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1 Introduction and preliminaries
An Orlicz function M : [,∞) → [,∞) is convex and continuous such that M() = ,
M(x) >  for x > . Let w be the space of all real or complex sequences x = (xk). Linden-
strauss and Tzafriri [] used the idea of the Orlicz function to define the following sequence
space:

�M =

{
x ∈ w :

∞∑
k=

M
( |xk|

ρ

)
< ∞, for some ρ > 

}
,

which is called an Orlicz sequence space. The space �M is a Banach space with the norm

‖x‖ = inf

{
ρ >  :

∞∑
k=

M
( |xk|

ρ

)
≤ 

}
.

It is shown in [] that every Orlicz sequence space �M contains a subspace isomorphic to
�p (p ≥ ). An Orlicz function M satisfies the �-condition if and only if for any constant
L >  there exists a constant K(L) such that M(Lu) ≤ K(L)M(u) for all values of u ≥ .

A sequence M = (Mk) of Orlicz functions is called a Musielak-Orlicz function (see
[–]). A sequence N = (Nk) is defined by

Nk(v) = sup
{|v|u – Mk(u) : u ≥ 

}
, k = , , . . .

is called the complementary function of a Musielak-Orlicz function M. For a given
Musielak-Orlicz function M, the Musielak-Orlicz sequence space tM and its subspace
hM are defined as follows:

tM =
{

x ∈ w : IM(cx) < ∞ for some c > 
}

,
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hM =
{

x ∈ w : IM(cx) < ∞ for all c > 
}

,

where IM is a convex modular defined by

IM(x) =
∞∑

k=

Mk(xk), x = (xk) ∈ tM.

We consider tM equipped with the Luxemburg norm

‖x‖ = inf

{
k >  : IM

(
x
k

)
≤ 

}

or equipped with the Orlicz norm

‖x‖ = inf

{

k
(
 + IM(kx)

)
: k > 

}
.

A Musielak-Orlicz function (Mk) is said to satisfy the �-condition if there exist constants
a, K >  and a sequence c = (ck)∞k= ∈ �

+ (the positive cone of �) such that the inequality

Mk(u) ≤ KMk(u) + ck

holds for all k ∈ N and u ∈ R+ whenever Mk(u) ≤ a.
A modulus function is a function f : [,∞) → [,∞) such that
() f (x) =  if and only if x = ,
() f (x + y) ≤ f (x) + f (y) for all x ≥ , y ≥ ,
() f is increasing,
() f is continuous from right at .

It follows that f must be continuous everywhere on [,∞). The modulus function may
be bounded or unbounded. For example, if we take f (x) = x

x+ , then f (x) is bounded. If
f (x) = xp,  < p < , then the modulus f (x) is unbounded. Subsequently, modulus function
has been discussed in [, –] and references therein.

Let l∞, c, and c denote the spaces of all bounded, convergent, and null sequences x = (xk)
with complex terms, respectively. The zero sequence (, , . . .) is denoted by θ .

The notion of difference sequence spaces was introduced by Kızmaz [], who studied the
difference sequence spaces l∞(�), c(�), and c(�). The notion was further generalized by
Et and Çolak [] by introducing the spaces l∞(�n), c(�n), and c(�n). Another type of
generalization of the difference sequence spaces is due to Tripathy and Esi [] who studied
the spaces l∞(�m

n ), c(�m
n ), and c(�m

n ).
Let m, n be non-negative integers, then for Z a given sequence space, we have

Z
(
�n

m
)

=
{

x = (xk) ∈ w :
(
�n

mxk
) ∈ Z

}
for Z = c, c and l∞ where �n

mx = (�n
mxk) = (�n–

m xk – �n–
m xk+m) and �

mxk = xk for all
k ∈N, which is equivalent to the following binomial representation:

�n
mxk =

n∑
v=

(–)v

(
n
v

)
xk+mv.
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Taking m = , we get the spaces l∞(�n), c(�n), and c(�n) studied by Et and Çolak [].
Taking m = n = , we get the spaces l∞(�), c(�), and c(�) introduced and studied by
Kızmaz []. For more details as regards sequence spaces, see [, –] and references
therein.

Let M = (Mk) be a Musielak-Orlicz function, p = (pk) be any bounded sequence of posi-
tive real numbers and u = (uk) be a sequence of strictly positive real numbers. Let (X, q) be
a space seminormed by q. In the present paper we define the following sequence spaces:

w
(
M,�n

m, p, q, u
)

=

{
x = (xk) :


n

n∑
k=

[
Mk

(
q(uk�

n
mxk)

ρ

)]pk

→  as n → ∞,

for some ρ > 

}
,

w
(
M,�n

m, p, q, u
)

=

{
x = (xk) :


n

n∑
k=

[
Mk

(
q(uk�

n
mxk – L)
ρ

)]pk

→  as n → ∞,

for some L ∈ X,ρ > 

}
,

and

w∞
(
M,�n

m, p, q, u
)

=

{
x = (xk) : sup

n


n

n∑
k=

[
Mk

(
q(uk�

n
mxk)

ρ

)]pk

< ∞, for some ρ > 

}
.

If we take M(x) = x, we get

w
(
�n

m, p, q, u
)

=

{
x = (xk) :


n

n∑
k=

[(
q(uk�

n
mxk)

ρ

)]pk

→  as n → ∞, for some ρ > 

}
,

w
(
�n

m, p, q, u
)

=

{
x = (xk) :


n

n∑
k=

[(
q(uk�

n
mxk – L)
ρ

)]pk

→  as n → ∞, for some L ∈ X,ρ > 

}
,

and

w∞
(
�n

m, p, q, u
)

=

{
x = (xk) : sup

n


n

n∑
k=

[(
q(uk�

n
mxk)

ρ

)]pk

< ∞, for some ρ > 

}
.

If we take p = (pk) = , ∀k, we get

w
(
M,�n

m, q, u
)

=

{
x = (xk) :


n

n∑
k=

[
Mk

(
q(uk�

n
mxk)

ρ

)]
→  as n → ∞, for some ρ > 

}
,
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w
(
M,�n

m, q, u
)

=

{
x = (xk) :


n

n∑
k=

[
Mk

(
q(uk�

n
mxk – L)
ρ

)]
→  as n → ∞,

for some L ∈ X,ρ > 

}
,

and

w∞
(
M,�n

m, q, u
)

=

{
x = (xk) : sup

n


n

n∑
k=

[
Mk

(
q(uk�

n
mxk)

ρ

)]
< ∞, for some ρ > 

}
.

If we take u = (uk) = , ∀k, we get

w
(
M,�n

m, p, q
)

=

{
x = (xk) :


n

n∑
k=

[
Mk

(
q(�n

mxk)
ρ

)]pk

→  as n → ∞,

for some ρ > 

}
,

w
(
M,�n

m, p, q
)

=

{
x = (xk) :


n

n∑
k=

[
Mk

(
q(�n

mxk – L)
ρ

)]pk

→  as n → ∞,

for some L ∈ X,ρ > 

}
,

and

w∞
(
M,�n

m, p, q
)

=

{
x = (xk) : sup

n


n

n∑
k=

[
Mk

(
q(�n

mxk)
ρ

)]pk

< ∞, for some ρ > 

}
.

The following inequality will be used throughout the paper. If  ≤ pk ≤ sup pk = K , D =
max(, K–) then

|ak + bk|pk ≤ D
{|ak|pk + |bk|pk

}
(.)

for all k and ak , bk ∈C. Also |a|pk ≤ max(, |a|K ) for all a ∈ C.
The aim of this paper is to study some topological and algebraic properties of the above

sequence spaces.

2 Main results
Theorem . Suppose M = (Mk) be a Musielak-Orlicz function, p = (pk) be any bounded
sequence of positive real numbers and u = (uk) be a sequence of strictly positive real num-
bers. Then the spaces w(M,�n

m, p, q, u), w(M,�n
m, p, q, u) and w∞(M,�n

m, p, q, u) are lin-
ear spaces over the complex field C.

Proof Let x = (xk), y = (yk) ∈ w∞(M,�n
m, p, q, u) and α,β ∈ C. Then there exist positive

real numbers ρ and ρ such that

sup
n


n

n∑
k=

[
Mk

(
q(uk�

n
mxk)

ρ

)]pk

< ∞
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and

sup
n


n

n∑
k=

[
Mk

(
q(uk�

n
myk)

ρ

)]pk

< ∞.

Define ρ = max(|α|ρ, |β|ρ). Since (Mk) is non-decreasing, convex and so by using
inequality (.), we have

sup
n


n

n∑
k=

[
Mk

(
q(αuk�

n
mxk + βuk�

n
myk)

ρ

)]pk

≤ sup
n


n

n∑
k=

[
Mk

(
q(αuk�

n
mxk)

ρ
+

q(βuk�
n
myk)

ρ

)]pk

≤ sup
n


n

n∑
k=


pk

[
Mk

(
q(uk�

n
mxk)

ρ

)]pk

+ sup
n


n

n∑
k=


pk

[
Mk

(
q(uk�

n
myk)

ρ

)]pk

≤ D sup
n


n

n∑
k=

[
Mk

(
q(uk�

n
mxk)

ρ

)]pk

+ D sup
n


n

n∑
k=

[
Mk

(
q(uk�

n
myk)

ρ

)]pk

< ∞.

Thus, αx + βy ∈ w∞(M,�n
m, p, q, u). Hence w∞(M,�n

m, p, q, u) is a linear space. Similarly,
we can prove w(M,�n

m, p, q, u) and w(M,�n
m, p, q, u) are linear spaces over the field of

complex numbers. �

Theorem . Suppose M = (Mk) be a Musielak-Orlicz function, p = (pk) be any bounded
sequence of positive real numbers and u = (uk) be a sequence of strictly positive real num-
bers. Then the space w∞(M,�n

m, p, q, u) is a paranormed space with the paranorm defined
by

g(x) = inf

{
ρ

pk
H : sup

n

(

n

n∑
k=

[
Mk

(
q
(

uk�
n
mxk

ρ

))]pk
) 

H

≤ ,ρ > 

}
,

where H = max(, supk pk).

Proof (i) Clearly, g(x) ≥  for x = (xk) ∈ w∞(M,�n
m, p, q, u). Since Mk() = , we get

g(θ ) = .
(ii) g(–x) = g(x).
(iii) Let x = (xk), y = (yk) ∈ w∞(M,�n

m, p, q, u) then there exist ρ,ρ >  such that


n

n∑
k=

[
Mk

(
q
(

uk�
n
mxk

ρ

))]pk

≤ 

and


n

n∑
k=

[
Mk

(
q
(

uk�
n
myk

ρ

))]pk

≤ .
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Let ρ = ρ + ρ, then by Minkowski’s inequality, we have


n

n∑
k=

[
Mk

(
q
(

uk�
n
mxk

ρ

))]pk

≤
(

ρ

ρ + ρ

)

n

n∑
k=

[
Mk

(
q
(

uk�
n
mxk

ρ

))]pk

+
(

ρ

ρ + ρ

)

n

n∑
k=

[
Mk

(
q
(

uk�
n
myk

ρ

))]pk

and thus

g(x + y)

= inf

{
(ρ + ρ)

pk
H : sup

n

(

n

n∑
k=

[
Mk

(
q
(

uk�
n
mxk + uk�

n
myk

ρ

))]pk
) 

H

≤ ,ρ > 

}

≤ g(x) + g(y).

(iv) Finally we prove that scalar multiplication is continuous. Let λ be any complex num-
ber by definition

g(λx) = inf

{
(ρ)

pk
H : sup

n

(

n

n∑
k=

[
Mk

(
q
(

uk�
n
mλxk

ρ

))]pk
) 

H

≤ ,ρ > 

}

= inf

{(|λ|r) pk
H : sup

n

(

n

n∑
k=

[
Mk

(
q
(

uk�
n
mxk

r

))]pk
) 

H

≤ ,ρ > 

}
,

where r = ρ

|λ| . Hence, w∞(M,�n
m, p, q, u) is a paranormed space. �

Theorem . If  < pk ≤ rk < ∞ for each k, then Z(M,�n
m, p, q, u) ⊆ Z(M,�n

m, r, q, u) for
Z = w, w, w∞.

Proof Let x = (xk) ∈ w(M,�n
m, p, q, u). Then there exist some ρ >  and L ∈ X such that


n

n∑
k=

[
Mk

(
q
(

uk�
n
mxk – L
ρ

))]pk

→  as n → ∞.

This implies that


n

n∑
k=

[
Mk

(
q
(

uk�
n
mxk – L
ρ

))]pk

< ε ( < ε < )

for sufficiently large k. Hence we get


n

n∑
k=

[
Mk

(
q
(

uk�
n
mxk – L
ρ

))]rk

≤ 
n

n∑
k=

[
Mk

(
q
(

uk�
n
mxk – L
ρ

))]pk

→  as n → ∞.

This implies that x = (xk) ∈ w(M,�n
m, r, q, u). This completes the proof. Similarly, we can

prove for the cases Z = w, w∞. �
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Theorem . Suppose M′ = (M′
k) and M′′ = (M′′

k ) are Musielak-Orlicz functions satisfy-
ing the �-condition, then we have the following results:

(i) If p = (pk) is a bounded sequence of positive real numbers then
Z(M′,�n

m, p, q, u) ⊆ Z(M′′ ◦M′,�n
m, p, q, u) for Z = w, w, and w∞.

(ii) Z(M′,�n
m, p, q, u) ∩ Z(M′′,�n

m, p, q, u) ⊆ Z(M′ + M′′,�n
m, p, q, u) for

Z = w, w, and w∞.

Proof (i) If x = (xk) ∈ w(M′,�n
m, p, q, u), then there exists some ρ >  such that


n

n∑
k=

[
M′

k

(
q
(

uk�
n
mxk

ρ

))]pk

→  as n → ∞.

Suppose

yk = M′
k

(
q
(

uk�
n
mxk

ρ

))

for all k ∈ N. Choose  < δ < , then for yk ≥ δ we have yk < yk
δ

<  + yk
δ

. Now (M′′
k ) satisfies

the �-condition so that there exists J ≥  such that

M′′
k (yk) <

Jyk

δ
M′′

k () +
Jyk

δ
M′′

k () =
Jyk

δ
M′′

k ().

We obtain


n

n∑
k=

[
M′′

k ◦ M′
k

(
q
(

uk�
n
mxk

ρ

))]pk

=

n

n∑
k=

[
M′′

k

{
M′

k

(
q
(

uk�
n
mxk

ρ

))}]pk

=

n

n∑
k=

[
M′′

k (yk)
]pk

→  as n → ∞.

Similarly we can prove the other cases.
(ii) Suppose x = (xk) ∈ w(M′

k ,�n
m, p, q, u)∩w(M′′

k ,�n
m, p, q, u), then there exist ρ,ρ > 

such that


n

n∑
k=

[
M′

k

(
q
(

uk�
n
mxk

ρ

))]pk

→ , as n → ∞.

and


n

n∑
k=

[
M′′

k

(
q
(

uk�
n
mxk

ρ

))]pk

→ , as n → ∞.

Let ρ = max{ρ,ρ}. The remaining proof follows from the inequality


n

n∑
k=

[(
M′

k + M′′
k
)(

q
(

uk�
n
mxk

ρ

))]pk

≤ D

{

n

n∑
k=

[
M′

k

(
q
(

uk�
n
mxk

ρ

))]pk

+

n

n∑
k=

[
M′′

k

(
q
(

uk�
n
mxk

ρ

))]pk
}

.
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Hence, w(M′
k ,�n

m, p, q, u) ∩ w(M′′
k ,�n

m, p, q, u) ⊆ w(M′
k + M′′

k ,�n
m, p, q, u). Similarly we

can prove the other cases. �

Theorem . (i) If  < inf pk ≤ pk < , then

w∞
(
M,�n

m, p, q, u
) ⊂ w∞

(
M,�n

m, q, u
)
.

(ii) If  ≤ pk ≤ sup pk < ∞, then

w∞
(
M,�n

m, q, u
) ⊂ w∞

(
M,�n

m, p, q, u
)
.

Proof (i) Let x = (xk) ∈ w∞(M,�n
m, p, q, u). Since  < inf pk ≤ , we have

sup
n

{

n

n∑
k=

[
Mk

(
q
(

uk�
n
mxk

ρ

))]}
≤ sup

n

{

n

n∑
k=

[
Mk

(
q
(

uk�
n
mxk

ρ

))]pk
}

and hence x = (xk) ∈ w∞(M,�n
m, q, u).

(ii) Let pk ≥  for each k and supk pk < ∞. Let x = (xk) ∈ w∞(M,�n
m, q, u), then for each

ε >  such that  < ε < , there exists a positive integer n ∈N such that

sup
n

{

n

n∑
k=

[
Mk

(
q
(

uk�
n
mxk

ρ

))]}
≤ ε < .

This implies that

sup
n

{

n

n∑
k=

[
Mk

(
q
(

uk�
n
mxk

ρ

))]pk
}

≤ sup
n

{

n

n∑
k=

[
Mk

(
q
(

uk�
n
mxk

ρ

))]}
.

Thus, x = (xk) ∈ w∞(M,�n
m, p, q, u) and this completes the proof. �

Theorem . The sequence space w∞(M,�n
m, p, q, u) is solid.

Proof Let x = (xk) ∈ w∞(M,�n
m, p, q, u), i.e.

sup
n


n

n∑
k=

[
Mk

(
q
(

uk�
n
mxk

ρ

))]pk

< ∞.

Let (αk) be a sequence of scalars such that |αk| ≤  for all k ∈N. Thus we have

sup
n


n

n∑
k=

[
Mk

(
q
(

αkuk�
n
mxk

ρ

))]pk

≤ sup
n


n

n∑
k=

[
Mk

(
q
(

uk�
n
mxk

ρ

))]pk

< ∞.

This shows that (αkxk) ∈ w∞(M,�n
m, p, q, u) for all sequences of scalars (αk) with |αk| ≤ 

for all k ∈N, whenever (xk) ∈ w∞(M,�n
m, p, q, u). Hence the space w∞(M,�n

m, p, q, u) is a
solid sequence space. �

Theorem . The sequence space w∞(M,�n
m, p, q, u) is monotone.
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Proof The proof of the theorem is obvious and so we omit it. �

Let F = (fk) be a sequence of modulus functions, p = (pk) be any bounded sequence of
positive real numbers and u = (uk) be a sequence of strictly positive real numbers. Let
(X, q) be a space seminormed by q. Now, we define the following sequence spaces:

w
(
F ,�n

m, p, q, u
)

=

{
x = (xk) :


n

n∑
k=

[
fk

(
q(uk�

n
mxk)

ρ

)]pk

→  as n → ∞,

for some ρ > 

}
,

w
(
F ,�n

m, p, q, u
)

=

{
x = (xk) :


n

n∑
k=

[
fk

(
q(uk�

n
mxk – L)
ρ

)]pk

→  as n → ∞,

for some ρ >  and L ∈ X

}
,

and

w∞
(
F ,�n

m, p, q, u
)

=

{
x = (xk) : sup

n


n

n∑
k=

[
fk

(
q(uk�

n
mxk)

ρ

)]pk

< ∞, for some ρ > 

}
.

Theorem . Let F = (fk) be a sequence of modulus functions, p = (pk) be any bounded se-
quence of positive real numbers and u = (uk) be a sequence of strictly positive real numbers.
Then the spaces w(F ,�n

m, p, q, u), w(F ,�n
m, p, q, u), and w∞(F ,�n

m, p, q, u) are linear spaces
over the complex field C.

Proof The proof of Theorem . holds along the same lines for this theorem and so we
omit it. �

Theorem . Let F = (fk) be a sequence of modulus function, p = (pk) be any bounded se-
quence of positive real numbers and u = (uk) be a sequence of strictly positive real numbers.
Then w∞(F ,�n

m, p, q, u) is a paranormed space with the paranorm defined by

g(x) = inf

{
ρ

pk
H : sup

n

(

n

n∑
k=

[
fk

(
q
(

uk�
n
mxk

ρ

))]pk
) 

H

≤ ,ρ > 

}
, (.)

where H = max(, supk pk).

Proof The proof follows from Theorem . and so we omit it. �

Theorem . Let F = (fk) be a sequence of modulus functions, p = (pk) be any bounded se-
quence of positive real numbers and u = (uk) be a sequence of strictly positive real numbers.
Then

w
(
F ,�n

m, p, q, u
) ⊂ w

(
F ,�n

m, p, q, u
) ⊂ w∞

(
F ,�n

m, p, q, u
)
,

and the inclusions are strict.
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Proof The proof is obvious. �

Theorem . Let F = (fk) and G = (gk) be any two sequences of modulus functions. For any
bounded sequences p = (pk) of positive real numbers and for any two seminorms q and r.
Then

(i) wZ(F ,�n
m, q, u) ⊂ wZ(F ◦ G,�n

m, q, u),
(ii) wZ(F ,�n

m, p, q, u) ∩ wZ(F ,�n
m, p, r, u) ⊂ wZ(F ,�n

m, p, q + r, u),
(iii) wZ(F ,�n

m, p, q, u) ∩ wZ(G,�n
m, p, q, u) ⊂ wZ(F + G,�n

m, p, q, u), where Z = , ,∞.

Proof (i) We shall prove it for the relation w(F ,�n
m, q, u) ⊂ w(F ◦ G,�n

m, q, u). For ε > ,
we choose δ,  < δ < , such that fk(t) < ε for  ≤ t ≤ δ and all k ∈ N. We write yk =
gk( q(�m

n uk xk )
ρ

) and consider

n∑
k=

[
fk(yk)

]
=

∑


[
fk(yk)

]
+

∑


[
fk(yk)

]
,

where the first summation is over yk ≤ δ and the second summation is over yk > δ. Since
F is continuous, we have

∑


[
fk(yk)

]
< nε. (.)

By the definition of F , we have the following relation for yk > δ:

fk(yk) < fk()
yk

δ
.

Hence,


n

∑


[
fk(yk)

] ≤ δ–fk()

n

n∑
k=

yk . (.)

It follows from (.) and (.) that w(F ,�n
m, q, u) ⊂ w(F ◦ G,�n

m, q, u). Similarly, we can
prove w(F ,�n

m, q, u) ⊂ w(F ◦ G,�n
m, q, u) and w∞(F ,�n

m, q, u) ⊂ w∞(F ◦ G,�n
m, q, u).

The proof of (ii) and (iii) follows from (i). �

Corollary . Let f be a modulus function. Then

wZ
(
�n

m, q, u
) ⊂ wZ

(
f ,�n

m, q, u
)
, for Z = , ,∞.

Theorem . Let F = (fk) be a sequence of modulus functions, p = (pk) be any bounded se-
quence of positive real numbers and u = (uk) be a sequence of strictly positive real numbers.
Then w∞(F ,�n

m, p, q, u) is complete and seminormed by (.).

Proof Suppose (xn) is a Cauchy sequence in w∞(F ,�n
m, p, q, u), where xn = (xn

k )∞k= for all
n ∈ N. So that g(xi – xj) →  as i, j → ∞. Suppose ε >  is given and let s and x be such
that ε

sx
>  and fk( sx

 ) ≥ supk≥(pk). Since g(xi – xj) → , as i, j → ∞, which means that
there exists n ∈N such that

g
(
xi – xj) <

ε

sx
, for all i, j ≥ n.
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This gives g(xi
 – xj

) < ε
sx

and

inf

{
ρ

pk
H : sup

k≥

(
fk

(
q(uk�

n
mxi

k – uk�
n
mxj

k)
ρ

))
≤ ,ρ > 

}
<

ε

sx
. (.)

It shows that (xi
) is a Cauchy sequence in X. Thus, (xi

) is convergent in X because X is
complete. Suppose limi→∞ xi

 = x then limj→∞ g(xi
 – xj

) < ε
sx

, we get

g
(
xi

 – x
)

<
ε

sx
.

Thus, we have

fk

(
q(uk�

n
mxi

k – uk�
n
mxj

k)
g(xi – xj)

)
≤ .

This implies that

fk

(
q(uk�

n
mxi

k – uk�
n
mxj

k)
g(xi – xj)

)
≤ fk

(
sx



)

and thus

q
(
uk�

n
mxi

k – uk�
n
mxj

k
)

<
sx


· ε

sx
<

ε


,

which shows that (uk�
n
mxi

k) is a Cauchy sequence in X for all k ∈ N. Therefore, (uk�
n
mxi

k)
converges in X. Suppose limi→∞ �n

mxi
k = yk for all k ∈ N. Also, we have limi→∞ uk�

n
mxi

 =
y – x. On repeating the same procedure, we obtain limi→∞ uk�

n
mxi

k+ = yk – xk for all
k ∈N. Therefore by continuity of fk , we get

lim
j→∞ sup

k≥
fk

(
q(uk�

n
mxi

k – uk�
n
mxj

k)
ρ

)
≤ ,

so that

sup
k≥

fk

(
q(uk�

n
mxi

k – uk�
n
mxk)

ρ

)
≤ .

Let i ≥ n and taking the infimum of each ρ , we have

g
(
xi – x

)
< ε.

So (xi – x) ∈ w∞(F ,�n
m, p, q, u). Hence x = xi – (xi – x) ∈ w∞(F ,�n

m, p, q, u), since w∞(F ,�n
m,

p, q, u) is a linear space. Hence, w∞(F ,�n
m, p, q, u) is a complete paranormed space. �
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