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Abstract
We consider a non-standard inverse heat conduction problem in a bounded domain
which appears in some applied subjects. We want to know the surface temperature
in a body from a measured temperature history at a fixed location inside the body.
This is an exponentially ill-posed problem in the sense that the solution (if it exists)
does not depend continuously on the data. In this paper, we introduce the two new
classes of quasi-type methods and iteration methods to solve the problem and prove
that our methods are stable under both a priori and a posteriori parameter choice
rules. An appropriate selection of a parameter in the scheme will get a satisfactory
approximate solution. Furthermore, if we use the discrepancy principle we can avoid
the selection of the a priori bound.
MSC: 35K05; 35K99; 47J06; 47H10

Keywords: Cauchy problem; sideways heat equation; ill-posed problem; error
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1 Introduction
In this paper, we want to determine the surface temperature u(x, t) for  < x < L from
well-known temperature measurements u(L, t) = g(t) when u(x, t) satisfies the following
system:

⎧
⎪⎨

⎪⎩

ut = uxx,  < x < L,  ≤ t ≤ π ,
u(L, t) = g(t),  ≤ t ≤ π ,
u(x, ) = ,  ≤ t ≤ π .

()

In order to guarantee the uniqueness of the solution, here we assume that u be bounded as
x → +∞. The functions g , h given in L(, π ) are to be noised. Physically, we only obtain
the measured Cauchy data with measurement errors. This is a severely ill-posed problem:
any small perturbation in the observation data can cause large errors in the solution u(x, t)
for x ∈ [, L). Therefore, most classical numerical methods often fail to give an acceptable
approximation of the solution. Thus it requires regularization techniques to stabilize the
numerical computations [].

The problem has a long history and has attracted to many authors. In several engineering
contexts, it is sometimes necessary to determine the surface temperature and heat flux in
a body from a measured temperature history at a fixed location inside the body [, ]. The
physical situation at the surface may be unsuitable for attaching a sensor, or the accuracy
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of a surface measurement may be seriously impaired by the presence of the sensor. The
special case of estimating a surface condition from interior measurements has come to be
known as the inverse heat conduction problem (IHCP).

In recent years, IHCP have been researched by many authors and some valuable method
are proposed, such as the difference regularization method [], the Fourier method [],
quasi-reversibility method [, ], wavelet and wavelet-Galerkin method [], a spectral reg-
ularization method [, ], etc.

Most of the papers involving regularization methods for sideways heat are devoted to
giving a convergence analysis with the regularization parameter chosen by an a priori
choice rule, under which some a priori information on the unknown exact solution which
is to be simulated is often used. However, in general, the a priori bound M cannot be
known exactly in practice, and working with a wrong constant M may lead to the bad
regularized solution. In the present paper, we proposed two new regularization method:
a modified quasi-boundary value method and an iteration method for solving Problem ().
This method has been used by Deng and Liu to deal with the sideways parabolic equation
[], but here we give another way to choose the regularization parameter by an a posteriori
rule. Moreover, we shall give a criterion for making an a posteriori choice of the regular-
ization parameter. To the authors’ knowledge, there are very few papers for choosing the
regularization parameter by the a posteriori rule for this sideways heat.

This paper is constructed as follows: in Section , we propose two new regularization
method. Convergence estimates under priori and posteriori assumptions are given in Sec-
tion  and Section . Finally, we draw a conclusion to our method.

2 Formulation of the problem and a quasi-boundary value regularization
method

Suppose gε is for measured data in L(, π ) and satisfies

∥
∥gε – g

∥
∥

L(,π ) ≤ ε, ()

where ε >  represents a noisy level. For f ∈ L(, π ), we have the Fourier series

f (t) =
∑

k∈Z
fkeikt , ()

where the Fourier coefficient is

fk =


π

∫ π


f (t)e–ikt dt. ()

The norm of f in L is

‖f ‖
L(,π ) = π

∑

k∈Z
|fk|. ()

The principal value of
√

ik is

√
ik =

⎧
⎨

⎩

( + i)
√

|k|
 , k ≥ ,

( – i)
√

|k|
 , k < .

()
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Suppose that the solution of the problem is represented as a Fourier series

u(x, t) =
∑

k∈Z
uk(x)eikt , ()

with

uk(x) =


π

∫ π


u(x, t)e–ikt dt. ()

Let F(x, t) =
∑

k∈Z Fk(x)eikt with

Fk(x) =


π

∫ π


F(x, t)e–ikt dt. ()

Then by taking the partial derivative with respect to t and x, we obtain

ut(x, t) =
∑

k∈Z
uk(x)ikeikt ,

uxx(x, t) =
∑

k∈Z

d

dx uk(x)eikt .
()

The main equation ut = uxx leads to

∑

k∈Z
uk(x)ikeikt =

∑

k∈Z

d

dx uk(x)eikt .

Combining the Cauchy data g , h, we have the following systems of second ordinary equa-
tions:

d

dx uk(x) – ikuk(x) = , uk(L) = gk , ()

where

gk =
〈
g(t), e–ikt〉 =


π

∫ π


g(t)e–ikt dt.

The solution of () is

uk(x) = Ck exp(
√

ikx) + Dk exp(–
√

ikx). ()

Since u(x, t) is bounded when x → +∞, we conclude that Ck = . It follows from uk(L) =
Dk exp(–

√
ikL) = gk that

Dk = gk exp(
√

ikL).

This leads to the formula of uk :

uk(x) = exp
(√

ik(L – x)
)
gk . ()
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The exact form of u is

u(x, t) =
∑

k∈Z
exp

(√
ik(L – x)

)〈
g(t), e–ikt〉eikt ,  ≤ x ≤ L. ()

Lemma  For y ∈R, we have

∣
∣e

√
iky∣∣ = e

√ |k|
 y. ()

Proof We can rewrite the term |e
√

iky| by

∣
∣e

√
iky∣∣ =

∣
∣e(+i)

√ |k|
 y∣∣ =

∣
∣e

√ |k|
 y∣∣

√

cos
( |k|y



)

+ sin
( |k|y



)

= e
√ |k|

 y. ()
�

3 Quasi-boundary value method for a sideways heat equation
Define the Sobolev space Hs(, π ) as

∥
∥u(, t)

∥
∥

Hs(,π ) =
∑

k∈Z

(
 + k)s∣∣

〈
u(, t), e–ikt〉∣∣.

In this section, we present a QBV regularization problem as follows:

⎧
⎪⎨

⎪⎩

uβ(ε)
t = uβ(ε)

xx ,  < x < L,  ≤ t ≤ π ,
uβ(ε)(L, t) = Bεgε(t),  ≤ t ≤ π ,
uβ(ε)(x, ) = ,  ≤ t ≤ π ,

()

with the additive information that uε(x, t) bounded when x → +∞. And Bε is defined as

Bεgε(t) =
∑

k∈Z

exp(–
√

|k|
 L)

β(ε) + exp(–
√

|k|
 L)

〈
gε(t), e–ikt〉eikt . ()

3.1 A priori parameter choice rule
Theorem  Let u be an exact solution to Problem (). Let gε be as in ().

() If ‖u(, t)‖L(,π ) ≤ M then by β(ε) = ε
M , we have

∥
∥uβ(ε)(x, ·) – u(x, ·)∥∥L(,π ) ≤ M– x

L ε
x
L .

() If ‖u(, t)‖Hs(,π ) ≤ M then by β(ε) = εk

M
,  < k < , we have

∥
∥uβ(ε)(x, ·) – u(x, ·)∥∥L(,π )

(


M

) x
L
ε

kx
L ε–k + MA(s)

(
L

ln(M/ε)

)s

,

where

A(s) = s(s)se–s( + L–s).
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Proof
Proof of Part . The solution of this regularized problem is

uβ(ε)(x, t) =
∑

k∈Z

exp(–
√

|k|
 L) exp(

√
ik(L – x))

β(ε) + exp(–
√

|k|
 L)

〈
gε(t), e–ikt〉eikt . ()

Let vβ(ε) obey

vβ(ε)(x, t) =
∑

k∈Z

exp(–
√

|k|
 L) exp(

√
ik(L – x))

β(ε) + exp(–
√

|k|
 L)

〈
g(t), e–ikt〉eikt .

Step . Estimate ‖uβ(ε) – vβ(ε)‖L(,π ).
We have

∥
∥uβ(ε) – vβ(ε)∥∥

L(,π ) = π
∑

k∈Z

∣
∣
∣
∣

exp(–
√

|k|
 L)

β(ε) + exp(–
√

|k|
 L)

exp
(√

ik(L – x)
)
∣
∣
∣
∣



× ∣
∣
〈
gε(t) – g(t), e–ikt〉∣∣

= π
∑

k∈Z

exp(–
√

|k|x)

[β(ε) + exp(–
√

|k|
 L)]

∣
∣
〈
gε(t) – g(t), e–ikt〉∣∣

≤ β(ε)
x
L –∥∥gε(t) – g(t)

∥
∥

L(,π ) ≤ β(ε)
x
L –ε. ()

This implies that

∥
∥uβ(ε) – vβ(ε)∥∥

L(,π ) ≤ β(ε)
x
L –ε = M– x

L ε
x
L . ()

Step . Estimate ‖vβ(ε) – u‖L(,π ). Using 〈u(, t), e–ikt〉 = exp(
√

ikL)〈g(t), e–ikt〉, we have

∥
∥vβ(ε) – u

∥
∥

L(,π ) = π
∑

k∈Z

∣
∣
∣
∣

β(ε) exp(
√

|k|
 L)

 + β exp(
√

|k|
 L)

∣
∣
∣
∣



exp
(

√

ik(L – x)
)∣
∣
〈
g(t), e–ikt〉∣∣

= π
∑

k∈Z

β| exp(–
√

ikx)|
[β(ε) + exp(–

√
|k|
 L)]

∣
∣
〈
u(, t), e–ikt〉∣∣

= β(ε)π
∑

k∈Z

[ exp(–
√

|k|
 x)

β(ε) + exp(–
√

|k|
 L)

]∣
∣
〈
u(, t), e–ikt〉∣∣

≤ β(ε)β(ε)
x
L –∥∥u(, t)

∥
∥

L(,π ) ≤ β(ε)
x
L M. ()

From β(ε) = ε
M , we obtain

∥
∥vβ(ε) – u

∥
∥

L(,π ) ≤ ε
x
L M– x

L .
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This implies that

∥
∥vβ(ε) – u

∥
∥

L(,π ) ≤ M– x
L ε

x
L . ()

Combining () and (), we obtain

∥
∥uβ(ε) – u

∥
∥

L(,π ) ≤ ∥
∥uβ(ε) – vβ(ε)∥∥

L(,π ) +
∥
∥vβ(ε) – u

∥
∥

L(,π ) ≤ M– x
L ε

x
L .

Proof of Part .
Lemma  Let s > , X ≥ . Then for  < β < , we have

β

( +
√

|k|
 )s(β + exp(–

√
|k|
 L))

≤ sse–s( + L–s)
(

L
ln(/β)

)s

.

Proof
Case .

√
|k|
 ∈ [, 

L ]. It is clear to see that

β

( +
√

|k|
 )s(β + exp(–

√
|k|
 L))

≤ β

( +
√

|k|
 )s exp(–

√
|k|
 L)

≤ β exp

(√ |k|


L
)

≤ eβ .

From the inequality β ≤ ( s
e )s( 

ln(/β) )s, we get

β

( +
√

|k|
 )s(β + exp(–

√
|k|
 L))

≤ sse–s( + L–s)
(

L
ln(/ε)

)s

. ()

Case .
√

|k|
 > 

L . Set Y = exp(–
√ |k|

 L)
β

. Then we obtain

β

( +
√

|k|
 )s(β + exp(–

√
|k|
 L))

=
β

β + βY

(
L

L – ln(βY )

)s

=


 + Y

(
L

L – ln(βY )

)s

=


 + Y

(
L

ln(/β)

)s( – ln(β)
L – ln(βY )

)s

=
(

L
ln(/β)

)s 
 + Y

(
– ln(β)

L – ln(βY )

)s

. ()

We continue to estimate the term 
+Y ( – ln(β)

L–ln(βY ) )s.
If  < Y ≤  then  < – ln(β) < – ln(βY ), thus


 + Y

(
– ln(β)

L – ln(βY )

)s

< , ()
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else if Y >  then ln Y >  and ln(βY ) = –L
√

|k|
 < – due to the assumption

√
|k|
 ∈ ( 

L ,∞).
Therefore ln Y ( + ln(βY )) ≤ . This implies that

 <
– lnβ

L – ln(βY )
<

– lnβ

– ln(βY )
<  + ln Y .

Hence, in this case, we get


 + Y

(
– ln(β)

L – ln(βY )

)s

<
( + ln Y )s

Y
= ( + ln Y )sY –.

Set g(Y ) = ( + ln Y )sY – for Y > e–. Taking the derivative of this function, we get

g ′(Y ) = ( + ln Y )s–Y –(s –  – ln Y ).

The function g has a maximum at the point Y such that g ′(Y) = . This implies that
Y = es–. And therefore

sup
Y≥

( + ln Y )sY – ≤ g(Y) = sse–s. ()

Since () and () hold, we have


 + Y

(
– ln(β)

L – ln(βY )

)s

≤ sse–s.

From (), we get

β

( +
√

|k|
 )s(β + exp(–

√
|k|
 L))

≤ sse–s
(

T
ln(/β)

)s

≤ sse–s( + T–s)
(

T
ln(/β)

)s

. ()

We have

∥
∥vε – u

∥
∥

L(,π )

= π
∑

k∈Z

[ β exp(–
√

|k|
 x)

β + exp(–
√

|k|
 L)

]∣
∣
〈
u(, t), e–ikt〉∣∣

≤ π
∑

k∈Z

β

( +
√

|k|
 )s(β + exp(–

√
|k|
 L))

(

 +
√ |k|



)s∣
∣
〈
u(, t), e–ikt〉∣∣

≤ (s)se–s( + L–s)
(

L
ln(/β)

)s

π
∑

k∈Z

(

 +
√ |k|



)s∣
∣
〈
u(, t), e–ikt〉∣∣

≤ s(s)se–s( + L–s)
(

L
ln(/β)

)s

π
∑

k∈Z

(
 + k)s∣∣

〈
u(, t), e–ikt〉∣∣

≤ A(s)
(

L
ln(/β)

)s∥
∥u(, t)

∥
∥

Hs(,π ), ()
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where

A(s) = s(s)se–s( + L–s).

This leads to

∥
∥vβ(ε) – u

∥
∥

L(,π ) ≤ A(s)
(

L
ln(/β)

)s∥
∥u(, t)

∥
∥

Hs(,π )

≤ MA(s)
(

L
ln(/β)

)s

. ()

Combining () and (), we obtain

∥
∥uβ(ε) – u

∥
∥

L(,π ) ≤ ∥
∥uβ(ε) – vβ(ε)∥∥

L(,π ) +
∥
∥vβ(ε) – u

∥
∥

L(,π )

≤ β(ε)
x
L –ε + MA(s)

(
L

ln(/β)

)s

. �

3.2 A posteriori parameter choice rule
Theorem  Suppose that  < ε < ‖gε‖L(,π ). Choose m >  such that

 < mε <
∥
∥gε

∥
∥

L(,π ).

Then there exists a unique number β(ε) such that

∥
∥uβ(ε)(L, t) – gε

∥
∥

L(,π ) = mε. ()

Furthermore, if ‖u(, t)‖L(,π ) ≤ M then by β(ε) = ε
M , we have the following estimate:

∥
∥uβ(ε)(x, ·) – u(x, ·)∥∥L(,π ) ≤

[
m

m – 
M

]– x
L [

(m + )ε
] x

L .

Proof The following results are straightforward.

Lemma  Set ρ(β) = ‖uβ(ε)(L, t) – gε‖L(,π ). If  < ε < ‖gε‖L(,π ) then ρ is a continuous
strictly increasing function and satisfies

(a) limβ→ ρ(β) = ,
(b) limβ→+∞ ρ(β) = ‖gε‖L(,π ).

From this lemma, it follows that there exists a unique number β(ε) satisfying ().
Set zβ(ε)(x, t) = u(x, t) – uβ(ε)(x, t). Then zβ(ε) satisfies the heat equation

zβ(ε)
t = zβ(ε)

xx . ()

From the formula of u and uβ(ε), we get

zβ(ε)(x, t) = uβ(ε)(x, t) – u(x, t) =
∑

k∈Z
exp

(√
ik(L – x)

)
Rk

(
β , g, gε

)
eikt ,
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where

Rk
(
β , g, gε

)
=

exp(–
√

|k|
 L)

β(ε) + exp(–
√

|k|
 L)

〈
gε(t), e–ikt〉 –

〈
g(t), e–ikt〉.

Then using the Hölder inequality, we get

∥
∥zβ(ε)(x, t)

∥
∥

L(,π ) =
∑

k∈Z
exp

(
√

|k|L
(

 –
x
L

))
∣
∣Rk

(
β , g, gε

)∣
∣– x

L
∣
∣Rk

(
β , g, gε

)∣
∣

x
L

≤
[∑

k∈Z

(

exp

(
√

|k|L
(

 –
x
L

))
∣
∣Rk

(
β , g, gε

)∣
∣– x

L

) 
– x

L
]– x

L

×
[∑

k∈Z

(∣
∣Rk

(
β , g, gε

)∣
∣

x
L
) 

x
L

] x
L

=
[∑

k∈Z
exp

(√
|k|L)∣

∣Rk
(
β , g, gε

)∣
∣

]– x
L
[∑

k∈Z

∣
∣Rk

(
β , g, gε

)∣
∣

] x
L

=
∥
∥zβ(ε)(, t)

∥
∥– x

L
L(,π )

∥
∥zβ(ε)(L, t)

∥
∥

x
L

L(,π ).

This implies that

∥
∥zβ(ε)(x, t)

∥
∥

L(,π ) ≤ ∥
∥zβ(ε)(, t)

∥
∥– x

L
L(,π )

∥
∥zβ(ε)(L, t)

∥
∥

x
L
L(,π ). ()

Proof of Part (a). It is easy to see that

∥
∥zβ(ε)(L, t)

∥
∥

L(,π ) =
∥
∥uβ(ε)(L, t) – u(L, t)

∥
∥

L(,π )

≤ ∥
∥uβ(ε)(L, t) – gε

∥
∥

L(,π ) +
∥
∥g – gε

∥
∥

L(,π ) ≤ (m + )ε ()

and

∥
∥zβ(ε)(, t)

∥
∥

L(,π ) ≤ ∥
∥u(, t)

∥
∥

L(,π ) +
∥
∥uβ(ε)(, t)

∥
∥

L(,π ). ()

We have

mε =
∥
∥uβ(ε)(L, t) – gε(t)

∥
∥

L(,π )

=
∥
∥
∥
∥

∑

k∈Z

β(ε) exp(–
√

|k|
 L)

 + β(ε) exp(–
√

|k|
 L)

〈
gε(t), e–ikt〉eikt

∥
∥
∥
∥

L(,π )

≤
∥
∥
∥
∥

∑

k∈Z

β(ε) exp(–
√

|k|
 L)

 + β(ε) exp(–
√

|k|
 L)

〈
gε(t) – g(t), e–ikt〉eikt

∥
∥
∥
∥

L(,π )

+
∥
∥
∥
∥

∑

k∈Z

β(ε)

β(ε) + exp(–
√

|k|
 L)

〈
g(t), e–ikt〉eikt

∥
∥
∥
∥

L(,π )
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≤
∥
∥
∥
∥

∑

k∈Z

〈
gε(t) – g(t), e–ikt〉eikt

∥
∥
∥
∥

L(,π )
+

∥
∥
∥
∥

∑

k∈Z
β(ε) exp

(√ |k|


L
)

〈
g(t), e–ikt〉eikt

∥
∥
∥
∥

L(,π )

=
∥
∥gε – g

∥
∥

L(,π ) + β(ε)
∥
∥u(, t)

∥
∥

L(,π )

≤ ε + β(ε)
∥
∥u(, t)

∥
∥

L(,π ).

This implies that

ε

β(ε)
≤ 

m – 
∥
∥u(, t)

∥
∥

L(,π ). ()

It follows from () that

∥
∥uβ(ε)(, t)

∥
∥

L(,π ) =
∥
∥
∥
∥

∑

k∈Z

exp(–
√

|k|
 L)

β(ε) + exp(–
√

|k|
 L)

exp(
√

ikL)
〈
gε(t), e–ikt〉eikt

∥
∥
∥
∥

L(,π )

≤
∥
∥
∥
∥

∑

k∈Z

exp(–
√

|k|
 L)

β(ε) + exp(–
√

|k|
 L)

exp(
√

ikL)
〈
gε(t) – g(t), e–ikt〉eikt

∥
∥
∥
∥

L(,π )

+
∥
∥
∥
∥

∑

k∈Z

exp(–
√

|k|
 L)

β(ε) + exp(–
√

|k|
 L)

exp(
√

ikL)
〈
g(t), e–ikt〉eikt

∥
∥
∥
∥

L(,π )

≤
∥
∥
∥
∥

∑

k∈Z


β(ε)

〈
gε(t) – g(t), e–ikt〉eikt

∥
∥
∥
∥

L(,π )

+
∥
∥
∥
∥

∑

k∈Z
exp(

√
ikL)

〈
g(t), e–ikt〉eikt

∥
∥
∥
∥

L(,π )

≤ 
β(ε)

∥
∥gε – g

∥
∥

L(,π ) +
∥
∥u(, t)

∥
∥

L(,π )

≤ ε

β(ε)
+

∥
∥u(, t)

∥
∥

L(,π ). ()

Combining () and (), we obtain

∥
∥uβ(ε)(, t)

∥
∥

L(,π ) ≤
(


m – 

+ 
)

∥
∥u(, t)

∥
∥

L(,π ) =
m

m – 
∥
∥u(, t)

∥
∥

L(,π ). ()

From () and (), we obtain

∥
∥zβ(ε)(, t)

∥
∥

L(,π ) ≤
(

 +
m

m – 

)
∥
∥u(, t)

∥
∥

L(,π ) =
m – 
m – 

∥
∥u(, t)

∥
∥

L(,π ). ()

This together with () and () leads to

∥
∥zβ(ε)(x, t)

∥
∥

L(,π ) ≤ ∥
∥zβ(ε)(, t)

∥
∥– x

L
L(,π )

∥
∥zβ(ε)(L, t)

∥
∥

x
L
L(,π )

≤
[

m – 
m – 

∥
∥u(, t)

∥
∥

L(,π )

]– x
L [

(m + )ε
] x

L .
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Hence

∥
∥u(x, t) – uβ(ε)(x, t)

∥
∥

L(,π ) ≤
[

(m – )M
m – 

]– x
L

(m + )
x
L ε

x
L . �

4 An iteration regularization method
4.1 A priori parameter choice
To the authors’ knowledge, there are few papers for choosing the regularization parameter
by a posteriori rule for the sideways heat equation. In this section, a new regularization
method of iteration type for solving this problem will be given. We will use this method
solving Problem (), an a priori and a posteriori rule for choosing regularization param-
eters and the Hölder-type error estimates are given. To solve the problem, we introduce
the following iteration scheme:

〈
uε

n(x, t), e–ikt〉 = ( – h)
〈
uε

n–(x, t), e–ikt〉 + h exp
(√

ik(L – x)
)〈

gε(t), e–ikt〉 ()

with initial guess 〈uε
(x, t), e–ikt〉 and  < h = e–L

√ |k|
 < , which plays an important role in

the convergence proof. From the formula, it is easy to see that

〈
uε

n(x, t), e–ikt〉 = ( – h)n〈uε
(x, t), e–ikt〉 +

n–∑

i=

( – h)ih exp
(√

ik(L – x)
)〈

gε(t), e–ikt〉

= ( – h)n〈uε
(x, t), e–ikt〉 +

[
 – ( – h)n] exp

(√
ik(L – x)

)〈
gε(t), e–ikt〉. ()

Therefore, the approximate solution of Problem () has the following form:

uε
n(x, t) =

∑

k∈Z

〈
uε

n(x, t), e–ikt〉eikt . ()

We have the main theorem as follows.

Theorem  Let u(x, t) be the exact solution of Problem (), and uε
n be its regularization

approximation defined by () with 〈uε
(x, t), e–ikt〉 = . Assume that ‖u(, t)‖L(,π ) ≤ M

for M >  and take n = [ M
ε

], where [k] denotes the largest integer not exceeding k, then we
have the estimate

∥
∥uε

n(x, ·) – u(x, ·)∥∥L(,π ) ≤ M– x
L ε

x
L .

Lemma  For  ≤ h ≤  and n ≥ , the following inequalities hold:

( – h)nh ≤ 
n + 

,

 – ( – h)n

h
≤ n.

Lemma  For  ≤ h ≤ ,  ≤ α ≤ , and n ≥ , the following inequalities hold:

( – h)nhα ≤ 
(n + )α

,
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 – ( – h)n

hα
≤ nα .

From 〈uε
(x, t), e–ikt〉 = , we see that

uε
n(x, t) =

∑

k∈Z

[
 – ( – h)n] exp

(√
ik(L – x)

)〈
gε(t), e–ikt〉eikt .

Let vε(x, t) be given by

vε
n(x, t) =

∑

k∈Z

[
 – ( – h)n] exp

(√
ik(L – x)

)〈
g(t), e–ikt〉eikt .

We divide the argument into two steps.
Step . Estimate ‖uε

n(x, ·) – vε
n(x, ·)‖L(,π ). We have

∥
∥uε

n(x, ·) – vε
n(x, ·)∥∥

L(,π )

= π
∑

k∈Z

[
 – ( – h)n]∣∣exp

(

√

ik(L – x)
)∣
∣
∣
∣
〈
gε – g(t), e–ikt〉∣∣

≤ π sup
k∈Z

[
 – ( – h)n]∣∣exp

(

√

ik(L – x)
)∣
∣
∑

k∈Z

∣
∣
〈
gε – g(t), e–ikt〉∣∣

≤ π sup
k∈Z

[
 – ( – h)n]

exp
(√

|k|(L – x)
)∥
∥gε – g

∥
∥

L(,π ).

It follows from exp(
√

|k|(L – x)) = h
x
L – and ‖gε – g‖L(,π ) ≤ ε that

∥
∥uε

n(x, ·) – vε
n(x, ·)∥∥

L(,π ) ≤ π sup
<h<

[
 – ( – h)n]h

x
L –ε.

Because of Lemma , we have

∥
∥uε

n(x, ·) – vε
n(x, ·)∥∥

L(,π ) ≤ n– x
L ε.

Therefore

∥
∥uε

n(x, ·) – vε
n(x, ·)∥∥L(,π ) ≤ n– x

L ε. ()

Step . Estimate ‖vε
n(x, ·) – u(x, ·)‖L(,π ). We have

∥
∥vε

n(x, ·) – u(x, ·)∥∥
L(,π ) = π

∑

k∈Z
( – h)n exp

(√
|k|(L – x)

)∣
∣
〈
g(t), e–ikt〉∣∣

≤ ∥
∥u(, t)

∥
∥

L(,π ) sup
<h<

( – h)nh
x
L

≤ M(n + )– x
L .

This implies that

∥
∥vε

n(x, ·) – u(x, ·)∥∥L(,π ) ≤ M(n + )– x
L . ()
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Combining () and (), we obtain

∥
∥uε

n(x, ·) – u(x, ·)∥∥L(,π ) ≤ ∥
∥uε(x, ·) – vε(x, ·)∥∥L(,π ) +

∥
∥vε(x, ·) – u(x, ·)∥∥L(,π )

≤ n– x
L ε + M(n + )– x

L .

Due to n = [ M
ε

], we have n ≤ M
ε

and n +  ≥ M
ε

, and therefore

∥
∥uε

n(x, ·) – u(x, ·)∥∥L(,π ) ≤ M
(

M
ε

)– x
L

+ ε

(
M
ε

)– x
L

= M– x
L ε

x
L .

4.2 The discrepancy principle
In this section, we discuss the a posteriori stopping rule for iteration scheme () based
on ‘discrepancy principle’ of Morozov in the following form:

∥
∥gε(t) – uε

β (L, t)
∥
∥

L(,π ) = mε, ()

where m >  is a constant and β denotes the regularization parameter.
If we take 〈uε

(x, t), e–ikt〉 = , then () can be simplified to the form

∥
∥gε(t) – uε

β (L, t)
∥
∥

L(,π ) =
∥
∥
∥
∥

∑

k∈Z

〈
gε(t), e–ikt〉eikt –

∑

k∈Z

[
 – ( – h)β

]〈
gε(t), e–ikt〉eikt

∥
∥
∥
∥

L(,π )

=
∥
∥
∥
∥

∑

k∈Z
( – h)β

〈
gε(t), e–ikt〉eikt

∥
∥
∥
∥

L(,π )
= mε. ()

We have the main theorem as follows.

Theorem  Let u(x, t) be the exact solution of Problem (), and uε
n be its regularization ap-

proximation defined by () with 〈uε
(x, t), e–ikt〉 = . If the a priori bound ‖u(, t)‖L(,π ) ≤

M is valid and the iteration () is stopped by the discrepancy principle (), then

∥
∥uε

β (x, ·) – u(x, ·)∥∥L(,π ) ≤ EM– x
L ε

x
L ,

where

E = (m + )
x
L

(
m

m – 

)– x
L

.

The following results are obvious.

Lemma  Set P(β) = ‖gε(t) – uε
β (L, t)‖L(,π ) = ‖( – h)βgε(t)‖L(,π ).

Lemma  Setting

wε
β (x, t) =

∑

k∈Z

[
exp

(√
ik(L – x)

)〈
g(t), e–ikt〉 –

[
 – ( – h)n]

× exp
(√

ik(L – x)
)〈

gε(t), e–ikt〉]eikt ,
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the following inequality holds:

∥
∥wε

β (x, t)
∥
∥

L(,π ) ≤ ∥
∥wε

β (, t)
∥
∥– x

L
L(,π )

∥
∥wε

β (L, t)
∥
∥

x
L
L(,π ).

Proof We have

wε
β (, t) =

∑

k∈Z

[
exp(

√
ikL)

〈
g(t), e–ikt〉 –

[
 – ( – h)n] exp(

√
ikL)

〈
gε(t), e–ikt〉]eikt

and

wε
β (L, t) =

∑

k∈Z

[〈
g(t), e–ikt〉 –

[
 – ( – h)n]〈gε(t), e–ikt〉]eikt .

We have

∥
∥wε

β (x, t)
∥
∥

L(,π ) =
∑

k∈Z
exp

(√
|k|(L – x)

)[〈
g(t), e–ikt〉 –

[
 – ( – h)n]〈gε(t), e–ikt〉].

For brevity in this case, we set Qk(h, n) = 〈g(t), e–ikt〉 – [ – ( – h)n]〈gε(t), e–ikt〉. Then using
the Hölder inequality, we get

∥
∥wε

β (x, t)
∥
∥

L(,π ) =
∑

k∈Z
exp

(
√

|k|L
(

 –
x
L

))
∣
∣Qk(h, n)

∣
∣– x

L
∣
∣Qk(h, n)

∣
∣

x
L

≤
[∑

k∈Z

(

exp

(
√

|k|L
(

 –
x
L

))
∣
∣Qk(h, n)

∣
∣– x

L

) 
– x

L
]– x

L

×
[∑

k∈Z

(∣
∣Qk(h, n)

∣
∣

x
L
) 

x
L

] x
L

=
[∑

k∈Z
exp

(√
|k|L) ∗ ∣

∣Qk(h, n)
∣
∣

]– x
L
[∑

k∈Z

∣
∣Qk(h, n)

∣
∣

] x
L

=
∥
∥wε

β (, t)
∥
∥– x

L
L(,π )

∥
∥wε

β (L, t)
∥
∥

x
L

L(,π ).

This completes the proof of the lemma. �

Lemma  The following inequality holds:

βε ≤ M
m – 

.

Proof It follows from () that

mε =
∥
∥
∥
∥

∑

k∈Z
( – h)β

〈
gε(t), e–ikt〉eikt

∥
∥
∥
∥

L(,π )
≤

∥
∥
∥
∥

∑

k∈Z
( – h)β

〈
gε(t) – g(t), e–ikt〉eikt

∥
∥
∥
∥

L(,π )

+
∥
∥
∥
∥

∑

k∈Z
( – h)β

〈
g(t), e–ikt〉eikt

∥
∥
∥
∥

L(,π )
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≤ sup
<h<

( – h)β
∥
∥
∥
∥

∑

k∈Z

〈
gε(t) – g(t), e–ikt〉eikt

∥
∥
∥
∥

L(,π )

+ sup
<h<

( – h)β
∥
∥
〈
g(t), e–ikt〉eikt∥∥

L(,π ).

Moreover, it is easy to see that

( – h)β ≤ 
β

and

∥
∥
〈
g(t), e–ikt〉eikt∥∥

L(,π ) =
∥
∥exp(–

√
ikL)

〈
u(, t), e–ikt〉eikt∥∥

L(,π ) ≤ ∥
∥u(, t)

∥
∥

L(,π ) ≤ M.

This leads to

βε ≤ ε +
M
m

.

This completes the proof of the lemma. �

Lemma  The following inequality holds:

∥
∥wε

β (L, ·)∥∥L(,π ) ≤ (m + )ε.

Proof Due to the triangle inequality, we have

∥
∥wε

β (L, ·)∥∥L(,π ) =
∥
∥
∥
∥

∑

k∈Z

[〈
g(t), e–ikt〉 –

[
 – ( – h)n]〈gε(t), e–ikt〉]eikt

∥
∥
∥
∥

L(,π )

≤
∥
∥
∥
∥

∑

k∈Z

〈
g(t) – gε(t), e–ikt〉eikt

∥
∥
∥
∥

L(,π )

+
∥
∥
∥
∥

∑

k∈Z
( – h)β

〈
gε(t), e–ikt〉eikt

∥
∥
∥
∥

L(,π )

≤ ∥
∥gε – g

∥
∥

L(,π ) +
∥
∥
∥
∥

∑

k∈Z
( – h)β

〈
gε(t), e–ikt〉eikt

∥
∥
∥
∥

L(,π )

≤ ε + mε = (m + )ε. �

Lemma  The following inequality holds:

∥
∥wε

β (, ·)∥∥L(,π ) ≤ mM
m – 

.

Proof Due to the triangle inequality and h = e–L
√ |k|

 , we have

∥
∥wε

β (, ·)∥∥L(,π )

=
∥
∥
∥
∥

∑

k∈Z

[
exp(

√
ikL)

〈
g(t), e–ikt〉 –

[
 – ( – h)β

]
exp(

√
ikL)

〈
gε(t), e–ikt〉]eikt

∥
∥
∥
∥

L(,π )
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≤
∥
∥
∥
∥

∑

k∈Z

[
exp(

√
ikL)

〈
g(t), e–ikt〉 –

[
 – ( – h)n] exp(

√
ikL)

〈
g(t), e–ikt〉]eikt

∥
∥
∥
∥

L(,π )

+
∥
∥
∥
∥

∑

k∈Z

[[
 – ( – h)β

]
exp(

√
ikL)

〈
g(t) – gε(t), e–ikt〉]eikt

∥
∥
∥
∥

L(,π )

≤
∥
∥
∥
∥

∑

k∈Z

[
( – h)β exp(

√
ikL)

〈
g(t), e–ikt〉]eikt

∥
∥
∥
∥

L(,π )

+
∥
∥
∥
∥

∑

k∈Z

 – ( – h)β

h
〈
g(t) – gε(t), e–ikt〉eikt

∥
∥
∥
∥

L(,π )
. ()

Moreover, we have
∥
∥
∥
∥

∑

k∈Z

[
( – h)β exp(

√
ikL)

〈
g(t), e–ikt〉]eikt

∥
∥
∥
∥

L(,π )

≤
∥
∥
∥
∥

∑

k∈Z

[
exp(

√
ikL)

〈
g(t), e–ikt〉]eikt

∥
∥
∥
∥

L(,π )

=
∥
∥u(, t)

∥
∥

L(,π ) ≤ M, ()

and using –(–h)β
h ≤ β , we have the estimate

∥
∥
∥
∥

∑

k∈Z

 – ( – h)β

h
〈
g(t) – gε(t), e–ikt〉eikt

∥
∥
∥
∥

L(,π )
≤ β

∥
∥
∥
∥

∑

k∈Z

〈
g(t) – gε(t), e–ikt〉eikt

∥
∥
∥
∥

L(,π )

≤ β
∥
∥gε – g

∥
∥

L(,π ) ≤ βε. ()

Combining (), (), and (), we obtain

∥
∥wε

β (, ·)∥∥L(,π ) ≤ M + βε.

Lemma  leads to

∥
∥wε

β (, ·)∥∥L(,π ) ≤ M +
M

m – 
=

Mm
m – 

. �

Now, we return to the proof of the theorem.
Combining Lemma , Lemma , and Lemma , we obtain

∥
∥uε(x, ·) – u(x, ·)∥∥L(,π ) =

∥
∥wε

β (x, ·)∥∥L(,π )

≤ ∥
∥wε

β (, t)
∥
∥– x

L
L(,π )

∥
∥wε

β (L, t)
∥
∥

x
L
L(,π )

≤
(

Mm
m – 

)– x
L (

(m + )ε
) x

L

= EM– x
L ε

x
L ,

where

E = (m + )
x
L

(
m

m – 

)– x
L

.
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