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Abstract
This paper deals with a variant relaxed CQ algorithm by using a new searching
direction, which is not the gradient of a corresponding function. The strategy is to
intend to improve the convergence. Its convergence is proved under some suitable
conditions. Numerical results illustrate that our variant relaxed CQ algorithm
converges more quickly than the existing algorithms.
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1 Introduction
The multiple-set split feasibility problem (MSSFP) is to find a point contained in the in-
tersection of a family of closed convex sets in one space such that its image under a linear
transformation is contained in the intersection of another family of closed convex sets
in the image space. Formally, given nonempty closed convex sets Ci ⊆ �N , i = , , . . . , t,
in the N-dimensional Euclidean space �N and nonempty closed convex sets Qj ⊆ �M ,
j = , , . . . , r, and an M × N real matrix A, the MSSFP is to find a point x such that

x ∈ C =
t⋂

i=

Ci, Ax ∈ Q =
r⋂

j=

Qj. (.)

Such MSSFP, formulated in [], arises in the field of intensity-modulated radiation therapy
(IMRT) when one attempts to describe physical dose constrains and equivalent uniform
dose (EUD) constraints within a single model, see [, ]. Specially, when t = r = , the
problem reduces to the two-set split feasibility problem (abbreviated as SFP), which is to
find a point x ∈ C such that Ax ∈ Q (see [–]).

For solving the MSSFP, Censor et al. in [] introduced a proximity function p(x) to mea-
sure the aggregate distance of a point to all sets. The function p(x) is defined as

p(x) :=



t∑

i=

αi
∥∥x – PCi (x)

∥∥ +



r∑

j=

βj
∥∥Ax – PQj (Ax)

∥∥,
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where αi > , βj >  for all i and j, respectively, and
∑t

i= αi +
∑r

j= βj = . Then they pro-
posed a projection algorithm as follows:

xk+ = P�

(
xk – γ∇p

(
xk)),

where � ⊂ �N is an auxiliary set, xk is the current iterative point.  < γ < /L with
L =

∑t
i= αi + ρ(AT A)

∑r
j= βj and ρ(AT A) is the spectral radius of AT A. Subsequently,

many methods have been developed for solving the MSSFP [–], while most of these
algorithms aimed at minimizing the proximity function p(x) and used its gradient ∇p.

Different from most of the existing methods, in this paper, we construct a new searching
direction, which is not the gradient ∇p. And this difference causes a very different way of
analysis. Moreover, some preliminary numerical experiments show that our new method
converges faster than most existing methods.

The paper is organized as follows. Section  reviews some preliminaries. Section  gives
a variant relaxed projection algorithm and shows its convergence. Section  gives some
numerical experiments. Some conclusions are drawn in Section .

2 Preliminaries
Throughout the rest of the paper, I denotes the identity operator, Fix(T) denotes the set
of the fixed points of an operator T , i.e., Fix(T) := {x | x = T(x)}.

Let T be a mapping from ℵ ⊆ �N into �N . T is called co-coercive on ℵ with modulus
μ >  if

〈
T(x) – T(y), x – y

〉 ≥ μ
∥∥T(x) – T(y)

∥∥, ∀x, y ∈ ℵ;

it is called Lipschitz continuous on ℵ for constant L >  if

∥∥T(x) – T(y)
∥∥ ≤ L‖x – y‖, x, y ∈ ℵ;

it is called monotone on ℵ if

〈
T(x) – T(y), x – y

〉 ≥ , ∀x, y ∈ ℵ.

It is obvious that the co-coercivity (with modulus μ) implies the Lipschitz continuity
(with constant /μ) and monotonicity.

Let S be a nonempty closed convex subset of �N . Denote by PS the orthogonal projection
onto S; that is,

PS(x) = arg min
y∈�N

‖x – y‖,

over all x ∈ S.
It is well known that the orthogonal projection operator PS , for any x, y ∈ �N and any

z ∈ S, is characterized by the inequalities []

〈
x – PS(x), z – PS(x)

〉 ≤  (.)
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and

∥∥PS(x) – z
∥∥ ≤ ‖x – z‖ –

∥∥PS(x) – x
∥∥. (.)

Recall the notion of the subdifferential for an appropriate convex function.

Definition . Let f : �N → � be convex. The subdifferential of f at x is defined as

∂f (x) =
{
ξ ∈ �N | f (y) ≥ f (x) + 〈ξ , y – x〉,∀y ∈ �N}

. (.)

Evidently, an element of ∂f (x) is said to be a subgradient.

Lemma . [] An operator T is co-coercive with modulus  if and only if the operator
I – T is co-coercive with modulus , where I denotes the identity operator.

It is easy to see from the above lemmas that the orthogonal projection operators are
monotone, co-coercive with modulus , and the operator I – PQ is also co-coercive with
modulus .

3 Algorithm and its convergence
3.1 The variant relaxed-CQ algorithm
As in [], we suppose that the following conditions are satisfied:

() The solution set of the MSSFP is nonempty.
() The sets Ci, i = , , . . . , t, are denoted as

Ci =
{

x ∈ �N | ci(x) ≤ 
}

, (.)

where ci : �N → �, i = , , . . . , t, are appropriately convex and Ci, i = , , . . . , t, are
nonempty.

The set Qj, j = , , . . . , r, is denoted as

Qj =
{

y ∈ �M | qj(y) ≤ 
}

, (.)

where qj : �M → �, j = , , . . . , r, are appropriately convex and Qj, j = , , . . . , r, are
nonempty.

() For any x ∈ �N , at least one subgradient ξi ∈ ∂ci(x) can be calculated.
For any y ∈ �M , at least one subgradient ηj ∈ ∂qj(y) can be computed.
Now, we define the following half-spaces at point xk :

Ck
i =

{
x ∈ �N | ci

(
xk) +

〈
ξ k

i , x – xk 〉 ≤ 
}

, (.)

where ξ k
i is an element in ∂ci(xk) for i = , , . . . , t, and

Qk
j =

{
y ∈ �M | qj

(
Axk) +

〈
ηk

j , y – Axk 〉 ≤ 
}

, (.)

where ηk
j is an element in ∂qj(Axk) for j = , , . . . , r.
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By the definition of subgradient, it is clear that the half-spaces Ck
i and Qk

j contain Ci

and Qj, i = , , . . . , r; j = , , . . . , t, respectively. Due to the specific form of Ck
i and Qk

j ,
the orthogonal projections onto Ck

i and Qk
j , i = , , . . . , r; j = , , . . . , t, may be computed

directly, see [].
Now, we give the variant relaxed CQ algorithm.

Algorithm . Given αi >  and βj ≥  such that
∑t

i= αi = ,
∑r

j= βj = , γ ∈ (, 
ρ(AT A) ),

tk ∈ (, ).
For an arbitrary initial point, x ∈ �n is the current point. Define a mapping Fk : �N →

�N as

Fk(x) =
r∑

j=

βjAT (I – PQk
j
)Ax. (.)

For k = , , , . . . , compute

yk =
t∑

i=

αiPCk
i

(
xk – γ Fk

(
xk)). (.)

Let

dk = xk – yk + γ
(
Fk

(
yk) – Fk

(
xk)). (.)

Set

xk+ = xk – tkdk . (.)

In this algorithm, we can take ‖dk‖ < ε for some given precision as the stopping cri-
terion. And we apply yk and Fk to construct the searching direction dk . The choice of a
new searching direction leads to quite different in establishing the convergence result of
Algorithm ..

By Lemma . in [], the operator AT (I – PQk
j
)A is /ρ(AT A)-inverse strongly mono-

tone (/ρ(AT A)-ism) or co-coercive with modulus /ρ(AT A) and Lipschitz continuous
with ρ(AT A).

3.2 Convergence of the variant relaxed-CQ algorithm
In this subsection, we establish the convergence of Algorithm ..

The following results will be needed in convergence analysis of the proposed algorithm.

Lemma . [, ] Suppose that f : �N → � is convex. Then its subdifferential is uni-
formly bounded on any bounded subsets of �N .

Lemma . Assume that z is an arbitrary solution of the MSSFP (i.e., z ∈ SOL(MSSFP))
and u ∈ �N , it holds that

〈
Fk(u), u – z

〉 ≥
r∑

j=

βj
∥∥(I – PQk

j
)(Au)

∥∥ ≥ . (.)
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Proof If z ∈ SOL(MSSFP), then Az ∈ Qj ⊂ Qk
j for all j = , . . . , r, thus Fk(z) = , we have

known that the mappings I – PQk
j

are co-coercive with modulus , it follows that

〈
Fk(u), u – z

〉
=

〈
Fk(u) – Fk(z), u – z

〉

=
r∑

j=

βj
〈
(AT (I – PQk

j
)Au – AT (I – PQk

j
)Az, u – z

〉

=
r∑

j=

βj
〈
(I – PQk

j
)Au – (I – PQk

j
)Az, Au – Az

〉

≥
r∑

j=

βj
∥∥(I – PQk

j
)Au – (I – PQk

j
)Az

∥∥

=
r∑

j=

βj
∥∥(I – PQk

j
)Au

∥∥.
�

Now, we state the convergence of Algorithm ..

Theorem . Assume that the set of solutions of the constrained multiple-set split feasibil-
ity problem is nonempty. Then any sequence {xk}∞k= generated by Algorithm . converges
to a solution of the multiple-set split feasibility problem.

Proof Let z be a solution of MSSFP. Since Ci ⊂ Ci,k , Qj ⊂ Qk
j , then z = PCi z = PCi,k z and

Az = PQj Az = PQj,k Az for all i and j and therefore Fk(z) = . By Algorithm ., we have

∥∥xk+ – z
∥∥ =

∥∥xk – tkdk – z
∥∥ =

∥∥xk – z
∥∥ – tk

〈
dk , xk – z

〉
+ t

k
∥∥dk∥∥,

hence

∥∥xk+ – z
∥∥ =

∥∥xk – z
∥∥ – tk

〈
dk , yk – z

〉
– tk

〈
dk , xk – yk 〉 + t

k
∥∥dk∥∥. (.)

By (.) we have

〈
dk , yk – z

〉
=

〈
xk – γ Fk

(
xk) – yk , yk – z

〉
+ γ

〈
Fk

(
yk), yk – z

〉
. (.)

From Lemma ., we obtain

〈
Fk

(
yk), yk – z

〉 ≥
r∑

j=

βj
∥∥(I – PQk

j
)Ayk∥∥ ≥ . (.)

Let zk = xk – γ Fk(xk). For that
∑t

i= αi = , we obtain from (.) that

〈
xk – γ Fk

(
xk) – yk , yk – z

〉
=

〈
zk – yk , yk – z

〉

=

〈 t∑

i=

αi
(
zk – PCk

i

(
zk)),

t∑

i=

αiPCk
i

(
zk) – z

〉

=
t∑

i=

t∑

h=

αiαh
〈
zk – PCk

i

(
zk), PCk

h

(
zk) – z

〉
.
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If i = h, then 〈zk – PCk
i
(zk), PCk

h
(zk) – z〉 ≥ , since z ∈ Ci ⊂ Ck

i by Lemma .. Otherwise, if
i �= h, we have

αiαh
〈
zk – PCk

i

(
zk), PCk

h

(
zk) – z

〉
+ αhαi

〈
zk – PCk

h

(
zk), PCk

i

(
zk) – z

〉

= αiαh
[〈

zk – PCk
i

(
zk), PCk

i

(
zk) – z

〉
+

〈
zk – PCk

i

(
zk), PCk

h

(
zk) – PCk

i

(
zk)〉]

+ αhαi
[〈

zk – PCk
h

(
zk), PCk

h

(
zk) – z

〉
+

〈
zk – PCk

h

(
zk), PCk

i

(
zk) – PCk

h

(
zk)〉]

≥ αiαh
∥∥PCk

i

(
zk) – PCk

h

(
zk)∥∥.

It means

〈
xk – γkFk

(
xk) – yk , yk – z

〉 ≥
∑

i<h

αiαh
∥∥PCk

i

(
zk) – PCk

h

(
zk)∥∥ ≥ . (.)

By combining (.) and (.) with (.), we obtain

〈
dk , yk – z

〉 ≥
∑

i<h

αiαh
∥∥PCk

i

(
zk) – PCk

h

(
zk)∥∥ + γ

r∑

j=

βj
∥∥(I – PQk

j
)Ayk∥∥ ≥ . (.)

On the other hand, by definition of dk in (.), we have

〈
dk , xk – yk 〉 =

〈
dk , xk – yk + γ Fk

(
yk) – γkFk

(
xk)〉 + γ

〈
dk , Fk

(
xk) – Fk

(
yk)〉

=
∥∥dk∥∥ + γ

〈
xk – yk + γ Fk

(
yk) – γ Fk

(
xk), Fk

(
xk) – Fk

(
yk)〉

=
∥∥dk∥∥ + γ

〈
xk – yk , Fk

(
xk) – Fk

(
yk)〉 – γ ∥∥Fk

(
xk) – Fk

(
yk)∥∥.

From Lemma ., we arrive at 〈xk – yk , Fk(xk) – Fk(yk)〉 ≥ /ρ(AT A)‖Fk(xk) – Fk(yk)‖ for
all k, hence

〈
dk , xk – yk 〉 ≥ ∥∥dk∥∥ +

(
γ – γ ρ

(
AT A

))〈
xk – yk , Fk

(
xk) – Fk

(
yk)〉

=
∥∥dk∥∥ + γ

(
 – γρ

(
AT A

)) r∑

j=

βj
〈
Axk – Ayk ,

(I – PQk
j
)Axk – (I – PQk

j
)Ayk 〉.

Furthermore, from the -co-coercivity of I – PQk
j
, we have

〈
dk , xk – yk 〉 ≥ ∥∥dk∥∥ + γ

(
 – γρ

(
AT A

)) r∑

j=

βj
∥∥(I – PQk

j
)Axk – (I – PQk

j
)Ayk∥∥. (.)

From (.), (.) and (.), we have

∥∥xk+ – z
∥∥ =

∥∥xk – z
∥∥ – tk

〈
dk , yk – z

〉
– tk

〈
dk , xk – yk 〉 + t

k
∥∥dk∥∥,

≤ ∥∥xk – z
∥∥ – tk( – tk)

∥∥dk∥∥
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– tkγ ( – γρ
(
AT A

) r∑

j=

βj
∥∥(I – PQk

j
)Axk – (I – PQk

j
)Ayk∥∥

– tk

[
∑

i<h

αiαh
∥∥PCk

i

(
zk) – PCk

h

(
zk)∥∥

+ γ

r∑

j=

βj
∥∥(I – PQk

j
)Ayk∥∥

]
. (.)

Since tk ∈ (, ), γ ∈ (, 
ρ(AT A) ) in the algorithm, we conclude that the sequence {‖xk –

z‖} is monotonously nonincreasing and convergent and {xk} is bounded. We have shown
that the sequence {‖xk – z‖} is monotonically decreasing and bounded, therefore there
exists the limit

lim
k→∞

∥∥xk – z
∥∥ = d, (.)

which combined with (.)-(.), (.) implies

lim
k→∞

∥∥dk∥∥ = lim
k→∞

∥∥xk – yk + γ
(
Fk

(
yk) – Fk

(
xk))∥∥ = , (.)

∥∥∥ lim
k→∞

(I – PQk
j
)Axk – (I – PQk

j
)Ayk

∥∥∥


= , ∀j, (.)

lim
k→∞

∥∥PCk
i

(
zk) – PCk

h

(
zk)∥∥ = , ∀i �= h, (.)

lim
k→∞

∥∥(I – PQk
j
)Ayk∥∥ = , ∀j. (.)

Since the sequence {xk} is bounded, there exist a subsequence {xkl } of {xk} converging
to a point x∗ and a corresponding subsequence {Axkl } of {Axk} converging to a point Ax∗.
Now we will show that x∗ ∈ SOL(MSFP), namely we will show limkl→∞ ci(xkl ) ≤  and
limkl→∞ qi(xkl ) ≤  for all i and j.

First, since P
Qkl

j
∈ Qkl

j , we have

qj
(
Axkl

)
+

〈
η

kl
j , P

Qkl
j

(
Axkl

)
– Axkl

〉 ≤ .

We know from Lemma . that the subgradient sequence {ηk
j } is bounded. By (.) we

get P
Qkl

j
(Axkl ) – Axkl → . Thus, we have limkl→∞ qi(xkl ) ≤  for all and j.

Second, noting that P
Ckl

i
∈ Ckl

i , we have

ci
(
xkl

)
+

〈
ξ

kl
i , P

Ckl
i

(
xkl

)
– xkl

〉 ≤ .

Since {xk} is bounded, by Lemma . the sequence {ξ k
i } is also bounded. Then all we need

is to show that P
Ckl

i
– xkl → . We know from (.) and (.) that Fkl (y

kl ) →  and

Fkl (x
kl ) → . It follows that zkl = xkl – γ Fkl (x

kl ) → x∗, and then by (.), ykl → x∗. Com-
bining ykl =

∑t
i= αiPCkl

i
(xkl – γ Fkl (x

kl )) with Fkl (x
kl ) →  and ‖P

Ckl
i

(xkl ) – P
Ckl

h
(xkl )‖ → ,
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∀i �= h by (.), we conclude that ykl – P
Ckl

i
(xkl ) →  since

∑t
i= αi = . This leads to

P
Ckl

i
(xkl ) – xkl → , and thereby limkl→∞ ci(xkl ) ≤  for i = , , . . . , t.

Replacing z by x∗ in (.), we have

lim
k→∞

∥∥xk – x∗∥∥ = d,

furthermore

lim
k→∞

∥∥Axk – Ax∗∥∥ = Ad,

on the other hand,

lim
l→∞

∥∥xkl – x∗∥∥ = lim
l→∞

∥∥Axkl – Ax∗∥∥ = .

Thus, limk→∞ ‖xk – x∗‖ = liml→∞ ‖Axk – Ax∗‖ = . The proof of Theorem . is com-
plete. �

4 Numerical experiments
In the numerical results listed in Tables  and , ‘Iter.’, ‘Sec.’ denote the number of iter-
ations and the cpu time in seconds, respectively. We denote e = (, , . . . , ) ∈ �N and
e = (, , . . . , ) ∈ �N . In the both numerical experiments, we take the weights /(r + t) for
both Algorithm . and Censor’s algorithm. The stopping criterion is ‖d‖ < ε = –.

Example . The MSFP with

A =

⎡

⎢⎢⎢⎣

 –   
    
    –
 –  – 

⎤

⎥⎥⎥⎦ ;

C =
{

x ∈ � | x + x + x + x ≤ 
}

;

C =
{

x ∈ � | x + x + x ≤ 
}

and

Q =
{

y ∈ � | y + y ≤ 
}

;

Q =
{

y ∈ � | y + y ≤ 
}

;

Q =
{

y ∈ � | y + y ≤ 
}

.

Consider the following three cases:
Case : x = (, –, , –, );
Case : x = (, , , , );
Case : x = (, , , , ).
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Table 1 The numerical results of Example 4.1

Case Censor
γ = 1

Algo. 3.1
γ = 1
tk = 0.1

Censor
γ = 0.6

Algo. 3.1
γ = 0.6
tk = 0.1

Censor
γ = 1.8

Algo. 3.1
γ = 1.8
tk = 0.1

I Iter. = 1,051
Sec. = 1.043

Iter. = 146
Sec. = 0.401

Iter. = 1,867
Sec. = 1.480

Iter. = 224
Sec. = 0.334

Iter. = 832
Sec. = 0.700

Iter. = 89
Sec. = 0.062

II Iter. = 197
Sec. = 0.320

Iter. = 28
Sec. = 0.017

Iter. = 289
Sec. = 0.466

Iter. = 62
Sec. = 0.0751

Iter. = 87
Sec. = 0.068

Iter. = 9
Sec. = 0.010

III Iter. = 207
Sec. = 0.360

Iter. = 62
Sec. = 0.049

Iter. = 362
Sec. = 0.551

Iter. = 67
Sec. = 0.0728

Iter. = 139
Sec. = 0.217

Iter. = 17
Sec. = 0.020

Table 2 The numerical results of Example 4.2

N t, r Censor
γ = 1

Algo. 3.1
γ = 1
tk = 0.01

Censor
γ = 0.8

Algo. 3.1
γ = 0.8
tk = 0.01

Censor
γ = 1.6

Algo. 3.1
γ = 1.6
tk = 0.01

N = 20 t = 5
r = 5

Iter. = 181
Sec. = 0.268

Iter. = 16
Sec. = 0.021

Iter. = 288
Sec. = 0.499

Iter. = 20
Sec. = 0.022

Iter. = 147
Sec. = 0.213

Iter. = 9
Sec. = 0.017

N = 40 t = 10
r = 15

Iter. = 1,012
Sec. = 1.032

Iter. = 39
Sec. = 0.048

Iter. = 2,320
Sec. = 2.122

Iter. = 57
Sec. = 0.059

Iter. = 893
Sec. = 0.795

Iter. = 19
Sec. = 0.031

Example . [] In this example, because the step is related to ρ(AT A), for easy control
of the spectral radius, we take diagonal matrices A and aii ∈ (, ) generated randomly

Ci =
{

x ∈ �N | ‖x – di‖ ≤ ri
}

, i = , , . . . , t;

Qj =
{

x ∈ �N | Lj ≤ y ≤ Uj
}

, j = , , . . . , r;

where di is thecenter of the ball Ci, e ≤ di ≤ e, and ri ∈ (, ) is the radius, di and ri

are all generated randomly. Lj and Uj are the boundary of the box Qj and are also generated
randomly, satisfying e ≤ Lj ≤ e, e ≤ Uj ≤ e. In this test, we take e as the
initial point.

In Tables -, the results showed that for most of the initial point, the number of iter-
ative steps and the CPU time of Algorithm . are obviously less than those of Censor et
al.’s algorithm. Moreover, when we take N = ,, the number of iteration steps of Algo-
rithm . is only hundreds of times. The numerical results also show that for large scale
problems Algorithm . converges faster than Censor’s algorithm.

5 Conclusion
The multiple-set split feasibility problem arises in many practical applications in the real
world. This paper constructed a new searching direction, which is not the gradient of a
corresponding function. This different direction results in a very different way of analysis.
And preliminary numerical results show that our new method converges faster, and this
becomes more obvious while the dimension is increasing. Finally, the theoretically analysis
is based on the assumption that the solution set of the MSSFP is nonempty.
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