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Abstract
The Green function of the free boundary value problem for (–1)M(d/dx)2M is found by
using Whipple’s formula. The Green function is constructed through so-called
symmetric orthogonalization method under a suitable solvability condition. Its Green
function is a reproducing kernel for a suitable set of Hilbert space and an inner
product. By using the fact, we compute the best constant (M = 1, 2, 3, 4, 5) and a family
of the best functions for a Sobolev inequality. It is possible for us to expect the best
constant of the Sobolev inequality, but the proof has not been completed forM≥ 6
in the present paper.
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1 Introduction
For M = , , , . . . , we introduce the Sobolev space

H = H(M) =
{

u(x)
∣∣∣ u(x), u(M)(x) ∈ L(–, ),

∫ 

–
u(x)xi dx =  ( ≤ i ≤ M – )

}

with the Sobolev inner product

(u, v)M =
∫ 

–
u(M)(x)v(M)(x) dx.

(·, ·)M is proven to be an inner product of H in Section . H is the Hilbert space with
the inner product (·, ·)M . The purpose of the present paper is to find a supremum of the
Sobolev functional given by

S(u) = S(M; u) =
(

sup
|y|≤

∣∣u(y)
∣∣)/‖u‖

M, ‖u‖
M =

∫ 

–

∣∣u(M)(x)
∣∣ dx.

The conclusion of the present paper is as follows.

Theorem . G(x, y) = G(M; x, y) is the Green function which is defined later in Theo-
rem .. supu∈H,u�≡ S(u) = C is given by

C = C(M) = max
|y|≤

G(y, y) = G(y, y) (M ≥ ), (.)
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where y attains the maximum value of the diagonal of the Green function. The supremum
C is attained by setting u(x) = G(x, y). In particular, if M ≤ , we have y = ±, in other
words,

max
|y|≤

G(y, y) = G(, ) = G(–, –) (M = , , , , ). (.)

Explicit forms of G(, ) = G(–, –) are given as

G(, ) = G(–, –) =
M–�(M – )�(M + )

�(M)�(M)
(M ≥ ). (.)

Note that the equality

max
|y|≤

G(y, y) = G(±,±)

in (.) is proven only for M ≤  and is still open for M ≥ . Here, we list explicit forms of
C(M) (M = , , , , ),

C() =



, C() =



, C() =


,

,

C() =


,
, C() =


,,

.

Theorem . is equivalently rewritten as follows.

Theorem . For any u(x) ∈ H , there exists a positive constant C such that the Sobolev
inequality holds:

(
sup
|y|≤

∣∣u(y)
∣∣) ≤ C

∫ 

–

∣∣u(M)(x)
∣∣ dx.

Among such C, the best constant C is the same as (.). If we replace C by C, the equality
holds for

u(x) = cG(x, y), c ∈C\{} (– < x < ).

In particular, if M ≤ , we have y = ±.

Concerning the infimum of S(u), we have the following theorem.

Theorem . The infimum of the Sobolev functional is equal to zero,

inf
u∈H,u�≡

S(u) = . (.)

Based on the previous research of Bliss [], the best constant and a family of the best
functions of the Sobolev inequality are first obtained independently by Aubin [] and
Talenti []. They mainly used the functional analysis technique to compute the best con-
stant of the Sobolev inequality. On the other hand, we have computed the best constant
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of the Sobolev inequality by using the Green function corresponding to a boundary value
problem. This is a new method quite different from that of the functional analysis. The
Green function is the reproducing kernel for suitable set of Hilbert space and inner prod-
uct. As an application, the best constant of the corresponding Sobolev inequality is ex-
pressed as the maximum value of the diagonal of the Green function. References [–] are
related to the early studies based on these facts. The engineering meaning of the Sobolev
inequality becomes that the square of maximum bending of a string (M = ) or a beam
(M = ) is estimated from above by the constant multiple of the potential energy [, ]. We
have already obtained the best constant of each Sobolev inequality which corresponds to
clamped-free, Dirichlet and periodic boundary value problems for (–)M(d/dx)M [–].
Further, in [], we consider a time-periodic boundary value problem of nth order ordi-
nary differential operator which appears typically in Heaviside cable and Thomson cable
theory. In this problem, the physical meaning of a Sobolev type inequality becomes that
the square of maximum of the absolute value of AC output voltage is estimated above
by the constant multiple of the power of input voltage. The purpose of the present paper
is to derive a Sobolev inequality which corresponds to free boundary value problem for
(–)M(d/dx)M and obtain the best constant by using some properties as the reproducing
kernel of the Green function.

This paper is organized as follows. In Section , we construct a proto Green function that
becomes the origin of the Green function from the corresponding eigenvalue problem. In
Section , we construct the Green function from the proto Green function as to satisfy
the properties of reproducing kernel. We call the technique symmetric orthogonalization
method []. In the method, Whipple’s theorem concerning the hypergeometric series
has an important role. In Section , we show that the Green function is the reproducing
kernel for H and (·, ·)M . After deriving the Sobolev inequality, we give the proof of (.).
Sections  and  are devoted to the proof of (.) (M = ) and (.) in the main Theorem ..
In Section , we prove Theorem ..

2 Free boundary value problem and the proto Green function
We start with the following lemma concerning the eigenvalue problem.

Lemma . The eigenvalue problem

⎧⎨
⎩

(–)Mu(M) = λu(x) (– < x < ),

u(i)(±) =  (M ≤ i ≤ M – )

has an eigenvalue λ = , and the corresponding eigenspace is M-dimensional. Its orthonor-
mal base is

{
ϕi(x) =

√
i +




Pi(x)
∣∣∣  ≤ i ≤ M – 

}
,

where Pi(x) are Legendre polynomials.

We omit the proof of the lemma.
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For convenience, we introduce the following monomials {Kj(x)}:

Kj(x) = Kj(M; x) =

⎧⎨
⎩

xM––j

�(M–j) ( ≤ j ≤ M – ),

 (M ≤ j).

For any bounded continuous function f (x) on – < x <  satisfying the solvability condi-
tion

∫ 

–
f (y)ϕi(y) dy =  ( ≤ i ≤ M – ), (.)

we consider the free boundary value problem

BVP(M)

⎧⎪⎨
⎪⎩

(–)Mu(M) = f (x) (– < x < ), (.)
u(i)(±) =  (M ≤ i ≤ M – ), (.)∫ 

– u(x)ϕi(x) dx =  ( ≤ i ≤ M – ). (.)

We first introduce the proto Green function G(x, y).

Lemma . Suppose that the boundary value problem (.) and (.) has a classical solu-
tion u(x). Then f (x) satisfies the solvability condition (.), and u(x) is expressed as

u(x) =
M–∑
i=

αiϕi(x) +
∫ 

–
G(x, y)f (y) dy (– < x < ), (.)

where α,α, . . . ,αM– are appropriate constants. G(x, y) is a proto Green function or an
equivalently fundamental solution for the differential operator (–)M(d/dx)M , which is
defined by

G(x, y) =
(–)M


K
(|x – y|) (– < x, y < ).

Proof We assume that (.) and (.) have a classical solution u(x). Introducing new func-
tions

u = t(u u · · · uM–), ui = u(i) ( ≤ i ≤ M – )

and the M × M nilpotent matrix

N =

⎛
⎜⎜⎜⎜⎜⎝

 


. . .
. . . 



⎞
⎟⎟⎟⎟⎟⎠

,

we can rewrite (.) and (.) as

u′ = Nu + t( · · ·  )(–)Mf (x) (– < x < ), (.)

ui(±) =  (M ≤ i ≤ M – ). (.)
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The fundamental solution E(x) to the above initial value problem is expressed as

E(x) = K(x)K()–,

where

K(x) = (Ki+j)(x) ( ≤ i, j ≤ M – ),

K() =

⎛
⎜⎜⎝



. . .



⎞
⎟⎟⎠ = K()–.

Solving (.), we have

u(x) = E(x + )u(–) +
∫ x

–
E(x – y)t( · · ·  )(–)Mf (y) dy,

u(x) = E(x – )u() –
∫ 

x
E(x – y)t( · · ·  )(–)Mf (y) dy,

or equivalently, for  ≤ i ≤ M – ,

ui(x) =
M–∑

j=

Ki+j(x + )uM––j(–) +
∫ x

–
(–)MKi(x – y)f (y) dy,

ui(x) =
M–∑

j=

Ki+j(x – )uM––j() –
∫ 

x
(–)MKi(x – y)f (y) dy.

Employing the boundary conditions (.), we have

ui(x) =
M–∑
j=M

Ki+j(x + )uM––j(–) +
∫ x

–
(–)MKi(x – y)f (y) dy, (.)

ui(x) =
M–∑
j=M

Ki+j(x – )uM––j() –
∫ 

x
(–)MKi(x – y)f (y) dy (.)

for  ≤ i ≤ M – . If M ≤ i ≤ M – , we have

ui(x) =
∫ x

–
(–)MKi(x – y)f (y) dy (M ≤ i ≤ M – ),

ui(x) = –
∫ 

x
(–)MKi(x – y)f (y) dy (M ≤ i ≤ M – ).

Setting x = ± and employing the boundary conditions (.), we have

 = ui() =
∫ 

–
(–)MKi( – y)f (y) dy (M ≤ i ≤ M – ), (.)

 = ui(–) = –
∫ 

–
(–)MKi(– – y)f (y) dy (M ≤ i ≤ M – ). (.)
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From (.) and (.), it is shown that f (x) satisfies the condition

∫ 

–
yif (y) dy =  ( ≤ i ≤ M – ),

or equivalently

∫ 

–
f (y)ϕi(y) dy =  ( ≤ i ≤ M – ),

which are necessary conditions for the existence of a classical solution to (.) and (.).
Setting i =  in (.) and (.), we have

u(x) =
M–∑
j=M

Kj(x + )uM––j(–) +
∫ x

–
(–)MK(x – y)f (y) dy,

u(x) =
M–∑
j=M

Kj(x – )uM––j() –
∫ 

x
(–)MK(x – y)f (y) dy.

Taking the average of the above two equalities, we obtain an expression for the solution
u(x) = u(x),

u(x) =
M–∑
j=

αjϕj(x) +
∫ 

–
G(x, y)f (y) dy (– < x < ),

where αj ( ≤ j ≤ M – ) are suitable constants and

G(x, y) =
(–)M


K
(|x – y|) (– < x, y < ).

This shows (.) in Lemma .. �

It is easy to prove the following lemma concerning the properties of the proto Green
function G(x, y). We omit the proof of the lemma.

Lemma . The proto Green function G(x, y) satisfies the following properties.

() ∂M
x G(x, y) =  (– < x, y < , x �= y),

() ∂ i
xG(x, y)|x=± = (±)i (–)M


Ki( ∓ y)

( ≤ i ≤ M – , – < y < ),

() ∂ i
xG(x, y)|y=x– – ∂ i

xG(x, y)|y=x+ =

⎧⎨
⎩

 ( ≤ i ≤ M – ),

(–)M (i = M – )
(– < x < ),

() ∂ i
xG(x, y)|x=y+ – ∂ i

xG(x, y)|x=y– =

⎧⎨
⎩

 ( ≤ i ≤ M – ),

(–)M (i = M – )
(– < y < ).
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3 Method of symmetric orthogonalization
Concerning the uniqueness and existence of the solution to BVP(M), we have the follow-
ing theorem.

Theorem . For any bounded continuous function f (x) on an interval – < x <  satisfying
(.), BVP(M) has a unique classical solution u(x) that is expressed as

u(x) =
∫ 

–
G(x, y)f (y) dy (– < x < ).

The integral kernel G(x, y) = G(M; x, y) is given by

G(x, y) = G(x, y) –
M–∑
i=

{
ψi(x)ϕi(y) + ψi(y)ϕi(x)

}
+

M–∑
i,j=

γijϕi(x)ϕj(y)

(– < x, y < ), (.)

where

ψi(x) =
∫ 

–
G(x, y)ϕi(y) dy ( ≤ i ≤ M – , – < x < ), (.)

γij =
∫ 

–
ψi(x)ϕj(x) dx =

∫ 

–
ϕi(x)ψj(x) dx = γji ( ≤ i, j ≤ M – ). (.)

The above procedure, in which the Green function G(x, y) is constructed from the proto
Green function G(x, y), is called the symmetric orthogonalization method [, , ]. The
proof of Theorem . is given in []. In the present paper, we give a more closed expression
of G(x, y).

We have the following theorem.

Theorem . For j = , , . . . , M – , the following equalities hold:

ψj(x) =
(–)M



√
j +



{

Qj(x) + (–)jQj(–x)
}

,

Qj(x) =
j∑

k=

M(–)j+k�(j + k + )
�(M + k + )�(k + )�(j – k + )

(
 + x



)M+k

(– < x < ).
(.)

Proof From (.) in Theorem ., the functions ψj(x) are calculated as

ψj(x) =
∫ 

–
G(x, y)ϕj(y) dy =

(–)M



√
j +




∫ 

–
K
(|x – y|)Pj(y) dy

=
(–)M



√
j +




{∫ x

–
K(x – y)Pj(y) dy +

∫ 

x
K(y – x)Pj(y) dy

}

=
(–)M



√
j +




{∫ x

–
K(x – y)Pj(y) dy +

∫ –x

–
K(–y – x)Pj(–y) dy

}

=
(–)M



√
j +



{

Qj(x) + (–)jQj(–x)
}

, (.)
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where

Qj(x) =
∫ x

–
K(x – y)Pj(y) dy (– < x < ).

It is shown through direct calculations that u = Qj(x) satisfies the initial value problem:

{
u(M) = Pj(x) (– < x < ), (.)
u(k)(–) =  ( ≤ k ≤ M – ). (.)

The Legendre polynomial Pj(x) is expressed as

Pj(x) =
j∑

k=

(–)j+k�(j + k + )
�(k + )�(j – k + )

(
 + x



)k

(– < x < ),

and integrating (.) M times under the initial conditions (.), we obtain (.). This
proves Theorem .. �

Theorem . For M = , , , . . . , the coefficients γij ( ≤ i, j ≤ M – ) are expressed as

γij =

⎧⎨
⎩

(–)j+Mπ�(M+)
√

i+ 

√

j+ 


M�( M–i–j+
 )�( M+i–j+

 )�( M–i+j+
 )�( M+i+j+

 )
(i – j: even),

 (i – j: odd).

Proof From (.) and (.), we have

γij =
∫ 

–
ϕi(x)ψj(x) dx

=
(–)M



√(
i +




)(
j +




){∫ 

–
Pi(x)Qj(x) dx + (–)j

∫ 

–
Pi(x)Qj(–x) dx

}

=
(–)M



√(
i +




)(
j +




){
 + (–)i–j}∫ 

–
Pi(x)Qj(x) dx

=

⎧⎨
⎩

(–)M
√

(i + 
 )(j + 

 )
∫ 

– Pi(x)Qj(x) dx (i – j: even),

 (i – j: odd).

Hereinafter, we investigate the case in which i – j is even. From the Rodrigues formula and
(.), we have

∫ 

–
Pi(x)Qj(x) dx

=


�(i + )i

j∑
k=

(–)j+k�(j + k + )
�(M + k + )�(k + )�(j – k + )k

×
∫ 

–

(
(–)i

(
d

dx

)i(
 – x)i

)
( + x)M+k dx

=


�(i + )i

j∑
k=

(–)j+k�(j + k + )
�(M + k + )�(k + )�(j – k + )k
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× (M + k)(M + k – ) · · · (M + k – i + )
∫ 

–

(
 – x)i( + x)M+k–i dx

=


�(i + )i

j∑
k=

(–)j+k�(j + k + )
�(M + k – i + )�(k + )�(j – k + )k

× M+k+i+B(i + , M + k + )

= (–)jM+
j∑

k=

(–)k�(M + k + )�(j + k + )
�(M + k – i + )�(M + k + i + )�(k + )�(j – k + )

=
(–)jM+�(M + )

�(M – i + )�(M + i + )

j∑
k=

(–j)k(j + )k(M + )k

(M – i + )k(M + i + )k
· 

k!

=
(–)jM+�(M + )

�(M – i + )�(M + i + ) F

(
–j, j + , M + 

M – i + , M + i + 

∣∣∣∣ 

)
, (.)

where (a)k is Pochhammer’s symbol, defined by

(a)k =
�(a + k)

�(a)
(a �= , –, –, . . .).

Here, we present Whipple’s theorem concerning the hypergeometric series F.

Theorem . (Whipple’s theorem [])

F

(
a,  – a, b

 + b – c, c

∣∣∣∣ 

)
=

π–b�(c)�( + b – c)
�( a+c

 )�( a++b–c
 )�( –a+c

 )�( +b–a–c
 )

.

Setting a = –j, b = M + , and c = M – i +  in Theorem ., we have

F

(
–j, j + , M + 

M – i + , M + i + 

∣∣∣∣ 

)

=
π�(M – i + )�(M + i + )

M+�( 
 – i

 – j
 + M)�(M + i

 – j
 + )�(M – i

 + j
 + )�(M + i

 + j
 + 

 )
.

Substituting the above expression into (.), we obtain γij in a closed form, as follows:

γij =
(–)j+Mπ�(M + )

√
i + 



√
j + 



M�( M–i–j+
 )�( M+i–j+

 )�( M–i+j+
 )�( M+i+j+

 )
(i – j: even).

This proves Theorem .. �

The following statement follows from Theorems . and ..

Corollary . ψj(x) is a polynomial of (M + j)th degree and satisfies ψj(–x) = (–)jψj(x).
Moreover, ψj(x) is expanded by {ϕi(x)}, as follows:

ψi(x) =
M+i∑
j=

γi,jϕj(x), ψi+(x) =
M+i∑
j=

γi+,j+ϕj+(x).
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Remark . It is often more convenient to express G(x, y) in the following equivalent
form:

G(x, y) = G(x, y) –
[ M–

 ]∑
i=

M+i∑
j=

γi,j
[
ϕi(x)ϕj(y) + ϕi(y)ϕj(x)

]

–
[ M–

 ]∑
i=

M+i∑
j=

γi+,j+
[
ϕi+(x)ϕj+(y) + ϕi+(y)ϕj+(x)

]

+
[ M–

 ]∑
i,j=

γi,jϕi(x)ϕj(y) +
[ M–

 ]∑
i,j=

γi+,j+ϕi+(x)ϕj+(y)

(– < x, y < ),

where

γi,j =
(–)Mπ�(M + )

√
(i + )(j + )

M+�(M + i – j + )�(M – i + j + )�(M + i + j + 
 )�(M – i – j + 

 )
(
 ≤ i, j ≤ [

(M – )/
])

,

γi+,j+ =
(–)M+π�(M + )

√
(i + )(j + )

M+�(M + i – j + )�(M – i + j + )�(M + i + j + 
 )�(M – i – j – 

 )
(
 ≤ i, j ≤ [

(M – )/
])

.

Theorem . is a direct consequence of the following theorem, which states that G(x, y)
serves as the Green function of BVP(M).

Theorem . The Green function G(x, y) satisfies the following conditions:

() (–)M∂M
x G(x, y) = –

M–∑
i=

ϕi(x)ϕi(y) (– < x, y < , x �= y),

() ∂ i
xG(x, y)|x=± =  (M ≤ i ≤ M – , – < y < ),

() ∂ i
xG(x, y)|y=x– – ∂ i

xG(x, y)|y=x+ =

⎧⎨
⎩

 ( ≤ i ≤ M – ),

(–)M (i = M – )
(– < x < ),

() ∂ i
xG(x, y)|x=y+ – ∂ i

xG(x, y)|x=y– =

⎧⎨
⎩

 ( ≤ i ≤ M – ),

(–)M (i = M – )
(– < y < ),

()
∫ 

–
ϕi(x)G(x, y) dx =  ( ≤ i ≤ M – , – < y < ).

The proof of the above theorem is given in [].

4 Sobolev inequality
In this section, it is shown that the Green function G(x, y) is a reproducing kernel for a set
of Hilbert space H = H(M) and its inner product (·, ·)M introduced in Section . We also
derive the Sobolev inequality from the reproducing relation.
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Theorem . For any u(x) ∈ H , we have the following reproducing relation:

u(y) =
(
u(x), G(x, y)

)
M =

∫ 

–
u(M)(x)∂M

x G(x, y) dx (– ≤ y ≤ ). (.)

In particular, we have

G(y, y) =
∫ 

–

∣∣∂M
x G(x, y)

∣∣ dx (– ≤ y ≤ ). (.)

Proof For functions u = u(x) and v = v(x) = G(x, y) with y arbitrarily fixed in – ≤ y ≤ , we
have

u(M)v(M) – u(–)Mv(M) =

(M–∑
j=

(–)M––ju(j)v(M––j)

)′
.

Integrating with respect to x on intervals – < x < y and y < x <  and using the properties
of G(x, y) given in Theorem ., we have

(u, v)M =
∫ 

–
u(M)(x)v(M)(x) dx

=
∫ 

–
u(x)(–)Mv(M)(x) dx

+

[M–∑
j=

(–)M––ju(j)(x)v(M––j)(x)

]{∣∣∣∣
x=y–

x=–
+
∣∣∣∣
x=

x=y+

}

=
M–∑
j=

(–)M––j[u(j)()v(M––j)() – u(j)(–)v(M––j)(–)
]

+
M–∑
j=

(–)M––ju(j)(y)
[
v(M––j)(y – ) – v(M––j)(y + )

]

= u(y).

This proves (.). Equation (.) is shown by setting u(x) = G(x, y) in (.). �

Applying the Schwarz inequality to (.) and using (.), we have

∣∣u(y)
∣∣ ≤

∫ 

–

∣∣∂M
x G(x, y)

∣∣ dx
∫ 

–

∣∣u(M)(x)
∣∣ dx = G(y, y)

∫ 

–

∣∣u(M)(x)
∣∣ dx.

Taking the supremum of the above inequality with respect to y ∈ [–, ] and setting

C = max
|y|≤

G(y, y),

we obtain the following Sobolev inequality:

(
sup
|y|≤

∣∣u(y)
∣∣) ≤ C

∫ 

–

∣∣u(M)(x)
∣∣ dx = C(u, u)M. (.)
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This inequality shows that (·, ·)M is positive definite. Note that, in order to prove (.), the
Schwarz inequality is required but not the ‘positive definiteness’ of the inner product.

Let y be a value that attains the maximum of G(y, y). Applying this inequality to u(x) =
G(x, y) ∈ H , we have

(
sup
|y|≤

∣∣G(y, y)
∣∣) ≤ C

∫ 

–

∣∣∂M
x G(x, y)

∣∣ dx = C
.

Combining this expression and the trivial inequality:

C
 =

{
G(y, y)

} ≤
(

sup
|y|≤

∣∣G(y, y)
∣∣)

,

we have

C
 ≤

(
sup
|y|≤

∣∣G(y, y)
∣∣) ≤ C

∫ 

–

∣∣∂M
x G(x, y)

∣∣ dx = C
.

Hence, it is shown that the equality in (.) holds if u(x) = G(x, y):

(
sup
|y|≤

∣∣G(y, y)
∣∣)

= C

∫ 

–

∣∣∂M
x G(x, y)

∣∣ dx.

Remark . In the next section, it is shown that y = ± for M ≤ , which is expected to
hold also for M ≥ .

5 Supremum of Sobolev functional
In this section, we prove (.) in Theorem . in the case of M = . The cases of M ≤  are
comparatively simple, and so we omit their proofs. From Theorem ., the diagonal value
of the Green function G(x, y) = G(; x, y) is given as

G(; x, x) =


,,,
(
, + ,,x – ,,x + ,,x

– ,,x + ,,x – ,,x + ,,x

– ,x + ,x).
Calculating G(; , ) – G(; x, x), we have

G(; , ) – G(; x, x) =


,,,
(
 – x)g(; x),

g(; x) = , – ,,x + ,,x – ,,x + ,,x

– ,,x + ,,x – ,x + ,x ( < x < ).

It is sufficient to prove the following lemma.

Lemma .

g(x) = g(; x) ≥  ( ≤ x ≤ ).
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Proof We investigate the extremal values or zeros of g(x), g ′(x), . . . , g()(x). Through
straightforward calculations, we have

g ′′′() = –,,, g ′′′() = ,,,

g()(x) = ,
(
, – ,x + ,x – ,x + x)

= ,
{

, + ,( – x) + ,x + ,x( – x) + x} > .

Therefore, the equation g ′′′(x) =  ( < x < ) possesses a unique solution, x = x ∈ (, ),
and g ′′(x) takes its minimum at x = x. Next, we prove

g ′′(x) < .

We can find 
 < x < 

 from the intermediate value theorem. Dividing g ′′(x) by g ′′′(x),
we have

g ′′(x) =


,
(x – )g ′′′(x) +




r(x),

r(x) = r+
 (x) – r–

 (x),

r+
 (x) = ,,x + ,,,x + ,,x,

r–
 (x) = ,,x + ,,.

Setting x = x, we conclude g ′′(x) <  as

g ′′(x) =



r(x),

r(x) = r+
 (x) – r–

 (x) < r+


(




)
– r–



(



)

= –
,,,,

,
< .

Together with the fact that g ′′(), g ′′() > , there exist x, x satisfying  < x < x < x < 
and g ′′(x) = g ′′(x) = . In addition, g ′(x) takes its maximal and minimal values at x = x

and x = x, respectively. Next, we show that

g ′(x) > .

Direct calculation shows that 
 < x < 

 . Dividing g ′(x) by g ′′(x), we have

g ′(x) =


,
(x – )g ′′(x) +




r(x),

r(x) = r+
 (x) – r–

 (x),

r+
 (x) = ,,x + ,,,x + ,,,x + ,,,,

r–
 (x) = ,,,x + ,,,x.
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Setting x = x, we have

g ′(x) =



r(x),

r(x) = r+
 (x) – r–

 (x) > r+


(




)
– r–



(



)

=
,,,,,

,,
> ,

from which it is concluded that

g ′(x) > g ′(x) > .

Since we have g ′() < , there exists a unique x ∈ (, ) such that g ′(x) = , at which g(x)
takes its minimum value. Finally, we prove that

g(x) > .

Direct calculation and the intermediate value theorem show that 
 < x < 

 . Dividing
g(x) by g ′(x), we have

g(x) =


,
(x – )g ′(x) +


,

r(x),

r(x) = r+
 (x) – r–

 (x),

r+
 (x) = ,,x + ,,,x + ,,,x

+ ,,,x + ,,,

r–
 (x) = ,,x + ,,,x.

Using the same procedures, we obtain

g(x) =


,
r(x),

r(x) = r+
 (x) – r–

 (x) > r+


(




)
– r–



(




)

=
,,,,,

,,,
> .

This shows that

g(x) ≥ g(x) >  ( ≤ x ≤ ),

which completes the proof of Lemma .. �

Although the proof is straightforward and simple, the proof for general M remains in-
complete. Even if M ≥ , if it is possible to carefully analyze the increase and decrease on
the function G(M; x, x), we will be able to confirm that the maximum value is achieved on
the boundary points x = ±. However, a unified way to treat G(M; , ) – G(M; x, x) has not
been established and therefore the positivity remains to be unproved.
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6 G(1, 1)
The purpose of this section is to prove (.) in Theorem .,

G(, ) =
M–�(M – )�(M + )

�(M)�(M)
. (.)

Setting y =  in (.), we have

G(, ) =
∫ 

–

(
∂M

x G(x, )
) dx. (.)

We present the following key lemma.

Lemma .

∂M
x G(x, ) =

�(M + )
M KM( – x)KM–( + x)

=


M�(M)
( – x)M–( + x)M (– < x < ).

From the above lemma and (.), (.) is proven by

G(, ) =


M�(M)

∫ 

–
( – x)M–( + x)M dx

=
M–

�(M) B(M – , M + ) =
M–�(M – )�(M + )

�(M)�(M)
.

Proof It is easy to see that

v(x) =
�(M + )

M KM( – x)KM–( + x)

satisfies the boundary value problem:
⎧⎪⎨
⎪⎩

(–)M–v(M–) = �(M)
M�(M) (– < x < ), (.)

v(i)() =  ( ≤ i ≤ M – ), (.)
v(i)(–) =  ( ≤ i ≤ M – ). (.)

Hence, it is sufficient to prove that

u(x) = ∂M
x G(x, ) (– < x < )

satisfies the same boundary value problem (.)-(.).
From (.), we have

G(x, ) =
(–)M


K( – x) –

M–∑
i=

{
ψi(x)ϕi() + ψi()ϕi(x)

}

+
M–∑
i,j=

γijϕi(x)ϕj().
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Using ∂M
x ϕi(x) =  (– < x < ,  ≤ i ≤ M – ), we have

u(x) = ∂M
x G(x, ) =




KM( – x) –
M–∑
i=

ϕi()ψ (M)
i (x). (.)

Recall the relation (–)Mψ
(M)
i (x) = ϕi(x) (– < x < ), which follows from (.). We have

(–)M–u(M–)(x) = (–)M
M–∑
i=

ϕi()ψ (M–)
i (x) =

M–∑
i=

ϕi()ϕ(M–)
i (x)

= ϕM–()ϕ(M–)
M– (x) =

(
M –




)
P(M–)

M– (x)

=
�(M)

M�(M)
. (.)

This shows that u(x) = ∂M
x G(x, ) satisfies the differential equation (.).

Next, we prove that u(x) satisfies the same boundary conditions (.) and (.). From
(.), we have

u(k)(x) = (–)k 


KM+k( – x) –
M–∑
i=

ϕi()ψ (M+k)
i (x).

We now prove the following lemma.

Lemma . For any k ( ≤ k ≤ M – ), we have

() u(k)() = –
M–∑
i=

ϕi()ψ (M+k)
i () = .

For any k ( ≤ k ≤ M – ), we have

() u(k)(–) = (–)k 


KM+k() –
M–∑
i=

ϕi()ψ (M+k)
i (–) = .

Proof We first prove (). Substituting

ψ
(M+k)
i () =

∫ 

–

(–)M


KM+k( – y)ϕi(y) dy ( ≤ k ≤ M – )

into (), we have

M–∑
i=

ϕi()ψ (M+k)
i () =

∫ 

–

(–)M


KM+k( – y)

M–∑
i=

ϕi()ϕi(y) dy.

Since a vector space spanned by

{
�(M – k)KM+k( – y) = ( – y)M––k| ≤ k ≤ M – 

}
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is the same as the vector space spanned by

{
ϕj(y) – ϕj()| ≤ j ≤ M – 

}
,

it is sufficient to show that

∫ 

–

{
ϕj(y) – ϕj()

}M–∑
i=

ϕi()ϕi(y) dy =  ( ≤ j ≤ M – ).

This can be shown by

(l.h.s.) =
∫ 

–

{
ϕj(y) –

ϕj()
ϕ()

ϕ(y)
}M–∑

i=

ϕi()ϕi(y) dy

=
M–∑
i=

{
ϕi()

∫ 

–
ϕj(y)ϕi(y) dy –

ϕj()ϕi()
ϕ()

∫ 

–
ϕ(y)ϕi(y) dy

}
= ,

where we used the following relations:

ϕ(y) = ϕ() =
√


and
∫ 

–
ϕi(y)ϕj(y) dy = δij.

We next show (), that is,

M–∑
i=

ϕi()ψ (M+k)
i (–) =

(–)k


KM+k() ( ≤ k ≤ M – ).

Since

ψ
(M+k)
i (–) =

(–)k



∫ 

–
KM+k( + y)ϕi(y) dy ( ≤ k ≤ M – )

holds, it is sufficient to show that

∫ 

–
KM+k( + y)

M–∑
i=

ϕi()ϕi(y) dy = KM+k() ( ≤ k ≤ M – ),

or equivalently

∫ 

–

{
KM+k() – KM+k( + y)

}M–∑
i=

ϕi()ϕi(y) dy =  ( ≤ k ≤ M – ).

This is easily confirmed in the case in which k = M – , and therefore it is sufficient to
prove this for  ≤ k ≤ M – . The vector space spanned by

{
�(M – k)

(
KM+k() – KM+k( + y)

)
= M––k – ( + y)M––k|

 ≤ k ≤ M – 
}
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is the same as the vector space spanned by

{
�(M – k)KM+k( – y) = ( – y)M––k| ≤ k ≤ M – 

}
.

Using the same procedure as in the proof of (), we can prove (). �

From (.) and Lemma ., we have Lemma .. �

7 Infimum of Sobolev functional
In this section, we finally prove (.). It is sufficient to prove the following lemma.

Lemma . The Legendre polynomials Pn(x) (n = , , , . . .) satisfy the following properties:

() sup
|y|≤

∣∣Pn(y)
∣∣ = ,

()
∫ 

–

∣∣P(M)
n (x)

∣∣ dx → ∞ (n → ∞, M = , , . . .).

Proof () follows from the Laplace-Mehler formula,

Pn(cos θ ) =

π

∫ π


(cos θ +

√
– sin θ cosϕ)n dϕ,

and Pn() = . In order to prove (), we present two lemmas.

Lemma .

P(M)
n () =

�(n + M + )
M�(M + )�(n – M + )

(n ≥ M). (.)

Proof u = Pn(x) satisfies the Legendre differential equation:

(
 – x)u′′ – xu′ + n(n + )u = .

By taking M times the derivative of the above equation, it is shown that v = v(x) = P(M)
n (x)

satisfies

(
 – x)v′′ – (M + )xv′ +

{
n(n + ) – M(M + )

}
v = . (.)

Setting x =  in (.), we have

–(M + )P(M+)
n () +

{
n(n + ) – M(M + )

}
P(M)

n () = .

This is equivalently rewritten as

�(M + )�(n – M)
�(n + M + )

M+P(M+)
n () =

�(M + )�(n – (M – ))
�(n + M + )

MP(M)
n ()

=
�()�(n + )

�(n + )
Pn() = .

This proves Lemma .. �
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Lemma . For n ≥ M, we have

∫ 

–

∣∣P(M)
n (x)

∣∣ dx ≥ M
n + n – M

(
�(n + M + )

M�(M + )�(n – M + )

)

.

Proof Multiplying v = P(M)
n (x) on both sides of (.), we have

(
 – x)v′′v – (M + )xv′v +

{
n(n + ) – M(M + )

}
v = ,

or equivalently

(
n + n – M)v =

[
Mxv –

(
 – x)v′v

]′ +
(
 – x)(v′).

Integrating the above equality on the interval – < x < , we have

(
n + n – M)∫ 

–

∣∣v(x)
∣∣ dx = M

(
v() + v(–)) +

∫ 

–

(
 – x)∣∣v′(x)

∣∣ dx

≥ Mv() = M
(
P(M)

n ()
).

Substituting (.) in the right-hand side of the above inequality, we obtain Lemma ..
�

Taking the limit n → ∞ in Lemma ., we finally prove Lemma .(). �

Proof of Theorem . From Lemma ., we have

S
(
M; Pn(x)

)
=
(

sup
|y|≤

∣∣Pn(y)
∣∣)/∫ 

–

∣∣P(M)
n (x)

∣∣ dx →  (n → ∞).

This proves (.). �
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