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Abstract
In this paper, we propose a new set of unbounded conditions to make the interior
path following method able to solve fixed point problems with both inequality and
equality constraints in a class of unbounded nonconvex set. Under suitable
assumptions, we give a constructive proof of the existence of interior path leading to
the solution point of this class of fixed point problems.
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1 Introduction
It is well known that fixed point theorems have been widely applied to many areas such as
mechanics, physics, transportation, control, economics, and optimization. Many impor-
tant research results can be found in the literature in the past years (see [–], etc. and the
references therein). In , Kellogg et al. (see []) gave a constructive proof of the Brouwer
fixed point theorem and hence presented a homotopy method for computing the fixed
points of a twice continuously differentiable self-mapping �(x). From then on, this method
has become a powerful tool in dealing with fixed point problems (see [–], etc. and the
references therein). In general, these results in the literature require certain convexity as-
sumptions, and it is difficult to reduce or remove these assumptions. However, the general
Brouwer fixed point theorem does not require the convexity of the subsets in Rn, certainly
it is also very interesting and important to give a constructive proof of it and hence solve
fixed point problems numerically in general nonconvex subsets. In , Yu and Lin []
proposed a homotopy interior path following method to complete this work on a class of
nonconvex subset satisfying the normal cone condition, which is a generalization of the
convexity. In [], by introducing C mappings α(x) = (α(x), . . . ,αm(x)) ∈ Rn×m and β(x) =
(β(x), . . . ,βl(x)) ∈ Rn×l , we further extended the results in [] to more general nonconvex
sets with both inequality and equality constraint functions. More recent related work can
be seen in [–]. Set X = {x ∈ Rn : gi(x) ≤ , i = , . . . , m, hj(x) = , j = , . . . , l}, X = {x ∈
Rn : gi(x) < , i = , . . . , m, hj(x) = , j = , . . . , l}, Rm

+ = {x ∈ Rm : x ≥ }, Rm
++ = {x ∈ Rm : x > },

and B(x) = {i ∈ {, . . . , m} : gi(x) = }. Now we state the main result in [] as follows:

Theorem . Suppose that all gi(x), i = , . . . , m, and hj(x), j = , . . . , l, are C functions
and:
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(A) X is nonempty and X is bounded;
(A) for any x ∈ X , if

∑

i∈B(x)

(
yi∇gi(x) + uiαi(x)

)
+

l∑

j=

zjβj(x) = , yi ≥ , ui ≥ , zj ∈ R,

then yi = , ui = , ∀i ∈ B(x), and zj = , j = , . . . , l;
(A) (the weak normal cone condition of X) for any x ∈ X , we have

{
x +

∑

i∈B(x)

uiαi(x) + β(x)z : ui ≥ , i ∈ B(x), and z ∈ Rl
}

∩ X = {x};

(A) for any x ∈ X , ∇h(x) is of full column rank and ∇h(x)Tβ(x) is nonsingular.

Then for any C mapping �(x): Rn → Rn satisfying �(X) ⊂ X and for almost all
(x(), y(), z()) ∈ X × Rm

++ × Rl , there exists a C curve (w(s),μ(s)) of dimension  of the
homotopy

H
(
P, P(),μ

)
=

⎛

⎜⎝
( – μ)(x – F(x) + μ∇g(x)y + α(x)y) + β(x)z + μ(x – x())

h(x)
Yg(x) – μY ()g(x())

⎞

⎟⎠ =  ()

such that the limit set T ⊂ X × Rm
+ × Rl × {} is nonempty, and the x-component

of any point in T is a fixed point of F(x) in X, where P = (x, y, z) ∈ Rn+m+l , P() =
(x(), y(), z()) ∈ Rn × Rm

++ × Rl , α(x) = (α(x), . . . ,αm(x)) ∈ Rn×m, y = (y
 , . . . , y

m)T ∈ Rm,
g(x) = (g(x), . . . , gm(x))T , h(x) = (h(x), . . . , hm(x))T , ∇g(x) = (∇g(x), . . . ,∇gm(x)) ∈ Rn×m,
Y = diag(y) ∈ Rm×m, Y () = diag(y()) ∈ Rm×m, and μ ∈ (, ].

In [], the global convergence of the algorithm is obtained under the assumption that
the subset is bounded. To remove the boundednesss assumption, we present a set of un-
bounded conditions, under which, we are able to solve fixed point problems in a class of
unbounded nonconvex set. Section  is the main part, which exhibits a convergence proof
by the interior path following method.

2 Convergence analysis
To enlarge the scope of choice of initial points, similar to the way in [], in this section,
we still apply proper perturbations to the constrained functions gi(x), i = , . . . , m, and in-
troduce the parameter

γi =

{
, gi(x()) ≥ ,
, gi(x()) < ,

i = , . . . , m,

then let

X(μ) =
{

x : gi(x) – μγi
(
gi

(
x()) + 

) ≤ , i = , . . . , m, h(x) = 
}

,

X(μ) =
{

x : gi(x) – μγi
(
gi

(
x()) + 

)
< , i = , . . . , m, h(x) = 

}
,

∂X(μ) = X(μ)\X(μ), I(x,μ) =
{

i : gi(x) – μγi
(
gi

(
x()) + 

)
= , i = , . . . , m

}
.
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Now we construct the homotopy equation as follows:

H
(
P, P(),μ

)
=

⎛

⎜⎝
( – μ)(x – �(x) + μ∇g(x)y + α(x)y) + β(x)z + μ(x – x())

h(x)
Y (g(x) – μϒ(g(x()) + e)) – μY ()(g(x()) – ϒ(g(x()) + e))

⎞

⎟⎠ = , ()

where e = (, . . . , )T ∈ Rm and ϒ = diag(γ, . . . ,γm).
This section is devoted to solving fixed point problems in unbounded sets. To this end,

we introduce the concept of infinite solutions in []. The fixed point problem is said to
have a solution at infinity, if the sequences {x(k)} satisfy the following conditions:

(i) {x(k)} ⊂ X(μ);
(ii) when k → ∞, ‖x(k)‖ → ∞;

(iii) for any given x ∈ X(μ), there exist y(k) ∈ Rm
+ and z(k) ∈ Rl such that

lim
k→∞

(
x – x(k))T((

x(k) – F
(
x(k)) + α

(
x(k))(y(k))) + β

(
x(k))z(k)) ≥ .

Then we replace the original assumption (A) by the following unboundedness assump-
tion:

(A′
) X(μ) is nonempty; fixed point problems have no infinite solutions and for any given

η ∈ X(μ),

(x – η)T∇g(x) ≥ (
g(x) – μϒ

(
g
(
x()) + e

))T –
(
g(η) – μϒ

(
g
(
x()) + e

))T

and

(x – η)Tβ(x) ≥ h(x)T – h(η)T .

The corresponding assumptions to assumptions (A)-(A) are needed.
(A′

) For any x ∈ X(μ), if

∑

i∈I(x,μ)

(
yi∇gi(x) + uiαi(x)

)
+

l∑

j=

zjβj(x) = , yi ≥ , ui ≥ , zj ∈ R,

then yi = , ui = , ∀i ∈ I(x,μ), and zj = , j = , . . . , l;
(A′

) (the weak normal cone condition of X()) for any x ∈ X(), we have

{
x +

∑

i∈I(x,)

uiαi(x) + β(x)z : ui ≥ , i ∈ B(x), and z ∈ Rl
}

∩ X() = {x};

(A′
) for any x ∈ X(μ), ∇h(x) is of full column rank and ∇h(x)Tβ(x) is nonsingular.

For a given P(), rewrite H(P, P(),μ) as HP() (P,μ). The zero-point set of HP is

H–
P() () =

{
(P,μ) ∈ X(μ) × Rm

+ × Rl × (, ] : HP() (P,μ) = 
}

.

The inverse image theorem tells us that, if  is a regular value of the map HP() , then
H–

P() () consists of some smooth curves. The regularity of HP() can be obtained by the
following lemma.
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Lemma . (Parameterized Sard theorem) Let V ⊂ Rn, U ⊂ Rm be open sets, and � : V ×
U → Rk a Cr map, where r > max{, m – k}. If  ∈ Rk is a regular value of �, then for almost
all a ∈ V ,  is a regular value of �a ≡ �(a, ·).

Lemma . Let H be defined as in (), let gi(x), i = , . . . , m, and hj(x), j = , . . . , l, be C

functions, let assumptions (A′
)-(A′

) hold, and let αi(x), i = , . . . , m, and βj(x), j = , . . . , l,
be C functions. Then, for almost all P(), the projection of the smooth curve 	P() onto the
x-plane is bounded.

Proof If not, then there exists a sequence of points {(x(k), y(k), z(k),μk)}∞k= such that
‖x(k)‖ → ∞ as k → ∞.

It is easy to show that the following inequality holds:

‖x – η‖ – ‖x – η‖ ≤ (x – η)T(
x – x). ()

Then we have

( – μk)
(
x(k) – F

(
x(k)) + μk∇g

(
x(k))y(k) + α

(
x(k))(y(k)))

+ β
(
x(k))z(k) + μk

(
x(k) – x()) = , ()

h
(
x(k)) = , ()

Y
(
g(x) – μϒ

(
g
(
x()) + e

))
– μY ()(g

(
x()) – ϒ

(
g
(
x()) + e

))
. ()

Multiplying () by (x(k) – η)T , we get

( – μk)
(
x(k) – η

)T(
x(k) – F

(
x(k)) + μk∇g

(
x(k))y(k) + α

(
x(k))(y(k)))

+
(
x(k) – η

)T
β
(
x(k))z(k) + μk

(
x(k) – η

)T(
x(k) – x()) = , ()

i.e.,

μk
(
x(k) – η

)T(
x(k) – x)

= –
(
x(k) – η

)T
β
(
x(k))z(k)

– ( – μk)
(
x(k) – η

)T(
x(k) – F

(
x(k)) + μk∇g

(
x(k))y(k) + α

(
x(k))(y(k))). ()

So

μk
(∥∥x(k) – η

∥∥ –
∥∥x – η

∥∥)

≤ μk
(
x(k) – η

)T(
x(k) – x)

= –( – μk)
(
x(k) – η

)T(
x(k) – F

(
x(k)) + α

(
x(k))(y(k)))

– ( – μk)μk
(
x(k) – η

)T∇g
(
x(k))y(k) – 

(
x(k) – η

)T
β
(
x(k))z(k)

= –( – μk)
(
x(k) – η

)T(
x(k) – F

(
x(k)) + α

(
x(k))(y(k)) + β

(
x(k))z(k))

– ( – μk)μk
(
x(k) – η

)T∇g
(
x(k))y(k) – μk

(
x(k) – η

)T
β
(
x(k))z(k)
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≤ –( – μk)
(
x(k) – η

)T(
x(k) – F

(
x(k)) + α

(
x(k))(y(k)) + β

(
x(k))z(k))

+ ( – μk)μk
(
g(η) – μϒ

(
g
(
x()) + e

))T y(k) + μk
(
h(η)T y(k) – h(x)T)

z(k)

– ( – μk)μk
(
g(x) – μϒ

(
g
(
x()) + e

))T y(k)

≤ –( – μk)
(
x(k) – η

)T(
x(k) – F

(
x(k)) + α

(
x(k))(y(k)) + β

(
x(k))z(k))

– ( – μk)μ
k
(
g
(
x()) – ϒ

(
g
(
x()) + e

))T y(). ()

By (), we have

(
η – x(k))T(

x(k) – F
(
x(k)) + α

(
x(k))(y(k)) + β

(
x(k))z(k))

≥ μk

( – μk)
(∥∥x(k) – η

∥∥ –
∥∥x – η

∥∥) + μ
k
(
g
(
x()) – ϒ

(
g
(
x()) + e

))T y(). ()

When ‖x(k)‖ → ∞, by (), we have

lim
k→∞

(
η – x(k))T(

x(k) – F
(
x(k)) + α

(
x(k))(y(k)) + β

(
x(k))z(k))

≥ lim
k→∞

μk

( – μk)
(∥∥x(k) – η

∥∥ –
∥∥x – η

∥∥) + μ
k
(
g
(
x()) – ϒ

(
g
(
x()) + e

))T y()

≥ , ()

which contradicts assumption (A′
). �

With the preparation of the previous lemmas, we can prove the following main theorem
on the existence and boundedness of a smooth path from a given point x() in Rn to a fixed
point. This proof implies the global convergence of the path following algorithm.

Theorem . Let H be defined as in (), let gi(x), i = , . . . , m, and hj(x), j = , . . . , l, be C

functions, let assumptions (A′
)-(A′

) hold, and let αi(x), i = , . . . , m, and βj(x), j = , . . . , l,
be C functions. Then for any C mapping F(x) : Rn → Rn satisfying F(X) ⊂ X:

() (existence of the fixed point) F(x) has a fixed point in X ;
() for almost all P() ∈ Rn × Rm

++ × Rl , there exists a C curve (P(s),μ(s)) of dimension 
such that

H
(
P(s), P(),μ(s)

)
= ,

(
P(),μ()

)
=

(
P(), 

)
.

And when μ(s) → , P(s) tends to a point P∗ = (x∗, y∗, z∗). In particular, the component x∗

of P∗ is a fixed point of F(x) in X.

Proof Denoting the Jacobi matrix of H(P, P(),μ) by DH(P, P(),μ), ∀(P,μ) ∈ Rn+m+l ×
(, ], we obtain

∂H(P, P(),μ)
∂(x, x(), y())

=

⎛

⎜⎝
A –μI 

∇h(x)T  
Y∇g(x)T –μYB – μY ()(∇g(x())T – B) –μ(G(x()) – ϒ(G(x()) + I))

⎞

⎟⎠ ,
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where

A = ( – μ)

(
I – ∇F(x) + μ

m∑

i=

∇gi(x)yi +
m∑

i=

∇αi(x)y
i

)
+

l∑

j=

∇βj(x)zj + μI,

B = ϒ∇g
(
x())T , G

(
x()) = diag

(
g
(
x())).

Since G(x()) – ϒ(G(x()) + I) <  and ∇h(x)T is a matrix of full row rank, by the param-
eterized Sard theorem and the inverse image theorem, H–

P() () consists of some smooth
curves. Since HP() (P(), ) = , then there exists a C curve (P(s),μ(s)) (denoted by 	P() )
of dimension  such that

H
(
P(s), P(),μ(s)

)
= ,

(
P(),μ()

)
=

(
P(), 

)
.

Since

∂HP() (P,μ)
∂P

=

⎛

⎜⎝
C D β(x)

∇h(x)T  
Y∇g(x)T G(x) – μϒ(G(x()) + I) 

⎞

⎟⎠ ,

where

C = ( – μ)
(
I – ∇�(x) + μ∇g(x)y + ∇α(x)y) + ∇β(x)z + μI,

D = ( – μ)μ∇g(x) + ( – μ)α(x)y.

Then it is easy to show that ∂HP() (P(), )/∂P is nonsingular. This fact implies that 	P() is
diffeomorphic to a unit interval.

Let (P∗,μ∗) be a limit point of 	P() , then the following cases may be possible:
(a) (P∗,μ∗) = (x∗, y∗, z∗,μ∗) ∈ X(μ∗) × Rm

+ × Rl × {},
(b) (w∗,μ∗) = (x∗, y∗, z∗,μ∗) ∈ X() × Rm

++ × Rl × {},
(c) (P∗,μ∗) = (x∗, y∗, z∗,μ∗) ∈ ∂(X(μ∗) × Rm

+ × Rl) × (, ].
Note that

H
(
P, P(), 

)
=

⎛

⎜⎝
β(x)z + x – x()

h(x)
Y (g(x) – ϒ(g(x()) + e)) – Y ()(g(x()) – ϒ(g(x()) + e))

⎞

⎟⎠ .

Then the equation H(P, P(), ) =  has a unique solution (P(), ) in X() × Rm
++ × Rl × {}.

This fact implies case (b) is not possible.
By the fact that X(μ) and (, ] being bounded, assumption (A′

), and the first and third
equations in (), we see that the component z of 	P() is bounded.

If case (c) holds, since X(μ) and (, ] are bounded, hence there exists a subsequence of
points (denoted also by {(P(k),μk)}) such that x(k) → x∗, y(k) → ∞, z(k) → z∗, and μk → μ∗

as k → ∞.
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If μ∗ = , from the first equation in (),

∑

i∈I(x∗ ,)

( – μk)
(
μk∇gi

(
x(k))y(k)

i + αi
(
x(k))(y(k)

i
)) + β

(
x(k))z(k) + x(k) – x()

= –( – μk)
( ∑

i /∈I(x∗ ,)

(
μk∇gi

(
x(k))y(k)

i + αi
(
x(k))(y(k)

i
)) + x() – F

(
x(k))

)
. ()

By the fact that y(k)
i are bounded for i /∈ I(x∗, ) and Lemma ., when k → ∞, we obtain

lim
k→∞

( ∑

i∈I(x∗ ,)

( – μk)
(
μk∇gi

(
x(k))y(k)

i + αi
(
x(k))(y(k)

i
)) + β

(
x(k))z(k) + x(k)

)
= x(). ()

By assumptions (A′
) and (), we have

lim
k→∞

( – μk)
(
y(k)

i
) = ρ∗

i and lim
k→∞

( – μk)y(k)
i = , i ∈ I

(
x∗, 

)
, ()

where ρ∗
i ≥ . Therefore from () and (), we get

x∗ +
∑

i∈I(x∗ ,)

ρ∗
i αi

(
x∗) + β

(
x∗)z∗ = x(), ()

which contradicts assumption (A′
).

If μ∗ < , when k → ∞, since X(μ) and y(k)
i , i /∈ I(x,μ) are bounded, then the right-hand

side of () is bounded. But by assumption (A′
), if y(k)

i → ∞, i ∈ I(x,μ), then the left-hand
side of () is infinite. This fact results in a contradiction.

By the above discussion, we obtain the result that case (a) is the unique possible case.
Therefore P∗ is a solution of the equation

x – F(x) + α(x)y + β(x)z = ,

h(x) = ,

Yg(x) = , g(x) ≤ , y ≥ .

()

By simple discussions, we conclude that x∗ is a fixed point of F(x) in X. This completes the
proof. �

For almost all P() = (x(), y(), ) ∈ X() × Rm
++ × Rl , by Theorem ., the homotopy gen-

erates a C curve 	P() , and we get the following theorem.

Theorem . The homotopy path 	P() is determined by the following initial value prob-
lem to the ordinary differential equation:

DHP()
(
P(s),μ(s)

)
(

Ṗ(s)
μ̇(s)

)
= ,

(
P(),μ()

)
=

(
P(), 

)
, ()

where s is the arc length of the curve 	P() .
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As for how to trace numerically the homotopy path, there have been many predictor-
corrector algorithms; see [], etc. for references. Hence we omit them.
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