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Abstract
In this paper, some integral inequalities based on the general quantum difference
operator Dβ are deduced. Here, Dβ is defined by Dβ f (t) = (f (β(t)) – f (t))/(β(t) – t),
where β is a strictly increasing continuous function, defined on an interval I ⊆ R, that
has one fixed point s0 ∈ I . The β-Hölder and β-Minkowski inequalities are proved.
Also, the β-Gronwall, β-Bernoulli, and some related inequalities are shown. Finally, the
β-Lyapunov inequality is established.
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1 Introduction
Quantum difference operators have an interest role due to their applications; see, e.g., [–]
and references cited therein. A calculus based on a quantum difference operator is usu-
ally known as calculus without limits. It substitutes the classical derivative by a difference
operator, which allows one to deal with sets of nondifferentiable functions. In [] Hahn
introduced his difference operator, as a tool for constructing families of orthogonal poly-
nomials, which is defined by

Dq,ωf (t) =
f (qt + ω) – f (t)

t(q – ) + ω
, t �= ω, (.)

where q ∈ (, ), ω >  are fixed and ω = ω
–q . The derivative at t = ω is defined to be f ′(ω)

whenever it exists. In [], its inverse operator was constructed and a rigorous analysis of the
calculus associated to Dq,ω was given. See also [–]. The Hahn quantum difference oper-
ator unifies two well-known difference operators. The first one is the Jackson q-difference
operator, which is defined by

Dqf (t) =
f (qt) – f (t)

t(q – )
, t �= , (.)

where q is a fixed number, q ∈ (, ). The function f is defined on a q-geometric set A ⊆R

(or C) such that whenever t ∈ A, qt ∈ A. At t = , Dqf (t) = f ′(). The second difference
operator is the difference operator Dω , which is defined by
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Dωf (t) =
f (t + ω) – f (t)

ω
, t ∈R, (.)

where the fixed number ω �= .
We refer the reader to the interesting books of Annaby and Mansour [], Kac and Che-

ung [], and Bangerezako [].
In [] we introduced a general quantum difference operator Dβ defined by

Dβ f (t) =
f (β(t)) – f (t)

β(t) – t
, (.)

for every t with β(t) �= t, where f is an arbitrary function defined, in general, on a β-
geometric set I ⊆ R, for which β(t) ∈ I , t ∈ I , and β : I → I is a strictly increasing con-
tinuous function. For a fixed point s of β , the β-derivative Dβ f (t) at t = s is defined to
be f ′(s), whenever f is differentiable at t = s in the usual sense. The function β has many
forms due to its properties. It may be linear or nonlinear. Accordingly, it has no fixed
points or has at least one. Every choice of the function β gives a new difference operator.
Thus, we can obtain a wide class of difference operators with the corresponding quantum
calculi. We have a space of forms of the function β which may be classified into classes
according to the number of fixed points beside the directions of the sequences {βk(t)}k∈N

towards and outwards these points. The β-difference operator yields the Hahn difference
operator when β(t) = qt + ω, ω > , and the Jackson q-difference operator when β(t) = qt,
q ∈ (, ). In these cases β is linear and has one fixed point. Also, the forward difference
operator Dω with the linear form of β(t) = t + ω, ω > , has no fixed points. Consequently,
the corresponding Hahn calculus, q-calculus, and ω-calculus, respectively, are particular
cases of the β-calculus. In [] we considered the class of our function β which has one
fixed point s ∈ I and satisfies the following condition:

(t – s)
(
β(t) – t

) ≤  for all t ∈ I.

This paper is devoted to deducing some basic integral inequalities based on the β-
difference operator, when β has one fixed point s ∈ I and satisfies the same condition. The
paper is organized as follows. In Section , we exhibit the results that we need from [],
concerning the calculus based on the β-difference operator. Section  contains our main
results. We prove the β-Hölder, β-Minkowski, β-Gronwall, and β-Bernoulli inequalities
and some related ones. Finally, we show the β-Lyapunov inequality. These inequalities are
very important in establishing the theory of β-difference equations associated with the
quantum difference operator Dβ .

Throughout this paper I is an interval of R containing the fixed point s of β and X is a
Banach space with norm ‖ · ‖.

2 Preliminaries
In this section we present some needed results from [] concerning the calculus associ-
ated with Dβ . Here, we consider the class of the function β when it has one fixed point
s ∈ I and satisfies the following condition:

(t – s)
(
β(t) – t

) ≤  for all t ∈ I.
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Lemma . The following statements are true:
(i) The sequence of functions {βk(t)}k∈N converges uniformly to the constant function

β̂(t) := s on every compact interval J ⊆ I containing s.
(ii) The series

∑∞
k=|βk(t) – βk+(t)| is uniformly convergent to |t – s| on every compact

interval J ⊆ I containing s.

Lemma . If f : I → X is continuous at s, then the sequence {f (βk(t))}k∈N converges
uniformly to f (s) on every compact interval J ⊆ I containing s.

Theorem . If f : I → X is continuous at s, then the series
∑∞

k=‖(βk(t) – βk+(t)) ×
f (βk(t))‖ is uniformly convergent on every compact interval J ⊆ I containing s.

Definition . For a function f : I →X, we define the β-difference operator of f as

Dβ f (t) =

{
f (β(t))–f (t)

β(t)–t , t �= s,
f ′(s), t = s,

provided that the ordinary derivative f ′ exists at s. In this case, we say that Dβ f (t) is the
β-derivative of f at t. We say that f is β-differentiable on I if f ′(s) exists.

Theorem . Assume that f : I →X and g : I →R are β-differentiable at t ∈ I . Then:
(i) The product fg : I →X is β-differentiable at t and

Dβ (fg)(t) =
(
Dβ f (t)

)
g(t) + f

(
β(t)

)
Dβg(t)

=
(
Dβ f (t)

)
g
(
β(t)

)
+ f (t)Dβg(t).

(ii) f /g is β-differentiable at t and

Dβ (f /g)(t) =
(Dβ f (t))g(t) – f (t)Dβg(t)

g(t)g(β(t))
,

provided that g(t)g(β(t)) �= .

Lemma . Let f : I → X be β-differentiable and Dβ f (t) =  for all t ∈ I , then f (t) = f (s)
for all t ∈ I .

Corollary . Suppose that f , g : I → X are β-differentiable on I . If Dβ f (t) = Dβg(t) for all
t ∈ I , then

f (t) – g(t) = f (s) – g(s) for all t ∈ I.

Theorem . Assume f : I → X is continuous at s. Then the function F defined by

F(t) =
∞∑

k=

(
βk(t) – βk+(t)

)
f
(
βk(t)

)
, t ∈ I, (.)

is a β-antiderivative of f with F(s) = . Conversely, a β-antiderivative F of f vanishing at
s is given by (.).
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Definition . Let f : I →X and a, b ∈ I . We define the β-integral of f from a to b by

∫ b

a
f (t) dβ t =

∫ b

s

f (t) dβ t –
∫ a

s

f (t) dβ t, (.)

where

∫ x

s

f (t) dβ t =
∞∑

k=

(
βk(x) – βk+(x)

)
f
(
βk(x)

)
, x ∈ I, (.)

provided that the series converges at x = a and x = b. f is called β-integrable on I if the
series converges at a, b for all a, b ∈ I . Clearly, if f is continuous at s ∈ I , then f is β-
integrable on I .

If β(t) = qt and β(t) = qt + ω, q ∈ (, ), ω > , then (.) and (.) reduce to the Jackson
q-integral and Hahn integral, respectively; see [, , , , ].

Theorem . Let f : I → X be continuous at s. Define the function

F(x) =
∫ x

s

f (t) dβ t, x ∈ I. (.)

Then F is continuous at s, DβF(x) exists for all x ∈ I and DβF(x) = f (x).

Theorem . If f : I →X is β-differentiable on I , then

∫ b

a
(Dβ f )(t) dβ t = f (b) – f (a), for all a, b ∈ I.

Theorem . Assume f , g are β-differentiable functions on I and Dβ f , Dβg both contin-
uous at s. Then

∫ b

a
f (t)Dβg(t) dβ t = f (b)g(b) – f (a)g(a) –

∫ b

a

(
Dβ f (t)

)
g
(
β(t)

)
dβ t, a, b ∈ I.

Here at least one of the functions f and g is a real valued function.

Definition . Let s ∈ [a, b] ⊆ I . We define the β-interval by

[a, b]β =
{
βk(a); k ∈N

} ∪ {
βk(b); k ∈N

} ∪ {s}.

For any point c ∈ I , we denote by

[c]β =
{
βk(c); k ∈N

} ∪ {s}.

Finally, for A ⊆R, we denote by

A∗ = A \ {s}.
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Let D denote the set of all real valued functions defined on [c, d]β and continuous at s,
where c, d ∈ I and c < d.

Lemma . Let f ∈ D. Then
∫ d

c f (t)h(β(t)) dβt =  for all functions h ∈ D with h(c) =
h(d) =  if and only if f (t) =  for all t ∈ [c, d]β .

Lemma . Let f : I →X, g : I →R be β-integrable functions on I . If

∥∥f (t)
∥∥ ≤ g(t) for all t ∈ [a, b]β , a, b ∈ I, a ≤ b,

then for x, y ∈ [a, b]β , x < s < y, we have
∥∥
∥∥

∫ y

s

f (t) dβ t
∥∥
∥∥ ≤

∫ y

s

g(t) dβ t, (.)

∥∥
∥∥

∫ x

s

f (t) dβ t
∥∥
∥∥ ≤

∫ s

x
g(t) dβ t, (.)

and
∥∥
∥∥

∫ y

x
f (t) dβ t

∥∥
∥∥ ≤

∫ y

x
g(t) dβ t. (.)

Consequently, if g(t) ≥  for all t ∈ [a, b]β , then the inequalities
∫ y

s
g(t) dβ t ≥  and

∫ y
x g(t) dβ t ≥  hold for all x, y ∈ [a, b]β , a, b ∈ I , a ≤ b.

Lemma . Let f : I → X and g : I →R be β-differentiable on I . If

∥
∥Dβ f (t)

∥
∥ ≤ Dβg(t), t ∈ [a, b]β , a, b ∈ I, a ≤ b,

then

∥∥f (y) – f (x)
∥∥ ≤ g(y) – g(x), (.)

for every x, y ∈ [a, b]β , x < s < y.

Definition . (β-exponential functions) Assume that p : I → C is a continuous func-
tion at s. We define the β-exponential functions ep,β (t) and Ep,β (t) by

ep,β (t) =


∏∞
k=[ – p(βk(t))(βk(t) – βk+(t))]

(.)

and

Ep,β (t) =
∞∏

k=

[
 + p

(
βk(t)

)(
βk(t) – βk+(t)

)]
, (.)

whenever both infinite products are convergent to a non-zero number for every t ∈ I .
Clearly, we have

ep,β (t) =


E–p,β (t)
. (.)
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Theorem . The β-exponential functions ep,β (t) and Ep,β (t) are the unique solutions of
the first order β-difference equations

Dβy(t) = p(t)y(t), y(s) = , (.)

and

Dβy(t) = p(t)y
(
β(t)

)
, y(s) = , (.)

respectively.

3 Main results
3.1 β-Hölder and β-Minkowski inequalities
Inspired in the work by Agarwal et al. [], we present the β-Hölder, β-Cauchy-Schwarz,
and β-Minkowski inequalities.

Definition . Let p ≥  and a, b ∈ I ⊆R, a ≤ b. We denote by Lp
β [a, b]β the space of all

functions f : [a, b]β → R such that

sup

{∫ y

x

∣
∣f (t)

∣
∣p dβ t : x, y ∈ [a, b]β , s ∈ [x, y]

}
< ∞.

Theorem . (β-Hölder inequality) Let f ∈ Lp
β [a, b]β and g ∈ Lq

β [a, b]β . Then |fg| ∈
L

β [a, b]β and

∫ y

x

∣∣f (t)g(t)
∣∣dβ t ≤

(∫ y

x

∣∣f (t)
∣∣p dβ t

)/p(∫ y

x

∣∣g(t)
∣∣q dβ t

)/q

, (.)

where x, y ∈ [a, b]β , s ∈ [x, y], and p > , q = p/(p – ). The equality holds if |f (t)|p/|g(t)|q is
constant.

Proof For α,γ ∈ [,∞), we have

α/pγ /q ≤ α

p
+

γ

q
. (.)

Let α(t) = |f (t)|p∫ y
x |f (t)|p dβ t and γ (t) = |g(t)|q∫ y

x |g(t)|q dβ t , with

(∫ y

x

∣∣f (t)
∣∣p dβ t

)(∫ y

x

∣∣g(t)
∣∣q dβ t

)
�= .

Substituting in (.) and applying Lemma ., we get

∫ y

x

|f (t)|
(
∫ y

x |f (t)|p dβ t)/p

|g(t)|
(
∫ y

x |g(t)|q dβ t)/q
dβ t ≤ 

p

∫ y

x

|f (t)|p
∫ y

x |f (t)|p dβ t
dβ t

+

q

∫ y

x

|g(t)|q
∫ y

x |g(t)|q dβ t
dβ t

=

p

+

q

= .
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Then

∫ y

x

∣∣f (t)g(t)
∣∣dβ t ≤

(∫ y

x

∣∣f (t)
∣∣p dβ t

)/p(∫ y

x

∣∣g(t)
∣∣q dβ t

)/q

.

It is obvious that if |f (t)|p/|g(t)|q is constant, the equality holds. �

Actually, if we put p = q =  in the β-Hölder inequality we get the β-Cauchy-Schwarz
inequality.

Corollary . (β-Cauchy-Schwarz inequality) Let f , g ∈ L
β [a, b]β . Then |fg| ∈ L

β [a, b]β
and

∫ y

x

∣
∣f (t)g(t)

∣
∣dβ t ≤

√(∫ y

x

∣
∣f (t)

∣
∣ dβ t

)(∫ y

x

∣
∣g(t)

∣
∣ dβ t

)
,

where x, y ∈ [a, b]β , s ∈ [x, y].

As in the classical Minkowski inequality, we can deduce the following result.

Theorem . (β-Minkowski inequality) Let  ≤ p < ∞ and a, b ∈ I , a ≤ b. Let f , g ∈
Lp

β [a, b]β . Then |f + g| ∈ Lp
β [a, b]β and

(∫ y

x

∣
∣(f + g)(t)

∣
∣p dβ t

)/p

≤
(∫ y

x

∣
∣f (t)

∣
∣p dβ t

)/p

+
(∫ y

x

∣
∣g(t)

∣
∣p dβ t

)/p

, (.)

where x, y ∈ [a, b]β , s ∈ [x, y]. The equality holds if f (t)/g(t) is constant.

3.2 β-Gronwall and β-Bernoulli inequalities
Hamza and Ahmed, in [], deduced the Hahn, Gronwall, and Bernoulli inequalities. In
the following we present the corresponding β-version.

Lemma . Let y, f , p are real valued functions defined on I and continuous at s. If

Dβy(t) ≤ p(t)y(t) + f (t) for all t, (.)

then

y(t) ≤ y(s)ep,β (t) + ep,β (t)
∫ t

s

f (τ )E–p,β
(
β(τ )

)
dβτ . (.)

Proof We have

Dβ

(
y(t)E–p,β (t)

)
= Dβy(t)E–p,β

(
β(t)

)
+ y(t)DβE–p,β (t)

= Dβy(t)E–p,β
(
β(t)

)
– p(t)y(t)E–p,β

(
β(t)

)

= E–p,β
(
β(t)

)(
Dβy(t) – p(t)y(t)

)

≤ E–p,β
(
β(t)

)
f (t).
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Integrating both sides from s to t we get

y(t)E–p,β (t) – y(s)E–p,β (s) ≤
∫ t

s

f (τ )E–p,β
(
β(τ )

)
dβτ .

In view of E–p,β (s) =  and ep,β (t) = 
E–p,β (t) , we conclude

y(t) ≤ y(s)ep,β (t) + ep,β (t)
∫ t

s

f (τ )E–p,β
(
β(τ )

)
dβτ . �

Theorem . (β-Gronwall inequality) Let p ≥  and y, f , p be real valued continuous
functions at s defined on I . If

y(t) ≤ f (t) +
∫ t

s

y(τ )p(τ ) dβτ , (.)

then

y(t) ≤ f (t) + ep,β (t)
∫ t

s

p(τ )f (τ )E–p,β
(
β(τ )

)
dβτ . (.)

Proof Define

z(t) =
∫ t

s

y(τ )p(τ ) dβτ . (.)

Then z(s) =  and Dβz(t) = y(t)p(t). Therefore, inequality (.) yields

y(t) ≤ f (t) + z(t) (.)

and

Dβz(t) ≤ (
f (t) + z(t)

)
p(t). (.)

By Lemma ., we obtain

z(t) ≤ z(s)ep,β (t) + ep,β (t)
∫ t

s

p(τ )f (τ )E–p,β
(
β(τ )

)
dβτ . (.)

Inequality (.) implies

y(t) ≤ f (t) + ep,β (t)
∫ t

s

p(τ )f (τ )E–p,β
(
β(τ )

)
dβτ . �

As a direct consequence, we obtain the following results.

Corollary . Let p, y, f are continuous functions at s and p(t) ≥ . Then

y(t) ≤
∫ t

s

y(τ )p(τ ) dβτ , for all t,



Hamza and Shehata Journal of Inequalities and Applications  (2015) 2015:38 Page 9 of 12

implies

y(t) ≤ .

Proof This is due to Theorem . with f (t) ≡ . �

Corollary . Let p(t) ≥  and α ∈R. Then

y(t) ≤ α +
∫ t

s

y(τ )p(τ ) dβτ , for all t > s,

implies

y(t) ≤ αep,β (t).

Proof By the β-Gronwall inequality if we put f (t) = α, then

y(t) ≤ α +
∫ t

s

y(τ )p(τ ) dβτ for all t.

Consequently,

y(t) ≤ α + ep,β (t)
∫ t

s

αp(τ )E–p,β
(
β(τ )

)
dβτ

= α

(
 – ep,β (t)

∫ t

s

DβE–p,β (τ ) dβτ

)

= α( – ep,β (t)
(
E–p,β (t) – E–p,β (s)

)

= α – αep,β (t)E–p,β (t) + αep,β (t).

Therefore, y(t) ≤ αep,β (t). �

Theorem . (β-Bernoulli inequality) For α ∈ (,∞), the following inequality is true:

ep,β (t) ≥  + α(t – s), t > s. (.)

Proof Suppose y(t) = α(t – s), t > s. Then Dβy(t) = α. We have αy(t) + α = α(t – s) + α ≥
α = Dβy(t), which implies that Dβy(t) ≤ αy(t) + α. By Lemma . we get

y(t) ≤ y(s)ep,β (t) + ep,β (t)
∫ t

s

αE–p,β
(
β(τ )

)
dβτ

= ep,β (t)
∫ t

s

–DβE–p,β (τ ) dβτ

= –ep,β (t)
(
E–p,β (t) – 

)
= – + ep,β (t).

Therefore, ep,β (t) ≥  + y(t) =  + α(t – s), t > s. �
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3.3 β-Lyapunov Inequality
Lyapunov inequality has many applications in the theory of differential and difference
equations. These applications include bounds for eigenvalues, stability criteria for peri-
odic differential equations, and estimates for intervals of disconjugacy; see [, ]. In this
section we introduce the Lyapunov inequality based on Dβ .

Let f : I → [,∞) be a continuous function at s ∈ I . Consider the Sturm-Liouville β-
difference equation

D
βx(t) + f (t)x

(
β(t)

)
= , t ∈ I. (.)

Define the function F by

F(y) =
∫ b

a

[(
Dβy(t)

) – f (t)
(
y
(
β(t)

))]dβ t. (.)

Lemma . Let x be a nontrivial solution of the Sturm-Liouville β-difference equation
(.). Then for every y belonging to the domain of F , the following equality holds:

F(y) – F(x) – F(y – x) = (y – x)(b)Dβx(b) – (y – x)(a)Dβx(a). (.)

Proof Simple calculations show that

F(y) – F(x) – F(y – x)

=
∫ b

a

{(
Dβy(t)

) – f (t)
(
y
(
β(t)

)) –
(
Dβx(t)

) + f (t)
(
x
(
β(t)

))

–
(
Dβ (y – x)(t)

) + f (t)
(
(y – x)

(
β(t)

))}dβ t

= 
∫ b

a

{
–
(
Dβx(t)

) + f (t)
(
x
(
β(t)

)) + Dβy(t)Dβx(t)

– f (t)y
(
β(t)

)
x
(
β(t)

)}
dβ t

= 
∫ b

a

{
Dβy(t)Dβx(t) + y

(
β(t)

)
D

βx(t) –
((

Dβx(t)
)

+ D
βx(t)x

(
β(t)

))}
dβ t

(
by using (.)

)

= 
∫ b

a

{
Dβ

(
y(t)Dβx(t)

)
– Dβ

(
x(t)Dβx(t)

)}
dβ t

= 
∫ b

a
Dβ

{(
y(t) – x(t)

)
Dβx(t)

}
dβ t

= 
(
y(b) – x(b)

)
Dβx(b) – 

(
y(a) – x(a)

)
Dβx(a). �

Lemma . Let y be in the domain of F , then for any c, d ∈ [a, b], a, b ∈ I such that a ≤
c < d ≤ b, we have

∫ d

c

(
Dβy(t)

) dβ t ≥ (y(d) – y(c))

d – c
. (.)
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Proof Let x(t) = y(d)–y(c)
d–c t + dy(c)–cy(d)

d–c . Then Dβx(t) = y(d)–y(c)
d–c and D

βx(t) = . This implies
that x(t) is a solution of (.) with f (t) =  for all t ∈ I and

F(y) =
∫ d

c

(
Dβy(t)

) dβ t

for any y in domain F . From Lemma ., we get F(y)–F(x)–F(y–x) = , and consequently
F(y) = F(x) + F(y – x) ≥ F(x). Therefore,

∫ d

c

(
Dβy(t)

) dβ t ≥
∫ d

c

(
Dβx(t)

) dβ t

=
∫ d

c

(
y(d) – y(c)

d – c

)

dβ t

=
(y(d) – y(c))

d – c
. �

Theorem . (β-Lyapunov inequality) Let f : I → (,∞) be a continuous function, s ∈ I .
Let x be a nontrivial solution of (.) with x(a) = x(b) = , where a, b ∈ I with a < b. Then

∫ b

a
f (t) dβ t ≥ 

b – a
. (.)

Proof From Lemma . with y = , we have

F(x) =
∫ b

a

[(
Dβx(t)

) – f (t)
(
x
(
β(t)

))]dβ t = . (.)

Let M = max{x(t); t ∈ [a, b]} and c ∈ [a, b] such that x(c) = M. Then M = x(c) ≥
x(β(t)) > , and

M
∫ b

a
f (t) dβ t ≥

∫ b

a
f (t)x(β(t)

)
dβ t

=
∫ b

a

(
Dβx(t)

) dβ t

=
∫ c

a

(
Dβx(t)

) dβ t +
∫ b

c

(
Dβx(t)

) dβ t

≥ (x(c) – x(a))

c – a
+

(x(b) – x(c))

b – c

= M
[


c – a

+


b – c

]

= M
{

(b + a – c)

(c – a)(b – c)(b – a)
+


b – a

}

≥ M


b – a
.

Therefore,
∫ b

a f (t) dβ t ≥ 
b–a . �
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4 Conclusion and future direction
This paper was devoted to a presentation of some basic integral inequalities based on our
general quantum difference operator, Dβ , which is defined by Dβ f (t) = f (β(t))–f (t)

β(t)–t , t �= β(t),
where β is a strictly increasing continuous function defined on an interval I ⊆ R that
has one fixed point s ∈ I . These inequalities are the β-Hölder, β-Cauchy-Schwarz, β-
Minkowski, β-Gronwall, β-Bernoulli, β-Lyapunov inequalities, and some related ones.
We are looking forward to study in detail the theory of linear β-difference equations based
on Dβ . This theory unifies the theory of q-difference equations and Hahn difference equa-
tions. Also, it includes other types of quantum difference equations.
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