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Abstract
We discuss the minimax problems for set-valued mappings with several hierarchical
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1 Introduction and preliminaries
Let U , V be two nonempty sets in two Hausdorff topological vector spaces, respectively,
W be a Hausdorff topological vector space, D ⊂ W a closed convex and pointed cone with
apex at the origin and int D �= ∅. Let D� = {g ∈ W � : g(c) ≥  for all c ∈ D}, where W � is the
set of all continuous linear functional on W . The scalar hierarchical minimax theorems are
introduced and discussed by Lin [] as follows: given three mappings A, B, C : U × V ⇒R,
under suitable conditions the following relation holds:

min
⋃

u∈U

max
⋃

v∈V

A(u, v) ≤ max
⋃

v∈V

min
⋃

u∈U

C(u, v). (sH)

In [], the three versions (H)-(H) of minimax theorems with hierarchical structures
are also discussed: given three mappings A, B, C : U × V ⇒ W , under suitable conditions
the following relation holds:

Max
⋃

v∈V

Minw
⋃

u∈U

C(u, v) ⊂ Min

(
co

⋃

u∈U

Maxw
⋃

v∈V

A(u, v)
)

+ D, (H)

Max
⋃

v∈V

Minw
⋃

u∈U

C(u, v) ⊂ Min
⋃

u∈U

Maxw
⋃

v∈V

A(u, v) + D, (H)

Min
⋃

u∈U

Maxw
⋃

v∈V

A(u, v) ⊂ Max
⋃

v∈V

Minw
⋃

u∈U

C(u, v) + W \ (
D \ {}). (H)

In [], given three mappings A, B, C : U ×U ⇒ W , Lin et al. investigated the following two
versions of minimax inequalities, the so-called hierarchical minimax inequalities:

Max
⋃

u∈U

C(u, u) ⊂ Min

(
co

(⋃

u∈U

Maxw
⋃

v∈U

A(u, v)
))

+ D, (Hi)

Max
⋃

u∈U

C(u, u) ⊂ Min
⋃

u∈U

Maxw
⋃

v∈U

A(u, v) + D. (Hi)
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In this paper, we propose new hierarchical structures relative to several non-continuous
set-valued mappings which obey one of the following relations: (sH), (H), (H), (H), (Hi),
and (Hi). As applications, the existence of saddle points for set-valued mappings is also
discussed.

The fundamental concepts of maximal (minimal) point and weakly maximal (weakly
minimal) point will be used in the sequel.

Definition  [, ] Let L be a nonempty subset of W . A point w ∈ L is called a
(a) minimal point of L if L ∩ (w – D) = {w}; Min L denotes the set of all minimal points

of L;
(b) maximal point of L if L ∩ (w + D) = {w}; Max L denotes the set of all maximal points

of L;
(c) weakly minimal point of L if L ∩ (w – int D) = ∅; Minw L denotes the set of all weakly

minimal points of L;
(d) weakly maximal point of L if L ∩ (w + int D) = ∅; Maxw L denotes the set of all

weakly maximal points of L.

Both Max and Maxw are denoted by max (both Min and Minw by min) in R since both
Max and Maxw (both Min and Minw) are the same in R. We note that for a nonempty
compact set L, both sets Max L and Min L are nonempty. Furthermore, Min L ⊂ Minw L,
Max L ⊂ Maxw L, L ⊂ Min L + D, and L ⊂ Max L – D.

Definition  [, ] Let U, V be two Hausdorff topological spaces. A set-valued mapping
F : U⇒V with nonempty values is said to be

(a) upper semicontinuous on U if for any x ∈ U and for every open set N containing
F(x), there exists a neighborhood M of x such that F(M) ⊂ N ;

(b) lower semicontinuous on U if for any x ∈ U and any sequence {xn} ⊂ U such that
xn → x and any y ∈ F(x), there exists a sequence yn ∈ F(xn) such that yn → y;

(c) continuous on U if F is both upper semicontinuous and lower semicontinuous at any
x ∈ U.

Definition  [, ] The Gerstewitz function ϕkw : W →R is defined by

ϕkw(u) = min{t ∈R : u ∈ w + tk – D},

where k ∈ int D and w ∈ W .

Some properties of the scalarization function are as follows:

Proposition  [, ] The Gerstewitz function ϕkw : W → R has the following properties:
(a) ϕkw(w) > r ⇔ w /∈ w + rk – D;
(b) ϕkw(w) ≥ r ⇔ w /∈ w + rk – int D;
(c) ϕkw(·) is a convex function;
(d) ϕkw(·) is an increasing function, that is, w – w ∈ int D ⇒ ϕkw(w) < ϕkw(w);
(e) ϕkw(·) is a continuous function.

We also need the following cone-convexities for set-valued mappings.



Lin Journal of Inequalities and Applications  (2015) 2015:57 Page 3 of 15

Definition  [] Let U be a nonempty convex subset of a topological vector space. A set-
valued mapping F : U ⇒ W is said to be

(a) above-D-convex (respectively, above-D-concave) on W if for all u, u ∈ U and all
α ∈ [, ],

F
(
αu + ( – α)u

) ⊂ αF(u) + ( – α)F(u) – D
(
respectively, αF(u) + ( – α)F(u) ⊂ F

(
αu + ( – α)u

)
– D

)
;

(b) above-naturally D-quasi-convex on W if for all u, u ∈ U and all α ∈ [, ],

F
(
αu + ( – α)u

) ⊂ co
{

F(u) ∪ F(u)
}

– D,

where co A denotes the convex hull of a set A; and
(c) above-D-quasi-convex on W if for each w ∈ W , the set {u ∈ U : F(u) ⊂ w – D} is a

convex subset of U .

By definition, the above-D-convex mapping is also an above-naturally D-quasi-convex
on U . The following whole intersection theorem is a variant form of Ha [].

Lemma  Let U be a nonempty convex subset of a real Hausdorff topological space, V
be a nonempty compact convex subset of a real Hausdorff topological space. Let the three
mappings L, M, N : U ⇒ V with L(u) ⊂ M(u) ⊂ N(u) for all u ∈ U satisfy

(a) L(u), N(u) are open in V for each u ∈ U , L–(v), N–(v) are convex in U for each
v ∈ V ; and

(b) V \ M(u) is convex for each u ∈ U , and M–(v) is open in U for each v ∈ V .
Then either there is an v ∈ V such that L–(v) is a empty set, or the whole intersection
⋂

v∈V N–(v) is nonempty.

In the sequel we also need the following proposition.

Proposition  Let U be a nonempty set, k ∈ int D and w ∈ W . Suppose that the set-
valued mappings F , G : U ⇒ W come with nonempty compact values and, for some u ∈ U ,
Maxw F(u) ⊂ Maxw G(u) – D. We have the following two results:

(a) for any ϕ ∈ D�, the inequality

maxϕF(u) ≤ maxϕG(u)

holds;
(b) for the Gerstewitz function ϕkw : W →R, the inequality

maxϕkwF(u) ≤ maxϕkwG(u)

holds.

Proof For the proof of (a), we refer to Proposition . []. We omit the proof of (b) since
it is quite similar to the proof of (a). �
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2 Scalar hierarchical minimax theorems
We first establish the following scalar hierarchical minimax theorem.

Theorem  Let U be a nonempty convex subset of a real Hausdorff topological space, V
be a nonempty compact convex subset of a real Hausdorff topological space. Suppose that
the set-valued mappings A, B, C : U × V ⇒ R with nonempty compact values satisfy the
following conditions:

(i) the mappings u → A(u, v) and u → C(u, v) are above-R+-quasi-convex on U for
each v ∈ V , and the mappings v → A(u, v) and v → C(u, v) are upper
semicontinuous on V for each u ∈ U ;

(ii) the mapping u → B(u, v) is upper semicontinuous on U for each v ∈ V , and the
mapping v → B(u, v) is above-R+-concave for each u ∈ U ; and

(iii) for all (u, v) ∈ U × V , max A(u, v) ≤ max B(u, v) ≤ max C(u, v).
Then, for each t ∈R, either there is v ∈ V such that

C(u, v) ∩ (t + R+) �= ∅

for all u ∈ U , or there is u ∈ U such that

A(u, v) ⊂ t – intR+

for all v ∈ V .

Proof Give any t ∈R. Define three mappings L, M, N : U ⇒ V by

L(u) =
{

v ∈ V : ∀h ∈ C(u, v), h < t
}

,

M(u) =
{

v ∈ V : ∀g ∈ B(u, v), g < t
}

,

and

N(u) =
{

v ∈ V : ∀f ∈ A(u, v), f < t
}

for all u ∈ U . By (iii), L(u) ⊂ M(u) ⊂ N(u) for all u ∈ U .
Since the mapping u → C(u, v) is above-R+-quasi-convex on U for each v ∈ V , the set

L–(v) is convex for each v ∈ V . Similarly, the set N–(v) is convex for each v ∈ V . Next,
we claim that the set L(u) is open in V , or the set V \ L(u) = {v ∈ V : ∃h ∈ C(u, v), h ≥ t} is
closed for each u ∈ U . For any net {vν} ⊂ V \ L(u) that converges to some point v ∈ V ,
there exists hν ∈ C(u, vν) such that hν ≥ t. By the upper semicontinuity of H at v, C(u, v) is
compact. By Lemma . [], there exist h ∈ C(u, v) and a subnet {hνα } that converges to
h. Since hνα ≥ t, we have h ≥ t, and hence v ∈ V \ L(u). This proves that the set V \ L(u)
is closed, and the set L(u) is open for each u ∈ U . Similarly, by the upper semicontinuity
of A and B, the sets M–(v) and N(u) are open for each u ∈ U and v ∈ V .

Next, we claim that the set V \ M(u) is convex in V for each u ∈ U . For each u ∈ U , for
any v, v ∈ V \M(u) and any τ ∈ [, ]. There exist g ∈ B(u, v) with g ≥ t and g ∈ B(u, v)
with g ≥ t, τg + ( – τ )g ≥ t. By the above-R+-concavity of B,

τg + ( – τ )g ⊂ B
(
u, τv + ( – τ )v

)
– R+.
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Thus, there is a gτ ∈ B(x, τv +(–τ )v) such that τg +(–τ )g ≤ gτ . Hence, τv +(–τ )v ∈
V \ M(u) and the set V \ M(u) is convex in V for each u ∈ U .

Since all conditions of Lemma  hold, by Lemma , either there is an v ∈ V such that
L–(v) is an empty set, or the whole intersection

⋂
v∈V D–(v) is nonempty. That is, for

each t ∈R, either there is v ∈ V such that

C(u, v) ∩ (t + R+) �= ∅

for all u ∈ U , or there is u ∈ U such that

A(u, v) ⊂ t – intR+

for all v ∈ V . �

Theorem  We work under the framework of Theorem , in addition, U is compact, for
each (u, v) ∈ U × V , the union

⋃
u∈U C(u, v) is compact, and the mappings u → A(u, v) and

v → C(u, v) are lower semicontinuous on U and V , respectively. If the following condition
holds: for each v ∈ V , there is an uv ∈ U such that

max C(uv, v) ≤ max
⋃

v∈V

min
⋃

u∈U

C(u, v), (L)

then (sH) is valid.

Proof For any t > max
⋃

v∈V min
⋃

u∈U C(u, v). From (L), we see that, for each v ∈ V there
is an uv ∈ U such that

C(uv, v) ∩ (t + R+) = ∅.

Hence, by Theorem , there is u ∈ U such that

A(u, v) ⊂ t – intR+

for all v ∈ V . This will suffice to show that (sH) holds. �

We note that Theorems  and  include some special cases as follows.

Corollary  If we replace (iii) of Theorem  by any one of the following conditions:
(i) for all (u, v) ∈ U × V , A(u, v) = B(u, v) = C(u, v);

(ii) for all (u, v) ∈ U × V , A(u, v) ⊂ B(u, v) = C(u, v);
(iii) for all (u, v) ∈ U × V , A(u, v) = B(u, v) ⊂ C(u, v);
(iv) for all (u, v) ∈ U × V , A(u, v) ⊂ B(u, v) ⊂ C(u, v);
(v) for all (u, v) ∈ U × V , max A(u, v) ≤ max B(u, v) ≤ max C(u, v), but

A(u, v) �= B(u, v) �= C(u, v);
(vi) for all (u, v) ∈ U × V , max A(u, v) ≤ max B(u, v) ≤ max C(u, v), but

A(u, v) ⊂ B(u, v) �= C(u, v);
(vii) for all (u, v) ∈ U × V , max A(u, v) ≤ max B(u, v) ≤ max C(u, v), but

A(u, v) �= B(u, v) ⊂ C(u, v),
then (sH) is valid.
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We state the first one of Corollary  as follows.

Corollary  Let U , V be two nonempty compact convex subset of real Hausdorff topolog-
ical spaces, respectively. Suppose that the set-valued mappings A : U × V ⇒ R come with
nonempty compact values and satisfy the following conditions:

(i) the mapping u → A(u, v) is above-R+-quasi-convex on U for each v ∈ V , and the
mapping v → A(u, v) is continuous on V for each u ∈ U ;

(ii) the mapping u → A(u, v) is continuous on U for each v ∈ V , and the mapping
v → A(u, v) is above-R+-concave for each u ∈ U .

If the following condition holds: for each v ∈ V , there is an uv ∈ U such that

max A(uv, v) ≤ max
⋃

v∈V

min
⋃

u∈U

A(u, v),

then (sH) with A = B = C is valid.

From Proposition . [], every above-naturally R+-quasi-convex is an above-R+-
quasi-convex. We can see that Corollary  slightly generalizes Theorem . [].

3 Hierarchical minimax theorems
In this section, we will discuss three versions of hierarchical minimax theorems. The first
one is as follows.

Theorem  Let U , V be nonempty compact convex subsets of real Hausdorff topological
spaces, respectively, W be a complete locally convex Hausdorff topological vector space.
Suppose that the set-valued mappings A, B, C : U × V ⇒ W come with nonempty compact
values and satisfy the following conditions:

(i) (u, v) → A(u, v) is upper semicontinuous on U × V , and u → A(u, v) is
above-naturally D-quasi-convex and lower semicontinuous on U for each v ∈ V ;

(ii) u → B(u, v) is upper semicontinuous on U for each v ∈ V , and v → B(u, v) is
above-D-concave on V for each u ∈ U ;

(iii) (u, v) → C(u, v) is upper semicontinuous on U × V , u → C(u, v) is above-naturally
D-quasi-convex on U for each v ∈ V , and v → C(u, v) is continuous on V for each
u ∈ U ;

(iv) for any ϕ ∈ C� and for each v ∈ V , there is an uv ∈ U such that

maxϕC(uv, v) ≤ max
⋃

v∈V

min
⋃

u∈U

ϕC(u, v);

(v) for each v ∈ V ,

Max
⋃

v∈V

Minw
⋃

u∈U

C(u, v) ⊂ Minw
⋃

u∈U

C(u, v) + D; and

(vi) for all (u, v) ∈ U × V , Maxw A(u, v) ⊂ Maxw B(u, v) – D, and
Maxw B(u, v) ⊂ Maxw C(u, v) – D.

Then (H) is valid.
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Proof We omit some parts of the proof since the techniques of the proof are similar to
Theorem . []. Suppose that v /∈ co(

⋃
u∈U Maxw

⋃
v∈V A(u, v)) + D. There is a nonzero

continuous linear functional ϕ : Z →R such that

ϕ(v) < min
⋃

u∈U

max
⋃

v∈V

ϕA(u, v).

Since u → A(u, v) and u → C(u, v) are above-naturally D-quasi-convex for each v ∈ V , by
Proposition . [], u → ϕA(u, v) and u → ϕC(u, v) are above-naturally R+-quasi-convex
for each v ∈ V and ϕ ∈ C�. Since v → B(u, v) is above-D-concave on V for each u ∈ U ,
by Proposition . [], v → ϕB(u, v) is above-R+-concave on V for each u ∈ U and ϕ ∈
C�. Since every ϕ ∈ C� is continuous, all continuities of Theorem  are satisfied for the
mappings ϕA, ϕB, ϕC. By Proposition  and (vi), ϕA(u, v) ≤ ϕB(u, v) ≤ ϕC(u, v) for all
(u, v) ∈ U × V . Thus, all conditions of Theorem  hold for ϕA, ϕB, ϕC. Hence,

ϕ(v) < max
⋃

v∈V

min
⋃

u∈U

ϕC(u, v).

Since V is compact, there is a v′ ∈ V such that

ϕ(v) < min
⋃

u∈U

ϕC
(
u, v′).

Thus,

v /∈
⋃

u∈U

C
(
u, v′) + D,

and hence,

v /∈ Minw
⋃

u∈U

C
(
u, v′) + D. ()

If v ∈ Max
⋃

v∈V Minw
⋃

u∈U C(u, v), then, by (v),

v ∈ Minw
⋃

u∈U

C
(
u, v′) + D,

which contradicts (). Hence, for every v ∈ Max
⋃

v∈V Minw
⋃

u∈U C(u, v),

v ∈ co

(⋃

u∈U

Maxw
⋃

v∈V

A(u, v)
)

+ D.

That is, (H) is valid. �

Corollary  If we replace (vi) of Theorem  by any one of the following conditions:
(i) for all (u, v) ∈ U × V , A(u, v) = B(u, v) = C(u, v);

(ii) for all (u, v) ∈ U × V , A(u, v) ⊂ B(u, v) = C(u, v);
(iii) for all (u, v) ∈ U × V , A(u, v) = B(u, v) ⊂ C(u, v);
(iv) for all (u, v) ∈ U × V , A(u, v) ⊂ B(u, v) ⊂ C(u, v);
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(v) for all (u, v) ∈ U × V , for all (u, v) ∈ U × V , Maxw A(u, v) ⊂ Maxw B(u, v) – D, and
Maxw B(u, v) ⊂ Maxw C(u, v) – D, but A(u, v) �⊂ B(u, v) �⊂ C(u, v);

(vi) for all (u, v) ∈ U × V , for all (u, v) ∈ U × V , Maxw A(u, v) ⊂ Maxw B(u, v) – D, and
Maxw B(u, v) ⊂ Maxw C(u, v) – D, but A(u, v) ⊂ B(u, v) �⊂ C(u, v);

(vii) for all (u, v) ∈ U × V , Maxw A(u, v) ⊂ Maxw B(u, v) – D, and
Maxw B(u, v) ⊂ Maxw C(u, v) – D, but A(u, v) �⊂ B(u, v) ⊂ C(u, v),

then (H) is valid.

The following example illustrates that Theorem  is true.

Example  Let U = V = [, ], D = R

+, and f : U ⇒R be defined by

f (v) =

⎧
⎨

⎩
[–, ], v = ,

{}, v �= .

Define A, B, C : U × V ⇒R
 by

A(u, v) =
{

 – cos(uπ/)
} × f (v),

B(u, v) =
{

 + cos(uπ/)
} × [v – , ],

C(u, v) =
{

 + u} × [
v + , 

]
,

for all (u, v) ∈ U × V .
We can easily see that the mappings A, B, C satisfy (vi) and all continuities in Theorem .

For each v ∈ V , the mapping u → A(u, v) is above-naturally D-quasi-convex on U for each
v ∈ V since, for any α ∈ [, ] and u, u ∈ U ,

A
(
αu + ( – α)u, v

)

=
{

 – cos
((

αu + ( – α)u
)
π/

)} × f (v)

⊂ α
{

 – cos(uπ/)
} × f (v) + ( – α)

{
 – cos(uπ/)

} × f (v) – D

= co
{

A(u, v) ∪ A(u, v)
}

– D.

We see that the mapping v → B(u, v) is above-D-concave on V for each u ∈ U since, for
any α ∈ [, ] and v, v ∈ V ,

αB(u, v) + ( – α)B(v)

= α
{

 + cos(uπ/)
} × [v – , ] + ( – α)

{
 + cos(uπ/)

} × [v – , ]

=
{

 + cos(uπ/)
} × [

αv + ( – α)v – , 
]

⊂ B(u,αv) + ( – α)v – D.

We note that the mapping u → C(u, v) is above-D-convex on U for each v ∈ V . Hence,
by definition, u → C(u, v) is above-naturally D-quasi-convex on U for each v ∈ V . Thus,
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conditions (i)-(iii) of Theorem  are valid. Now we claim that condition (iv) holds. Indeed,
for each v ∈ V and ϕ = (ϕ,ϕ) ∈ D�, we need to find an uv ∈ U such that

maxϕC(uv, v) = max
{
ϕ

(
 + u) + ϕt : v +  ≤ t ≤ 

}

= ϕ
(
 + u) + ϕ

≤ ϕ + ϕ

= max
⋃

v∈V

min
⋃

u∈U

ϕC(u, v).

Hence, we choose uv by the following rule:

uv =

⎧
⎨

⎩
any point in [, ], ϕ = ,

, ϕ �= ,

then (iv) of Theorem  holds. Next, we claim (v) of Theorem  is valid. Indeed, by a simple
calculation, we get

Max
⋃

v∈V

Minw
⋃

u∈U

C(u, v)

=
{

(, )
}

⊂ ({} × [
y + , 

])⋃(
[, ] × {

y + 
})

+ D

= Minw
⋃

u∈U

C(u, v) + D

for each v ∈ V . Thus, condition (v) of Theorem  holds. By Theorem , (H) is valid. In-
deed,

Max
⋃

v∈V

Minw
⋃

u∈U

C(u, v)

=
{

(, )
}

⊂ {
(, –)

}
+ D

= Min

(
co

⋃

u∈U

Maxw
⋃

v∈V

A(u, v)
)

+ D,

and hence the conclusion of Theorem  is valid.

In the following result, we apply the Gerstewitz function ϕkw : W →R to introduce the
second version of the hierarchical minimax theorems, where k ∈ int D and w ∈ W .

Theorem  Let U , V be nonempty compact convex subsets of real Hausdorff topological
spaces, respectively, W be a real Hausdorff topological vector space. We work under the
framework of Theorem  except (iv) and the concavity of B. If, in addition, the mapping
v → ϕkwB(u, v) is above-R+-concave on V for each u ∈ U , and for any Gerstewitz function
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ϕkw and for each v ∈ V , there is an uv ∈ U such that

(iv)′ maxϕkwC(uv, v) ≤ max
⋃

v∈V

min
⋃

u∈U

ϕkwC(u, v);

then (H) is valid.

Proof Using the same steps as in the proof of Theorem , we see that the set
⋃

u∈U Maxw ×
⋃

v∈V A(u, v) is nonempty and compact. Suppose that v /∈ ⋃
u∈U Maxw

⋃
v∈V A(u, v)+D. For

any k ∈ int D, there is a Gerstewitz function ϕkw : W →R such that

ϕkw(u) >  ()

for all u ∈ ⋃
u∈U Maxw

⋃
v∈V A(u, v). Then, for each u ∈ U , there is v�

u ∈ Y and f (u, v�
u) ∈

F(u, v�
x) with f (u, v�

u) ∈ Maxw
⋃

v∈V A(u, v) such that

ϕkw
(
f
(
u, v�

u
))

= max
⋃

v∈V

ϕkwA(u, v).

Choosing u = f (u, v�
u) in (),

max
⋃

v∈V

ϕkwA(u, v) > 

for all u ∈ U . Therefore,

min
⋃

u∈U

max
⋃

v∈V

ϕkwA(u, v) > .

By conditions (i)-(iii) and (iv′), we see that all conditions of Theorem  hold for the
mappings ϕkwA, ϕkwB, ϕkwC, and hence, by (sH),

max
⋃

v∈V

min
⋃

u∈U

ϕkwC(u, v) > .

Since V is compact, there is a y′ ∈ Y such that

min
⋃

u∈U

ϕkwC
(
u, v′) > .

Thus,

v /∈
⋃

u∈U

C
(
u, v′) + D,

and hence

v /∈ Minw
⋃

u∈U

C
(
u, v′) + D. ()
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If v ∈ Max
⋃

v∈V Minw
⋃

u∈U A(u, v), then, by (v),

v ∈ Minw
⋃

u∈U

C
(
u, v′) + D,

which contradicts (). From this, we can deduce (H). �

The third version of hierarchical minimax theorems is as follows. We remove condition
(v) in Theorem  to deduce (H).

Theorem  We work under the framework of Theorem  except condition (v). Equation
(H) is valid.

Proof Following the proof of Theorem . Fix any v ∈ Min
⋃

u∈U Maxw
⋃

v∈V A(u, v). Then

(⋃

u∈U

Maxw
⋃

v∈V

A(u, v)
)

\ {v} ∩ (v – D) = ∅.

For any k ∈ int D, there is a Gerstewitz function ϕkw : W →R such that

ϕkw(u) > 

for all u ∈ ⋃
u∈U Maxw

⋃
v∈V A(u, v) \ {v}. For each u ∈ U ,

max
⋃

v∈V

ϕkwA(u, v) ≥ ,

or

min
⋃

u∈U

max
⋃

v∈V

ϕkwA(u, v) ≥ .

Hence, by Theorem  for the mappings ϕkwA, ϕkwB, ϕkwC,

max
⋃

v∈V

min
⋃

u∈U

ϕkwC(u, v) ≥ .

Since U and V are compact, there are u ∈ U , v ∈ V , and h ∈ C(u, v) such that

ϕkw(h) = min
⋃

u∈U

ϕkwC(u, v) ≥ .

Applying Proposition . [], h ∈ Minw
⋃

u∈U C(u, v). If h = v, v /∈ h + (D \ {}). If
h �= v, ϕkw(h) > , and hence h /∈ v – D. Therefore, v /∈ h + (D \ {}). Thus, in any case,
v ∈ h + W \ (D \ {}). This implies (H). �

4 Hierarchical minimax inequalities
As an application of scalar hierarchical minimax theorems, we discuss minimax inequal-
ities which were investigated by Lin et al. []. The following result as regards (Hi) is dif-
ferent from [] and holds under very different conditions.
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Theorem  Let U be a nonempty compact convex subset of a real Hausdorff topological
vector space, W be a complete locally convex Hausdorff topological vector space. Let the set-
valued mappings A, B, C : U ×U ⇒ W come with nonempty compact values and satisfy the
following conditions:

(i) the mappings u → A(u, v) and u → C(u, v) are above-naturally D-quasi-convex on
U for each v ∈ U , the mappings (u, v) → A(u, v) and (u, v) → C(u, v) are upper
semicontinuous on U for each u ∈ U , and the mappings u → A(u, v) and
v → C(u, v) are lower semicontinuous on U ;

(ii) u → B(u, v) is upper semicontinuous on U for each v ∈ U , and the mapping
v → B(u, v) is above-D-concave on U for each u ∈ U ;

(iii) for each v ∈ U , for each ϕ ∈ D�, there is an uv ∈ U such that

maxϕC(uv, u) ≤ max
⋃

v∈U

min
⋃

u∈U

ϕC(u, v);

(iv) for each v ∈ U ,

Max
⋃

u∈U

C(u, u) ⊂ Minw
⋃

u∈U

C(u, v) + D; and

(v) for all (u, v) ∈ U × U ,

Maxw A(u, v) ⊂ Maxw B(u, v) – D

and

Maxw B(u, v) ⊂ Maxw C(u, v) – D.

Then (Hi) is valid.

Proof Suppose that v /∈ co(
⋃

u∈U Maxw
⋃

v∈U A(u, v)) + D. With the help of technique in
the proof of Theorems  and  for the mappings ϕA, ϕB, ϕC, we can see that

ϕ(v) < max
⋃

y∈U

min
⋃

u∈U

ϕC(u, v).

In a similar way to Theorem , there is a v′ ∈ V such that

ϕ(v) < min
⋃

u∈U

ϕC
(
u, v′).

Hence, v /∈ Minw
⋃

u∈U C(u, v′) + D. By condition (iv), we see that

v /∈ Max
⋃

u∈U

C(u, u).

Therefore, (Hi) is valid. �

In the following example we modify Example , which serves to illustrate Theorem .
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Example  Let X = [, ], D = R

+ and f : U ⇒R be defined by

f (v) =

⎧
⎨

⎩
[–, ], y = ,

{}, y �= .

Define A, B, C : U × U ⇒R
 by

A(u, v) =
{

 – cos(uπ/)
} × f (v),

B(u, v) =
{

 + cos(uπ/)
} × [v – , ],

C(u, v) =
{

 + u} × [
v + , 

]
,

for all (u, v) ∈ U × V .
We can easily see that the mappings A, B, C satisfy (v) and all continuities in Theorem .

From the illustrations in Example , we see that the mapping u → A(u, v) is above-naturally
D-quasi-convex on U for each v ∈ V , the mapping v → B(u, v) is above-D-concave on V
for each u ∈ U , the mapping u → C(u, v) is above-naturally D-quasi-convex on U for each
v ∈ V . Furthermore, for each v ∈ V and ϕ = (ϕ,ϕ) ∈ D�, by using the same choice of uv as
in Example , (iii) of Theorem  holds. Next, we claim (iv) of Theorem  is valid. Indeed,
by a simple calculation, we get

Max
⋃

u∈U

C(u, u)

= Max
⋃

u∈U

{
 + u} × [

u + , 
]

=
{

(, )
}

⊂ ({} × [
v + , 

]) ∪ (
[, ] × {

v + 
})

+ D

= Minw
⋃

u∈U

C(u, v) + D

for each v ∈ V . Thus, condition (iv) of Theorem  holds. By Theorem , (Hi) is valid.
Indeed,

Max
⋃

u∈U

C(u, u)

=
{

(, )
}

⊂ {
(, –)

}
+ D

= Min

(
co

⋃

u∈U

Maxw
⋃

v∈U

A(u, v)
)

+ D,

and hence the conclusion of Theorem  is valid.

Theorem  Let U be a nonempty compact convex subset of real Hausdorff topological vec-
tor space, W be a real Hausdorff topological vector space. We work under the framework of
Theorem  except (iii) and the convexities of B. If, in addition, the mapping v → ϕkwB(u, v)
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is above-R+-concave on U for each u ∈ U , and for each v ∈ U , there is an xv ∈ U such that
for any Gerstewitz function ϕkw,

(iii)′ maxϕkwC(uv, v) ≤ max
⋃

v∈U

min
⋃

u∈U

ϕkwC(u, v),

then (Hi) is valid.

Proof Suppose that v /∈ ⋃
u∈U Maxw

⋃
v∈U A(u, v) + D. Using a similar technique to the

proofs of Theorems  and  for the mappings ϕkwA, ϕkwB, ϕkwC, we can see that

max
⋃

v∈U

min
⋃

u∈U

ϕkwC(u, v) > .

By the same technique as in Theorem  and condition (iv), we see that

v /∈ Max
⋃

u∈U

C(u, u).

Hence, (Hi) is valid. �

5 Saddle points
In this section, we list the existence of saddle points for set-valued mappings as applica-
tions of scalar hierarchical minimax theorems. The proofs of the following results can be
deduced directly from Corollary , so we omit them. We refer the reader to [, ] for more
details. Nevertheless, the conditions used in Theorems - are quite different from the
ones used in the literature [, ].

Theorem  Under the framework of Corollary ., we have

max
⋃

v∈V

A(ū, v) = min
⋃

u∈U

A(x, v̄) = A(ū, v̄),

which means: A has R+-saddle point (ū, v̄).

Theorem  Let U , V be nonempty compact convex subsets of real Hausdorff topologi-
cal spaces, respectively. W is a complete locally convex Hausdorff topological vector space.
Suppose that the set-valued mappings F : U × V ⇒ W have nonempty compact values and
satisfy the following conditions:

(i) (u, v) → A(u, v) is upper semicontinuous on U × V , and u → A(u, v) is
above-naturally D-quasi-convex and lower semicontinuous on U for each v ∈ V ;

(ii) v → A(u, v) is above-D-concave on V for each u ∈ U ;
(iii) v → A(u, v) is continuous on V for each u ∈ U ; and
(iv) for any ϕ ∈ D� and for each v ∈ V , there is an uv ∈ U such that

maxϕA(uv, v) ≤ max
⋃

v∈V

min
⋃

u∈U

ϕA(u, v).
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Then

A(ū, v̄) ∩
(

Maxw
⋃

v∈V

A(ū, v)
)

∩
(

Minw
⋃

u∈U

A(x, v̄)
)

�= ∅,

which means: A has a weakly D-saddle point (ū, v̄).

Theorem  Let U , V be nonempty compact convex subsets of real Hausdorff topological
spaces, respectively. W is a real Hausdorff topological vector space. We work under the
framework of Theorem  except (iv) and the convexities of A. If, in addition, the mapping
v → ϕkwA(u, v) is above-R+-concave on V for each u ∈ U , and for any Gerstewitz function
ϕkw and for each v ∈ V , there is an uv ∈ U such that

(iv′) maxϕkwA(uv, v) ≤ max
⋃

v∈V

min
⋃

u∈U

ϕkwA(u, v);

then A has a weakly D-saddle point (ū, v̄).
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