
- Zhao, R: Essential norms of composition operators between Bloch type spaces. Proc. Am. Math. Soc. 138, 2537-2546 (2010)
- Li, S, Stević, S: Weighted composition operators from Bergman-type spaces into Bloch spaces. Proc. Indian Acad. Sci. Math. Sci. 117, 371-385 (2007)
- 30. Li, S, Stević, S: Weighted composition operators from H[∞] to the Bloch space on the polydisc. Abstr. Appl. Anal. 2007, Article ID 48478 (2007)
- Li, S, Stević, S: Products of composition and integral type operators from H[∞] to the Bloch space. Complex Var. Elliptic Equ. 53(5), 463-474 (2008)
- Li, S, Stević, S: Weighted composition operators from Zygmund spaces into Bloch spaces. Appl. Math. Comput. 206(2), 825-831 (2008)
- Li, S, Stević, S: Products of integral-type operators and composition operators between Bloch-type spaces. J. Math. Anal. Appl. 349, 596-610 (2009)
- Stević, S: On a new integral-type operator from the Bloch space to Bloch-type spaces on the unit ball. J. Math. Anal. Appl. 354, 426-434 (2009)
- Stević, S: Products of integral-type operators and composition operators from the mixed norm space to Bloch-type spaces. Sib. Math. J. 50(4), 726-736 (2009)
- 36. Stević, S: On an integral operator between Bloch-type spaces on the unit ball. Bull. Sci. Math. 134, 329-339 (2010)

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at > springeropen.com