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Abstract

We consider a non-standard inverse heat conduction problem in a bounded domain
which appears in some applied subjects. We want to know the surface temperature
in a body from a measured temperature history at a fixed location inside the body.
This is an exponentially ill-posed problem in the sense that the solution (if it exists)
does not depend continuously on the data. In this paper, we introduce the two new
classes of quasi-type methods and iteration methods to solve the problem and prove
that our methods are stable under both a priori and a posteriori parameter choice
rules. An appropriate selection of a parameter in the scheme will get a satisfactory
approximate solution. Furthermore, if we use the discrepancy principle we can avoid
the selection of the a priori bound.
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1 Introduction
In this paper, we want to determine the surface temperature u(x,¢) for 0 < x < L from
well-known temperature measurements u(L, t) = g(t) when u(x, £) satisfies the following

system:

Ur = Uy, O0<x<L,0<t<2m,
u(L,t)=g(), 0<t<2m, @
u(x,0)=0, 0<t<2m.

In order to guarantee the uniqueness of the solution, here we assume that z be bounded as
x — +00. The functions g, 4 given in L2(0, 27) are to be noised. Physically, we only obtain
the measured Cauchy data with measurement errors. This is a severely ill-posed problem:
any small perturbation in the observation data can cause large errors in the solution u(x, £)
for x € [0, L). Therefore, most classical numerical methods often fail to give an acceptable
approximation of the solution. Thus it requires regularization techniques to stabilize the
numerical computations [1].

The problem has along history and has attracted to many authors. In several engineering
contexts, it is sometimes necessary to determine the surface temperature and heat flux in
a body from a measured temperature history at a fixed location inside the body [2, 3]. The
physical situation at the surface may be unsuitable for attaching a sensor, or the accuracy
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of a surface measurement may be seriously impaired by the presence of the sensor. The
special case of estimating a surface condition from interior measurements has come to be
known as the inverse heat conduction problem (IHCP).

In recent years, IHCP have been researched by many authors and some valuable method
are proposed, such as the difference regularization method [4], the Fourier method [5],
quasi-reversibility method [2, 6], wavelet and wavelet-Galerkin method [7], a spectral reg-
ularization method [7, 8], etc.

Most of the papers involving regularization methods for sideways heat are devoted to
giving a convergence analysis with the regularization parameter chosen by an a priori
choice rule, under which some a priori information on the unknown exact solution which
is to be simulated is often used. However, in general, the a priori bound M cannot be
known exactly in practice, and working with a wrong constant M may lead to the bad
regularized solution. In the present paper, we proposed two new regularization method:
amodified quasi-boundary value method and an iteration method for solving Problem (1).
This method has been used by Deng and Liu to deal with the sideways parabolic equation
[9], but here we give another way to choose the regularization parameter by an a posteriori
rule. Moreover, we shall give a criterion for making an a posteriori choice of the regular-
ization parameter. To the authors’ knowledge, there are very few papers for choosing the
regularization parameter by the a posteriori rule for this sideways heat.

This paper is constructed as follows: in Section 2, we propose two new regularization
method. Convergence estimates under priori and posteriori assumptions are given in Sec-

tion 3 and Section 4. Finally, we draw a conclusion to our method.

2 Formulation of the problem and a quasi-boundary value regularization
method
Suppose g€ is for measured data in L%(0,27) and satisfies

gt _g||L2(O,27r) =6 (2)

where € > 0 represents a noisy level. For f € L(0,27), we have the Fourier series

f@ =) fie®, (3)

keZ
where the Fourier coefficient is

1

2
Je= 5 ; ft)e ™ dt. (4)

The norm of f in L2 is

12000 =27 Y el 5)

keZ

The principal value of +/ik is

WALl
S (1+l)\/7, k>0, )

(1-i),/4, k<o.
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Suppose that the solution of the problem is represented as a Fourier series

ulx £) = Y w(x)e™, 7)
keZ
with
2
up(x) = % /0 u(x, t)e "~ dg. (8)

Let F(x,t) = > 1z Fx(®)e*t with

1 [ ,
Fi(x) = — / F(x,t)e”™ dt. 9)
21 0
Then by taking the partial derivative with respect to ¢ and x, we obtain

u(x,t) = Z uy(x)ike™,
keZ
(10)

d2 ikt
uxx(xr t) = Z _uk(x)el .

The main equation u; = u,, leads to

2
Z g (x)ike™ = Z %uk(x)eik’.
X

keZ keZ

Combining the Cauchy data g, 4, we have the following systems of second ordinary equa-

tions:
d2
@Mk(x) — ikuy(x) = 0, ur(L) = gk (11)
where
) 1 [ )
g =g(t),e™) = — / gt)e ™ dt.
2 0

The solution of (11) is
ur(x) = Cy exp(«/ﬁwc) + Dy exp(—«/%x). (12)

Since u(x, t) is bounded when x — +00, we conclude that Cj = 0. It follows from u (L) =
Dy exp(—ﬂL) = g that

Dy = grexp(v/ikL).
This leads to the formula of #:

ur(x) = exp(Vik(L - x)) g (13)
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The exact form of u is

u(x,t) = Z exp(«/ﬁ((L -x))(g(®), e e, 0<x<L. (14)

keZ

Lemmal ForyeR, we have
- |k
|emy| =eV 27, (15)

Proof We can rewrite the term |eViky| by

’emy‘ = !e(l”) %Hy‘ = }e léy’\/cos2<|k¥) + sin2<|k¥) = e\/@y. (16)

3 Quasi-boundary value method for a sideways heat equation
Define the Sobolev space H*(0,2) as

Ju0,5)

12-1S(0,2n) = Z(l + k2)s|<“(0't)’e_ikt)|2'
keZ

In this section, we present a QBV regularization problem as follows:

uf(e)zuff), O0<x<L,0<t<2m,
uPO(L,t) =B.g(t), 0=<t<2m, 17)
wE(x,0)=0, 0<t<2m,

with the additive information that u€(x, f) bounded when x — +00. And B, is defined as

exp(—/ &lL) L
ngg(t) _ Z 2 (ge(t),e—zkt)ezkt‘ (18)
kez B(€) + exp(— ‘—IZ(‘L)

3.1 A priori parameter choice rule
Theorem 1 Let u be an exact solution to Problem (1). Let g, be as in (2).
@) If 1u(0, )l 2(0,20) < M then by B(e) = +;, we have

1-% X
<2M"ILel,

“ PO (%, ) - ulx, ) HLZ(o,zn) -

(2) I 11u(0, )| s 0,2r) < M then by B(e) = ;4—k1 0 <k <1, we have

X

1\l &
) ekTel‘k+M1A(s)<

” PO %, ) - ulx, ) HLZ(O,zn) (ﬁl

L 2s
In(My/e) )

where

A(s) = 2°(2s)%e ™ (1 + L‘ZS).
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Proof
Proof of Part 1. The solution of this regularized problem is

exp(—y/ 411) exp(/K(L - )

kezZ B(€) + exp(— %L)

€ (t), e—ikt>eikt' (19)

PO (x, 1) = (g

Let 2 obey

iy f e VRL-2),

Vﬁ(e)(x, £) = , e—ikt) ekt
keZ B(e) + exp(— 'ZﬁL)
Step 1. Estimate [|uf©) —vP©|| 50, ).
We have
exp(—/ 511) 2

exp («/%(L - x))

[ =V 2y = 27

kez' B(€) + exp(— '2ﬁL)

x [{g°(t) - gt), ™)

-2 Y, PR e - g0, )

kez [B(€) + exp(— ”2(—‘L)]2

2x 2x
< B T2 (1) = g()] 12900y < BT 2% (20)
This implies that

|~V gy < BlEVE e = M T (21)

Step 2. Estimate [|v*€) — u|| 29 ). Using ((0, £), e *) = exp(v/ikL)(g(t), e **), we have

Blerexp(y/4i1)

1+ Bexp( '2ﬁL)

2

exp(2Vik(L - %)) |(g(®), e ™)

[l a0 = 27 3
keZ

2 ;
—ox B2l exp(-2+/ikx)| (0, t)’e—ikt>|2

kez [B(€) + exp(—,/ BLL)]2

exp(— %x)

Ble) +exp(—/ 1)

2
= Be)2m ZI: :| |(u(0, t),e’”“)‘2
keZ

20 2 2
< BE*BET*[u(0,8)] 129 5y = Ble) T M. (22)
From fB(€) = 5, we obtain
< G%MZ’%.

”Vﬁ(e) —u ”iz(o,zn)
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This implies that

v - u||L2(0,27r) <M"iel. (23)

Combining (22) and (23), we obtain

1-% X
”"‘me) - u”LZ(O,Zﬂ) = ””ﬁ(E) -/ ||L2(0,27r) + ”Vﬂ(e) - u||L2(O,27r) <2M"lLel.
Proof of Part 2.
Lemma?2 Lets>0,X >0. Then for 0 < 8 <1, we have
L s
ﬂ < Ssel—s (1 + L_s) (1(1—/)> .
(L4 B)5(8 + exp(~,/ 81y n(l/p
Proof
Case 1. Izﬁ € [0, %] It is clear to see that
k
P < P < ﬁexp( |2—|L> <ep.
L+ /By (B +exp(—/BlL) 1+ /%)yexp(-/%L)
From the inequality 8 < (i)s(my, we get
B <seS(1+L7) L S. (24)
- In(1/€)

(1+ /(B + exp(-,/ 1))

_ [,
Case 2. @ >71.SetY = %. Then we obtain

row T Fp o)
1+ By (g +exp(-/Bry B HAYAL=I(EY)

1 L s

B m(L—ln(,BY))

1 L \°/ -InB) \’

T 1+ Y(ln(l/ﬂ)) (L—ln(ﬁY))

~ L \' 1 -In(B) \°

B <ln(1/,3)) 1+ Y(L—ln(,sy)) ' (25)

We continue to estimate the term — ( Lill;l((g ;) )e.

1+Y
If0<Y <1then0<-In(B) < —In(BY), thus

1 -In(B) \°
1+ Y(L—ln(ﬂY)) <1 (26)
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elseif Y >1thenInY >0 and In(8Y) = —L ‘7'(' < —1 due to the assumption ,/ |2ﬁ € (%, 00).
Therefore InY(1 + In(8Y)) < 0. This implies that

—Ing —Ing

< L-n(gY) < “In(BY) <l+InY.

Hence, in this case, we get

1 -In(B) \° @ +InY)
1+Y(L—1n(/8Y)>< Y

=1+InY)yy™"
Setg(Y)=(1+1InY)*Y!for Y > e7L. Taking the derivative of this function, we get

) =1+IY)y 'y 2(s-1-InY).

The function g has a maximum at the point Y such that g’(Yp) = 0. This implies that
Yy = €71, And therefore

sup(1 +InY) Y™ < g(Yy) = s°e'*. (27)
Y>1

Since (26) and (27) hold, we have

1 ( —1In(B) >s<ssel_s
1+Y\L-In(BY)/) — )

From (25), we get

ﬁ < 1s< T )S s 1-s —$ ( T )S
<se —— | <se (1+T ) . (28)
(1+ /58 + exp(—/ 1) tn(1/6) In(1/6)
We have
[ = ]2 02m

L) 2
Z M} |<u(0,t),eiikt>|2

=27 [
kez- B +exp(— @L)

B? k\* e
EZJTZ |2ﬁL))2 <1+\/;> |((0,2),e k)|2

kez (1 + \/IIZ(')‘LS(ﬂ +exp(—

s 2-4s ~25\2 L 4S K\ * ik 12
< (25)*e (1 +L ) <1n(1/,3)> 27 Z(l + 7) ‘(u(O, t),e )‘
keZ

4s
< 45(2s)%e> (14 L7%) (m (f/ﬂ)> 21 Y (14 &) [{u(0, ), %)

keZ
4s
SA(S)z<1n<1L/ﬁ)> Juc0.0

2
H3(0,27)?

(29)
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where
A(s) = 2°(2s)% el (1 + L_ZS).

This leads to

L 2s
|vA© - ,,,||L2(0Y2n) < A(s)( ) (0, 2)]

In(1/8) H(0,27)
L 2s
<MA@S)| —— | . 30
<M, ()(ln(w)) (30)
Combining (20) and (30), we obtain
””ﬁ(e) - ””LZ(o,zn) = ””ﬁ(E) - ||L2(0,27r) + ”Vﬁ(e) - u||L2(0,271)

L 2s

< Be)I e+ MAG) | —— ) .
<BE)I e+ M (S)<ln(1/,3)> O

3.2 A posteriori parameter choice rule
Theorem 2 Suppose that 0 < € < g€ || 12(0,27)- Choose m > 1 such that

0 <me < ||g6 ||L2(o,2n)‘

Then there exists a unique number B(€) such that
” uﬁ(e)(L, t)—g¢ HLZ(O,er) = me. (31)

Furthermore, if |u(0, )| 12(020) < M then by B(e€) = 5;, we have the following estimate:

2 i x
|#©(x, ) - (i, -) ||L2(0,2n) < [m—r_"lM} [(m +1)e]*.

Proof The following results are straightforward.

Lemma 3 Set p(B) = [|uP©(L,t) - g° l22(0,27)- If O < € < |Ig€ll12(0,27) then p is a continuous
strictly increasing function and satisfies

(@) limg—o p(B) =0,

(b) limg_, .00 0(B) = Ig° 1 12(0,.27)-

From this lemma, it follows that there exists a unique number §(¢) satisfying (31).
Set 28 (x, £) = u(x, t) — uP©(x, t). Then z#© satisfies the heat equation

229 = 70, (32)
From the formula of  and ##©), we get

2P, 1) =’ (1) - ulw, 1) = Y exp(Vik(L - x))Re (B, 8,8 )€™,
keZ
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where

exp(—/ Xlr) '
Ry (ﬁ,g,gé) 2 (g ®), —zkt) < (t), e”kt).
Ble) +exp(—/ B11)

Then using the Holder inequality, we get

=

|60 00 = oo (VIRL(1- 7 ) ) R} F R 0)

keZ

X

< [ (on(vamin(1- ) mtpeer ) ]

[Zmosami]

keZ
1-4 7
- [Cewtain) v (e ee) | [ Xlr(ee) ]
keZ keZ

2_7
”Zﬁ (0, t)HLZ(OZJ-r ”Zﬁ(E (L, t)HLZ 021)°

This implies that

1-

P, 1) ”L2(0,27r) = ”Z 0,2) HLZ 0,27) ”Zﬂ(e (Z,0) HLZ 0,27)" (33)

|=
Proof of Part (a). It is easy to see that

|22, )| = [P UL, t) - u(L,t ||L2 (0,27)

12(0,27)

< [u"9L,0) - ¢ ||L2(0,271) +g-¢ HL2(0,271> = (m+1D)e (34)
and
”Zﬂ(e)(o» ) HLz(o,zn) < [u(0.2) HLZ(O 277) ””ﬁ(e (0,2) HLZ 027)° (35)
We have

me = [u (L, 1) - g (2) ||L2(0,27r)

B(e)exp(-,/ 5L1)

kez. 1+ B(€) exp(— @L)

— e—ikt ) eikt

)

L2(0,27)

ALy
< O D (g°(2) - g(8), €)™
kez 1+ B(€) exp(— @L) 12(0,27)
+ Ble) (g(2), e k1)l
kez B(€) + exp(— ‘—lz(‘L) 1%(0,27)
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k o
+ Z B(e)exp (\/|sz> (g(t), e—zkt)g;kt

< Z<ge(t) _g(t),e—ikt>el’kt

keZ 120027) ey 12(0,2m)
= ”gE _g||L2(0,271) + IB(E)””(O’ ) “L2(0,27r)
<€+ ple) ””(O’t) ||L2(o,2n)'
This implies that
€ 1
% = m—1 ””(O’ ) ||L2(0,2n)' (36)
It follows from (19) that
exp(—,/ 51L) o
[#€90,6)] 1200m = |2 exp(VikL)(g (£), e )
kez B(€) + exp(— ‘—IZ('L) 12(0,27)
exp(— o
<D \/7 exp(VikL)(g® (t) - g(2), e )™
kez B(e) + exp( \/7L) 12(0,27)
exp(—/ 5'L)
+ exp \/—L <g —lkt) ikt
kez B(e) + exp(— %L) 12(0,27)
1 L
< - ge (t) —g(t),e“kt elkt
,(EZZ ﬁ(e)( ) 12(0,27)
+ Z exp(v/ikL)(g(t), e *)e™
kel L2(0,27)
= ,B(e) gt g||L2 027t |u0,2 ||L2 027)
m + H”(O t) ||L2 0.27)" (37)
Combining (36) and (37), we obtain
Be) 0, 1 _m
”” (0,2) HL2 02m) = o1 1 H”(O’ t) ||L2(o,2n) T o1 ||u(0’t)||L2(O,2rr)' (38)
From (35) and (38), we obtain
2m—1
”Z 9 (0,2) HL2 0,277 <1 + 1) H”(O’ ) ||L2(0,27r) = —_1 ””(O’ £) ||L2(0,271)' (39)
This together with (33) and (34) leads to
€ 1_* € I
EAC] P (U1 AN ELlC20] e

x

2m—-1 -1 x
s[,jf 0.0l s Lm0
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Hence

em-1)M

1-%
p—1 :| (m+1)%e%. 0

)= 0] g <
4 Aniteration regularization method
4.1 A priori parameter choice
To the authors’ knowledge, there are few papers for choosing the regularization parameter
by a posteriori rule for the sideways heat equation. In this section, a new regularization
method of iteration type for solving this problem will be given. We will use this method
solving Problem (1), an a priori and a posteriori rule for choosing regularization param-
eters and the Holder-type error estimates are given. To solve the problem, we introduce

the following iteration scheme:

(s (x, 1), e"kt) A - h)u_ (%, 1), e ‘kt)+hexp(x/§(L—x))(ge(t),e’ikt) (40)

. 1L}
with initial guess (ug(x, t), e™yand 0 < h = e’L\/7 < 1, which plays an important role in
the convergence proof. From the formula, it is easy to see that

,_.

(s (1), ™) = (1= B)"(uy(x, 2), €7X) + (l ) hexp(Vik(L - %))(g* (t), e ™)

i

= (1= h)"(ug(x, 0), €™ ) + [1— (1 = h)"] exp(Vik(L - x))(g" (£), ). (41)

N
(=]

Therefore, the approximate solution of Problem (1) has the following form:

us(x,t) = Z(u;(x, t),e_"kt)eikt. (42)

keZ

We have the main theorem as follows.

Theorem 3 Let u(x,t) be the exact solution of Problem (1), and u;, be its regularization
approximation defined by (42) with (u§(x,t),e ) = 0. Assume that |u(0, Dl 2020) <M
for M > 0 and take n = [1\6—4], where (k] denotes the largest integer not exceeding k, then we
have the estimate

<2oM'Lef,

) = 65

Lemma 4 For 0 < h <1 and n > 1, the following inequalities hold:

1
Q-h"h<—7,
n+1
1-1-h)"
(h h) “n

Lemma5 For0<h<1,0 <« <1, and n > 1, the following inequalities hold:

nipo 1
(A= hy'h" = (m+1)’
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1-0-h)"
ha

<n”.

zkt

From (ug(x,t),e™*) = 0, we see that

u(x,6) = > _[1- (1= h)"]exp(Vik(L - x))(g" (£), e™*)e™.

keZ

Let v(x, t) be given by

ve(x,t) =Y [1- (1= h)"]exp(Vik(L - x))(g(t), e™*)e™.

keZ

We divide the argument into two steps.
Step 1. Estimate | u,(x, ) — v§, (%, )l 12(0,2)- We have
e, () = v, (%, )
_ike\|2
—2712 ’exp(Z«/—L x))||(g° - g(8),e™)]

keZ

<2msup[l-(1-h) ]|exp(2«/_k(L x)) |Z| g(t)’e—z’kt)|2

keZ kel
<2z iulz)[l -(1- h)”]2 exp(\/2|k|(L —x)) ||gE —g||i2(0’2n).
€

It follows from exp(+/2|k|(L — x)) = K12 and g€ — gll2(0,27) < € that

< 2w sup [1—(1—h) ]thfx_z 2

0<h<l

)= 45 e

Because of Lemma 5, we have

2-2% 9
[EACRESHCE |L202n)<" Le
Therefore
€ 1-%
||u,,(x, ) - Vn(xr ) 12(0,27) =n le.

Step 2. Estimate ||V, (x, ) — u(x, )| 12(0,27)- We have

V566 ) = 2406, | 120y = 27 D (1 = B exp(V2IKI(L — ) |{g(6), )|

keZ

2 2x
< |u(0,2) HLZ(O,er) sup (1 —h)*"h1
0<h<1
<M (n+ 1)_2Tx
This implies that

Ve, ) =@, )] 2 g 5y < Ml + 1)1

Page 12 of 17

(43)

(44)
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Combining (43) and (44), we obtain
[EACORIZCD) ||L2(0,271) < [ ) - v, ')||L2(o,2n) + @) - u, ')HLZ(O,Zn)

<n"Le+Mm+1)L.

Dueton = [AE—’I], we have n < 2—4 and n+1> %, and therefore

M\T  (M\'I .
||uf,(x,~)—u(x,-)||L2(o,2n)EM(?> +e<?) —oM"Eet.

4.2 The discrepancy principle
In this section, we discuss the a posteriori stopping rule for iteration scheme (40) based

on ‘discrepancy principle’ of Morozov in the following form:
lg“ @) = ug (L, D)) 12,5,y = 6, (45)

where m > 1is a constant and 8 denotes the regularization parameter.
If we take (uf(x, t), e~y = 0, then (45) can be simplified to the form

Z(ge (t), e—ikt)eikt _ Z[l _ (1 _ h)ﬁ](ge (t), e—ikt>eikt

“ge () — ug(L,£) ||L2(0,27T) =

keZ keZ 12(0,27)
= > -nPlg(e),e et = me. (46)
kel L2(0,27)

We have the main theorem as follows.

Theorem 4 Let u(x,t) be the exact solution of Problem (1), and u, be its regularization ap-
proximation defined by (42) with (u§(x,t),e*) = 0. If the a priori bound ||u(0, t) l22(0,7) <

M is valid and the iteration (40) is stopped by the discrepancy principle (45), then
” u;(x, ) - u(x, ) ||L2(0,27r) =< EMI_%E%:

where

(b3

E=(m+1)

m \'1
()
The following results are obvious.

Lemma 6 Set P(ﬁ) = ”ge (t) - M;(L, t)||L2(0’2n) = ”(1 — ]’l)'Bge (t)||L2(0,27r)'

Lemma 7 Setting

Wi, 1) = > [exp(Vik(L - x))(g(®), e ™) - [1- 1 - h)"]

keZ

X exp («/%(L - x))(g° (®), ™))",

Page 13 of 17
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the following inequality holds:

1-% X
[5G D] 2002m) = 19500 2020 [W5 L O 2 0.2y

Proof We have

wi(0,8) = Y " [exp(VikL)(g(t), e ™) - [1 - (1 - h)"] exp(v/ikL)(g" (¢), e ') ]e**

keZ
and
w(L,0) = Y [lg(®), e ™) = [1- - 1)"]lg" (1), ™) e
keZ
We have

kel

w566 D) 1205 = O XD (v 2IKI(L — ) [{g(8), ™) - [1 = (1 = B)"](g" (), )],

For brevity in this case, we set Qi (/, 1) = (g(t), e ™) — [1 — (1 - h)"](g*(£), e**). Then using
the Holder inequality, we get

2 2
||w§(x,t)||22(0,2n) = Zexp( 2|k|L(1— %))|Qk(l’l;ﬂ)|2 T Qi m)| T
keZ

2x 1_% 1_%
< [Z(exp( 2|/<|L(1 - %)) |Qk(h, n)|2T) t :|
kel

I

keZ

-f ;
= [Zexp( 2|k|L) * ‘Qk(h, n)‘zjl [Z|Qk(h, n)‘2i|
kel

keZ
||”8(O t)” 2 || g(L’t)” 2
’ L (0,27‘[) w L (0,27{)'

This completes the proof of the lemma.
Lemma 8 The following inequality holds:

,3€§£
m-1

Proof 1t follows from (46) that

me =

Z(l _ h)ﬂ<ge(t), e—ikt>el’kt

keZ

=

Z(l _ h)ﬂ<ge(t) _g(t),e—ikt>eikt

L2(0,27) keZ,

L2(0,27)
+

Z(l _ h)ﬁ<g(t), e—ikt)eikt

keZ

L2(0,27)
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< sup (1- b/
0<h<l

Z<ge(t) _g(t),e—ikt>eikt

keZ

12(0,27)

+ sup (1-h)° ||(g(t), e_ikt>eikt ||L2(0,2n)'
0<h<1
Moreover, it is easy to see that

1-h <

| =

and

”(g(t)’e_ikt>eikt”L2(o,2n) = ||exp(—«/§L)(u(O, t)’e_ikt>eikt“L2(0,2n) = ””(0’ t) HL2(0,27r) =M.
This leads to
M
Be<e+—.
m
This completes the proof of the lemma. O
Lemma 9 The following inequality holds:
[wh(L, ')”LZ(O,Zn) < (m+De.
Proof Due to the triangle inequality, we have
WL M 2000y = | D[l €)= [1= (1= B)"]{g" (1), €)™
keZ 12(0,27)
< Z(g(t) _ge (t),e_ikt)eikt
kel L2(0,27)
+ Z(l _ h)ﬂ<ge(t),e—ikt>eikt
keZ, L2(0,27)
= &~ 2l oo + | 201 W (e @)™
keZ L2(0,27)
<e€+me=(m+1)e. O
Lemma 10 The following inequality holds:
mM
[w5 (0, ’)“L2(0,2n) =1
Proof Due to the triangle inequality and / = e_L\/@, we have
” wi(0,) HL2(0,271)
= | > [exp(VikL)(g(t), ™) - [1 - (1 - h)* ] exp(VikL)(g" (£), e™*|]e™*
keZ 12(0,27)
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<D _[exp(VikL)g(®), e ™) - [1 - (1 - h)"] exp(v/ikL)(g(£), e )]
ke 12(0,277)
+ Z[[l - (1-h)F] exp(\/%L)(g(t) - g (@), e ™))
keZ 12(0,27)
< | D[ - exp(VikL)(g(z), e )]
ke 12(0,27)
1-(1-h)? .y
+ Z %(g(t) _ ge (t), e—zkt>ezkt (47)
keZ 12(0,27)
Moreover, we have
> [ -h) exp(VikL)g(t), e )]
keZ 12(0,27)
< Z[exp(ﬂL)(g(t),e‘ikt)]eikt
ke, L2(0,27)
= ||I/l(0, t) ||L2(O,27T) SM) (48)
and using % < B, we have the estimate
1-(1-h)? o o
Z %<g(t) _gG (t),e—lkt>elkt < ,B Z(g(t) _ge (t),e_lkt)elkt
keZ 12(0,27) keZ L2(0,27)
< Bllg - gl 2020 = Be- (49)
Combining (47), (48), and (49), we obtain
”W;(O’ ')HL2(0,271) <M+ e.
Lemma 8 leads to
B M Mm
”Wﬂ(o’ ')HLZ(O,zn) =M+ = 0

m-1 m-1

Now, we return to the proof of the theorem.

Combining Lemma 7, Lemma 8, and Lemma 9, we obtain

””e(x") _u(x")“L2(0,27r) = ”W/%(x")”LZ(o,zn)

1-% x
= w50 Dl 20 2 [W5 L D 200y

>
< <M_ml) ((m +1)e)

mw —

%

where

x m 1_%
E:(m+1)z<_) .
m-—1
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