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1 Introduction
The concept of complete convergence of a sequence of random variables was introduced
by Hsu and Robbins [] as follows. A sequence {Un, n ≥ } of random variables converges
completely to the constant θ if

∞∑

n=

P
(|Un – θ | > ε

)
< ∞ for all ε > .

Moreover, they proved that the sequence of arithmetic means of independent and iden-
tically distributed (i.i.d.) random variables converges completely to the expected value if
the variance of the summands is finite. This result has been generalized and extended in
several directions, one can refer to [–] and so forth.

When {Xn, n ≥ } is a sequence of i.i.d. random variables with mean zero, Chow []
first investigated the complete moment convergence, which is more exact than complete
convergence. He obtained the following result.

Theorem A Let {Xn, n ≥ } be a sequence of i.i.d. random variables with EX = . For
 ≤ p <  and r > , if E{|X|rp + |X| log( + |X|)} < ∞, then

∞∑

n=

nr––/pE

{∣∣∣∣∣

n∑

k=

Xk

∣∣∣∣∣ – εn/p

}

+

< ∞ for all ε > ,

where (as in the following) x+ = max{, x}.

Theorem A has been generalized and extended in several directions. One can refer to
Wang and Su [] and Chen [] for random elements taking values in a Banach space,
Wang and Zhao [] for NA random variables, Chen et al. [], Li and Zhang [] for
moving-average processes based on NA random variables, Chen and Wang [] for ϕ-
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mixing random variables, Qiu and Chen [] for weighted sums of arrays of rowwise NA
random variables.

The aim of this paper is to extend and improve Theorem A to negatively orthant depen-
dent (NOD) random variables. The sufficient and necessary conditions are obtained. In
fact, the paper is the continued work of Qiu et al. [] in which the complete convergence
is obtained for NOD sequence. It is worth to point that Sung [] has discussed the com-
plete moment convergence for NOD, but the main result in our paper is more exact and
the method is completely different.

The concepts of negatively associated (NA) and negatively orthant dependent (NOD)
were introduced by Joag-Dev and Proschan [] in the following way.

Definition . A finite family of random variables {Xi,  ≤ i ≤ n} is said to be negatively
associated (NA) if for every pair of disjoint nonempty subset A, A of {, , . . . , n},

Cov
(
f(Xi, i ∈ A), f(Xj, j ∈ A)

) ≤ ,

where f and f are coordinatewise nondecreasing such that the covariance exists. An in-
finite sequence of {Xn, n ≥ } is NA if every finite subfamily is NA.

Definition . A finite family of random variables {Xi,  ≤ i ≤ n} is said to be
(a) negatively upper orthant dependent (NUOD) if

P(Xi > xi, i = , , . . . , n) ≤
n∏

i=

P(Xi > xi)

∀x, x, . . . , xn ∈ R,
(b) negatively lower orthant dependent (NLOD) if

P(Xi ≤ xi, i = , , . . . , n) ≤
n∏

i=

P(Xi ≤ xi)

∀x, x, . . . , xn ∈ R,
(c) negatively orthant dependent (NOD) if they are both NUOD and NLOD.
A sequence of random variables {Xn, n ≥ } is said to be NOD if for each n, X, X, . . . , Xn

are NOD.

Obviously, every sequence of independent random variables is NOD. Joag-Dev and
Proschan [] pointed out NA implies NOD, neither NUOD nor NLOD implies being NA.
They gave an example which possesses NOD, but does not possess NA. So we can see that
NOD is strictly wider than NA. For more convergence properties about NOD random
variables, one can refer to [, , , –], and so forth.

In order to prove our main result, we need the following lemmas.

Lemma . (Bozorgnia et al. []) Let X, X, . . . , Xn be NOD random variables.
(i) If f, f, . . . , fn are Borel functions all of which are monotone increasing (or all

monotone decreasing), then f(X), f(X), . . . , fn(Xn) are NOD random variables.
(ii) E

∏n
i=(Xi)+ ≤ ∏n

i= E(Xi)+, ∀n ≥ .
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Lemma . (Asadian et al. []) For any v ≥ , there is a positive constant C(v) depending
only on v such that if {Xn, n ≥ } is a sequence of NOD random variables with EXn =  for
every n ≥ , then for all n ≥ ,

E

∣∣∣∣∣

n∑

i=

Xi

∣∣∣∣∣

v

≤ C(v)

{ n∑

i=

E|Xi|v +

( n∑

i=

EX
i

)v/}
.

We reason by Lemma . and a similar argument to Theorem .. of Stout [].

Lemma . For any v ≥ , there is a positive constant C(v) depending only on v such that
if {Xn, n ≥ } is a sequence of NOD random variables with EXn =  for every n ≥ , then for
all n ≥ ,

E max
≤j≤n

∣∣∣∣∣

j∑

i=

Xi

∣∣∣∣∣

v

≤ C(v)
(
log(n)

)v
{ n∑

i=

E|Xi|v +

( n∑

i=

EX
i

)v/}
,

where log x = max{, ln x}, and ln x denotes the natural logarithm of x.

Lemma . (Kuczmaszewska []) Let β be positive constant, {Xn, n ≥ } be a sequence of
random variables and X be a random variable. Suppose that

n∑

i=

P
(|Xi| > x

) ≤ DnP
(|X| > x

)
, ∀x > ,∀n ≥ , (.)

holds for some D > , then there exists a constant C >  depending only on D and β such
that

(i) If E|X|β < ∞, then 
n
∑n

j= E|Xj|β ≤ CE|X|β ;
(ii) 

n
∑n

j= E|Xj|β I(|Xj| ≤ x) ≤ C{E|X|βI(|X| ≤ x) + xβP(|X| > x)};
(iii) 

n
∑n

j= E|Xj|β I(|Xj| > x) ≤ CE|X|β I(|X| > x).

Throughout this paper, C will represent positive constants; their value may change from
one place to another.

2 Main results and proofs
Theorem . Let γ > , α > /, p > , αp > . Let {Xn, n ≥ } be a sequence of NOD random
variables and X be a random variables possibly defined on a different space satisfying the
condition (.). Moreover, assume that EXn =  for all n ≥  in the case α ≤ . Suppose that

⎧
⎪⎪⎨

⎪⎪⎩

E|X|p < ∞, γ < p,

E|X|p log( + |X|) < ∞, γ = p,

E|X|γ < ∞, γ > p.

(.)

Then the following statements hold:

∞∑

n=

nα(p–γ )–E
{

max
≤k≤n

|Sk| – εnα
}γ

+
< ∞, ∀ε > , (.)
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∞∑

n=

nα(p–γ )–E
{

max
≤k≤n

∣∣S(k)
n

∣∣ – εnα
}γ

+
< ∞, ∀ε > , (.)

∞∑

n=

nα(p–γ )–E
{

max
≤k≤n

|Xk| – εnα
}γ

+
< ∞, ∀ε > , (.)

∞∑

n=

nαp–E
{

sup
k≥n

k–α|Sk| – ε
}γ

+
< ∞, ∀ε > , (.)

∞∑

n=

nαp–E
{

sup
k≥n

k–α|Xk| – ε
}γ

+
< ∞, ∀ε > , (.)

where Sn =
∑n

i= Xi, S(k)
n = Sn – Xk , k = , , . . . , n.

Proof Firstly, we prove (.). Note that for all ε > 

∞∑

n=

nα(p–γ )–E
{

max
≤k≤n

|Sk| – εnα
}γ

+

=
∞∑

n=

nα(p–γ )–
∫ ∞


P
(

max
≤k≤n

|Sk| – εnα > t/γ
)

dt

=
∞∑

n=

nα(p–γ )–
∫ nγα


P
(

max
≤k≤n

|Sk| – εnα > t/γ
)

dt

+
∞∑

n=

nα(p–γ )–
∫ ∞

nγα

P
(

max
≤k≤n

|Sk| – εnα > t/γ
)

dt

≤
∞∑

n=

nαp–P
(

max
≤k≤n

|Sk| > εnα
)

+
∞∑

n=

nα(p–γ )–
∫ ∞

nγα

P
(

max
≤k≤n

|Sk| > t/γ
)

dt.

Hence by Theorem . of Qiu et al. [], in order to prove (.), it is enough to show that

∞∑

n=

nα(p–γ )–
∫ ∞

nγα

P
(

max
≤k≤n

|Sk| > t/γ
)

dt < ∞.

Choose q such that /(αp) < q < . ∀j ≥ , t > , let

X(t,)
j = –tq/γ I

(
Xj < –tq/γ )

+ XjI
(|Xj| ≤ tq/γ )

+ tq/γ I
(
Xj > tq/γ )

,

X(t,)
j =

(
Xj – tq/γ )

I
(
tq/γ < Xj ≤ tq/γ + t/γ )

+ t/γ I
(
Xj > tq/γ + t/γ )

,

X(t,)
j =

(
Xj – tq/γ – t/γ )

I
(
Xj > tq/γ + t/γ )

,

X(t,)
j =

(
Xj + tq/γ )

I
(
–tq/γ – tγ ≤ Xj < –tq/γ )

– t/γ I
(
Xj < –tq/γ – tγ )

,

X(t,)
j =

(
Xj + tq/γ + t/γ )

I
(
Xj < –tq/γ – t/γ )

,
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then Xj =
∑

l= X(t,l)
j . Note that

∞∑

n=

nα(p–γ )–
∫ ∞

nγα

P
(

max
≤k≤n

|Sk| > t/γ
)

dt

≤
∞∑

n=

nα(p–γ )–
∫ ∞

nγα

P

(
max

≤k≤n

∣∣∣∣∣

k∑

j=

X(t,)
j

∣∣∣∣∣ > t/γ /

)
dt

+
∑

l=

∞∑

n=

nα(p–γ )–
∫ ∞

nγα

P

( n∑

j=

X(t,l)
j > t/γ /

)
dt

+
∑

l=

∞∑

n=

nα(p–γ )–
∫ ∞

nγα

P

(
–

n∑

j=

X(t,l)
j > t/γ /

)
dt

def=
∑

l=

Il.

Therefore to prove (.), it suffices to show that Il < ∞ for l = , , , , .
For I, we first prove that

sup
t≥nγα

t–/γ max
≤k≤n

∣∣∣∣∣E
k∑

j=

X(t,)
j

∣∣∣∣∣ → , n → ∞. (.)

When α ≤ . Since αp >  implies p > , by Lemma . and EXj = , j ≥ , we have

sup
t≥nγα

t–/γ max
≤k≤n

∣∣∣∣∣E
k∑

j=

X(t,)
j

∣∣∣∣∣

≤ sup
t≥nγα

t–/γ
n∑

j=

E
{|Xj|I

(|Xj| > tq/γ )
+ tq/γ I

(|Xj| > tq/γ )}

≤  sup
t≥nγα

t–/γ
n∑

j=

E|Xj|I
(|Xj| > tq/γ )

≤ Cn sup
t≥nγα

t–/γ E|X|I(|X| > tq/γ )

≤ Cn–αE|X|I(|X| > nαq)

≤ Cn–αpq–α(–q)E|X|p → , n → ∞.

When α >  and p ≥ .

sup
t≥nγα

t–/γ max
≤k≤n

∣∣∣∣∣E
k∑

j=

X(t,)
j

∣∣∣∣∣

≤ sup
t≥nγα

t–/γ
n∑

j=

E|Xj| ≤ Cn sup
t≥nγα

t–/γ E|X| ≤ Cn–α → , n → ∞.
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When α >  and p < ,

sup
t≥nγα

t–/γ max
≤k≤n

∣∣∣∣∣E
k∑

j=

X(t,)
j

∣∣∣∣∣

≤ sup
t≥nγα

t–/γ
n∑

j=

E
{|Xj|I

(|Xj| ≤ tq/γ )
+ tq/γ I

(|Xj| > tq/γ )}

≤ sup
t≥nγα

t–/γ
n∑

j=

tq(–p)/γ E|Xj|p ≤ Cn sup
t≥nγα

t{q(–p)–}/γ E|X|p

≤ Cn–αpq–(–q)α → , n → ∞.

Therefore (.) holds. By (.), in order to prove I < ∞, it is enough to show that

I∗
 :=

∞∑

n=

nα(p–γ )–
∫ ∞

nγα

P

(
max

≤k≤n

∣∣∣∣∣

k∑

j=

(
X(t,)

j – EX(t,)
j

)
∣∣∣∣∣ > t/γ /

)
dt < ∞.

Fix any v ≥  and v > max{p/( – q),γ /( – q), γ /[ – ( – p)q], (αp – )/[α( – q) + (αpq –
)], (αp – )/(α – /)}, by Markov’s inequality, Lemma ., Lemma ., and Cr-inequality,
we have

I∗
 ≤ C

∞∑

n=

nα(p–γ )–

×
∫ ∞

nγα

t–v/γ (
log(n)

)v
{ n∑

j=

E
∣∣X(t,)

j
∣∣v +

( n∑

j=

E
(
X(t,)

j
)

)v/}
dt

≤ C
∞∑

n=

nα(p–γ )–(log(n)
)v

×
∫ ∞

nγα

t–v/γ
n∑

j=

{
E|Xj|vI

(|Xj| ≤ t
q
γ
)

+ tqv/γ P
(|Xj| > t

q
γ
)}

dt

+ C
∞∑

n=

nα(p–γ )–(log(n)
)v

×
∫ ∞

nγα

t
–v
γ

{ n∑

j=

(
EX

j I
(|Xj| ≤ t

q
γ
)

+ t
q
γ P

(|Xj| > t
q
γ
))

} v


dt

def= I + I.

Note that

I ≤ C
∞∑

n=

nα(p–γ )–(log(n)
)v

∫ ∞

nγα

t–(–q)v/γ dt

≤ C
∞∑

n=

nαp–α(–q)v–(log(n)
)v < ∞.
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If max{p,γ } < , by Lemma ., we have

I ≤ C
∞∑

n=

nα(p–γ )–(log(n)
)v

∫ ∞

nγα

t
–v
γ

{
t(–p)q/γ

n∑

j=

E|Xj|p
} v



dt

≤ C
∞∑

n=

nα(p–γ )–+v/(log(n)
)v

∫ ∞

nγα

t
–[–(–p)q]v

γ
(
E|X|p) v

 dt

≤ C
∞∑

n=

nαp––[α(–q)+(αpq–)/]v(log(n)
)v < ∞.

If max{p,γ } ≥ , note that E|X| < ∞, by Lemma ., we have

I ≤ C
∞∑

n=

nα(p–γ )–+v/(log(n)
)v

∫ ∞

nγα

t–v/γ dt

≤ C
∞∑

n=

nαp––(α–/)v(log(n)
)v < ∞.

Therefore, I∗
 < ∞, so I < ∞.

For I, we first prove

sup
t≥nγα

{
t–/γ

n∑

j=

EX(t,)
j

}
→ , n → ∞. (.)

When p > , we have by Lemma . that

sup
t≥nγα

{
t–/γ

n∑

j=

EX(t,)
j

}

≤ sup
t≥nγα

t–/γ
n∑

j=

{
EXjI

(
Xj > tq/γ )

+ t/γ P
(
Xj > tq/γ + t/γ )}

≤ sup
t≥nγα

t–/γ
n∑

j=

{
EXjI

(
Xj > tq/γ )

+ EXjI
(
Xj > tq/γ + t/γ )}

≤ Cn sup
t≥nγα

t–/γ E|X|I(|X| > tq/γ ) ≤ Cn–αE|X|I(|X| > nqα
)

≤ Cn–qαp–α(–q)E|X|p → , n → ∞.

When  < p ≤ , we have by Lemma .

sup
t≥nγα

{
t–/γ

n∑

j=

EX(t,)
j

}

≤ sup
t≥nγα

t–/γ
n∑

j=

{
E|Xj|I

(|Xj| ≤ t/γ )
+ t/γ P

(|Xj| > tq/γ )}

≤ Cn sup
t≥nγα

t–/γ {
E|X|I(|X| ≤ t/γ )

+ t/γ P
(|X| > t/γ )

+ t/γ P
(|X| > tq/γ )}
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≤ Cn sup
t≥nγα

{
t–p/γ E|X|p + t–pq/γ E|X|p}

≤ Cn–αpq → , n → ∞.

Therefore (.) holds. By (.), in order to prove I < ∞, it is enough to show that

I∗
 :=

∞∑

n=

nα(p–γ )–
∫ ∞

nγα

P

( n∑

j=

(
X(t,)

j – EX(t,)
j

)
> t/γ /

)
dt < ∞.

Fix any v ≥  (to be specified later), by Markov’s inequality, Lemma ., Lemma ., Cr-
inequality, Jensen’s inequality, and Lemma ., we have

I∗
 ≤ C

∞∑

n=

nα(p–γ )–
∫ ∞

nγα

t–v/γ

{ n∑

j=

E
∣∣X(t,)

j
∣∣v +

( n∑

j=

E
(
X(t,)

j
)

)v/

dt

}

≤ C
∞∑

n=

nα(p–γ )–
∫ ∞

nγα

t–v/γ
n∑

j=

{
E|Xj|vI

(|Xj| ≤ t/γ )
+ tv/γ P

(
Xj > t/γ )}

dt

+ C
∞∑

n=

nα(p–γ )–
∫ ∞

nγα

t–v/γ

{ n∑

j=

E
(
X

j I
(|Xj| ≤ t/γ )

+ t/γ P
(
Xj > t/γ ))

}v/

dt

≤ C
∞∑

n=

nα(p–γ )–
∫ ∞

nγα

t–v/γ E|X|vI
(|X| ≤ t/γ )

dt

+ C
∞∑

n=

nα(p–γ )–
∫ ∞

nγα

P
(|X| > t/γ )

dt

+ C
∞∑

n=

nα(p–γ )–+v/
∫ ∞

nγα

t–v/γ {
E|X|I

(|X| ≤ t/γ )}v/ dt

+ C
∞∑

n=

nα(p–γ )–+v/
∫ ∞

nγα

(
P
(|X| > t/γ ))v/ dt

def= I + I + I + I.

We get by the mean-value theorem and a standard computation

I = C
∞∑

n=

nα(p–γ )–
∞∑

j=n

∫ (j+)γα

jγα

P
(|X| > t/γ )

dt

≤ C
∞∑

n=

nα(p–γ )–
∞∑

j=n

jγ α–P
(|X| > jα

)

= C
∞∑

j=

jγ α–P
(|X| > jα

) j∑

n=

nα(p–γ )–

≤

⎧
⎪⎪⎨

⎪⎪⎩

C
∑∞

j= jαp–P(|X| > jα), γ < p,

C
∑∞

j= jαp– log jP(|X| > jα), γ = p,
∑∞

j= jγ α–P(|X| > jα), γ > p
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≤

⎧
⎪⎪⎨

⎪⎪⎩

CE|X|p, γ < p,

CE|X|p log( + |X|), γ = p,

CE|X|γ , γ > p

< ∞.

When max{p,γ } < , let v = . We have I = I < ∞ and

I = I = C
∞∑

n=

nα(p–γ )–
∞∑

j=n

∫ (j+)γα

jγα

t–/γ E|X|I
(|X| ≤ t/γ )

dt

≤ C
∞∑

n=

nα(p–γ )–
∞∑

j=n

j(–+γ )α–E|X|I
(|X| ≤ (j + )α

)

= C
∞∑

j=

j(–+γ )α–E|X|I
(|X| ≤ (j + )α

) j∑

n=

nα(p–γ )–

≤

⎧
⎪⎪⎨

⎪⎪⎩

C
∑∞

j= jα(p–)–E|X|I(|X| ≤ (j + )α), γ < p,

C
∑∞

j= jα(p–)– log jE|X|I(|X| ≤ (j + )α), γ = p,

C
∑∞

j= jα(γ –)–E|X|I(|X| ≤ (j + )α), γ > p

≤

⎧
⎪⎪⎨

⎪⎪⎩

CE|X|p, γ < p,

CE|X|p log( + |X|), γ = p,

CE|X|γ , γ > p

< ∞. (.)

When max{p,γ } ≥ , let v > max{γ , (αp – )/(α – /)}. Note that E|X| < ∞

I ≤ C
∞∑

n=

nα(p–γ )–+v/
∫ ∞

nγα

t–v/γ dt = C
∞∑

n=

nαp––(α–/)v < ∞,

and by the Markov inequality, we have

I ≤ C
∞∑

n=

nα(p–γ )–+v/
∫ ∞

nγα

t–v/γ dt < ∞.

The proof of I < ∞ is similar to that (.), so it is omitted. Therefore, I∗
 < ∞, so I < ∞.

For I, we get

I ≤
∞∑

n=

nα(p–γ )–
∫ ∞

nγα

P

{ n⋃

j=

(
X(t,)

j > 
)
}

dt

=
∞∑

n=

nα(p–γ )–
∫ ∞

nγα

n∑

j=

P
(
Xj > t/γ + tq/γ )

dt

≤ C
∞∑

n=

nα(p–γ )–
∫ ∞

nγα

P
(|X| > t/γ )

dt = CI < ∞.
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By similar proofs to I < ∞ and I < ∞, we have I < ∞ and I < ∞, respectively. Therefore,
(.) holds.

Equation (.) ⇒ (.). Note that |S(k)
n | = |Sn – Xk| ≤ |Sn| + |Xk| = |Sn| + |Sk – Sk–| ≤

|Sn| + |Sk| + |Sk–| ≤  max≤j≤n |Sj|, ∀ ≤ k ≤ n, hence

∞∑

n=

nα(p–γ )–E
{

max
≤k≤n

∣∣S(k)
n

∣∣ – εnα
}γ

+

=
∞∑

n=

nα(p–γ )–
∫ ∞


P
(

max
≤k≤n

∣∣S(k)
n

∣∣ – εnα > t/γ
)

dt

≤
∞∑

n=

nα(p–γ )–
∫ ∞


P
(

max
≤k≤n

|Sn| > εnα/ + t/γ /
)

dt

= γ

∞∑

n=

nα(p–γ )–
∫ ∞


P
(

max
≤k≤n

|Sn| > εnα/ + t/γ
)

dt

= γ

∞∑

n=

nα(p–γ )–E
{

max
≤k≤n

|Sn| – εnα/
}γ

< ∞. (.)

Equation (.) holds.
Equation (.) ⇒ (.). Since 

 |Sn| ≤ n–
n |Sn| = | 

n
∑n

k= S(k)
n | ≤ max≤k≤n |S(k)

n |, ∀n ≥ ,
and |Xk| = |Sn – S(k)

n | ≤ |Sn| + |S(k)
n | ≤  max≤k≤n |S(k)

n |, we have (.) by a similar argument
to (.).

Equation (.) ⇒ (.). The proof of (.) ⇒ (.) is similar to that (.) ⇒ (.) of Chen
and Wang [], so it is omitted.

Equation (.) ⇒ (.). Since k–α|Xk| = k–α|Sk – Sk–| ≤ k–α(|Sk| + |Sk–|) ≤ supj≥k j–α ×
(|Sj| + |Sj–|) ≤  supj≥k– j–α|Sj|, ∀k ≥ , we have (.) by the similar argument of (.). �

Theorem . Let γ > , α > /, p > , αp > . Let {Xn, n ≥ } be a sequence of NOD ran-
dom variables and X be a random variables possibly defined on a different space. Moreover,
assume that EXn =  for all n ≥  when α ≤ . If there exist constants D >  and D > 
such that

D

n

n–∑

i=n

P
(|Xi| > x

) ≤ P
(|X| > x

) ≤ D

n

n–∑

i=n

P
(|Xi| > x

)
, ∀x > , n ≥ .

Then (.)-(.) are equivalent.

Proof By Theorem ., in order to prove Theorem ., it is enough to show that
(.) ⇒ (.) and (.) ⇒ (.). We only prove (.) ⇒ (.), the proof of (.) ⇒ (.)
is similar and omitted. Note that

∞ >
∞∑

n=

nα(p–γ )–E
{

max
≤k≤n

|Xk| – εnα
}γ

+

=
∞∑

n=

nα(p–γ )–
∫ ∞


P
(

max
≤k≤n

|Xk| – εnα > t/γ
)

dt
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≥
∞∑

n=

nα(p–γ )–
∫ εγ nαγ


P
(

max
≤k≤n

|Xk| > εnα + t/γ
)

dt

≥ γ α

∞∑

n=

nαp–P
(

max
≤k≤n

|Xk| > εnα
)

by Theorem . of Qiu et al. [], the proof of (.) ⇒ (.) is completed. �
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