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Abstract
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1 Introduction
Splitting algorithms have recently received much attention due to the fact that many non-
linear problems arising in applied areas such as image recovery, signal processing, and
machine learning are mathematically modeled as a nonlinear operator equation and this
operator is decomposed as the sum of two nonlinear operators; see, for example, [–]
and the references therein. The central problem is to iteratively find a zero point of the
sum of two monotone operators.

One of the classical methods of studying the problem  ∈ Tx, where T is a maximal
monotone operator, is the proximal point algorithm (PPA) which was initiated by Mar-
tinet [] and further developed by Rockafellar []. The PPA and its dual version in the
context of convex programming, the method of multipliers of Hesteness and Powell, have
been extensively studied and are known to yield as special cases decomposition methods
such as the method of partial inverses [], the Douglas-Rachford splitting method, and the
alternating direction method of multipliers []. In the case of T = A + B, where A and B are
monotone mappings, the splitting method xn+ = (I + rnB)–(I – rnA)xn, n = , , . . . , where
rn > , was proposed by Lions and Mercier [] and by Passty []. There are many nonlin-
ear problems arising in engineering areas needing more than one constraint. Solving such
problems, we have to obtain some solution which is simultaneously the solution of two
or more subproblems or the solution of one subproblem on the solution set of another
subproblem; see [–] and the references therein. The viscosity approximation method,
which was introduced by Moudafi [], has been extensively investigated by many authors
for solving the problems; see, for example, [–] and the references therein. The high-
light of the viscosity approximation method is that the desired limit point is not only a
solution of a nonlinear problem but a unique solution of a classical monotone variational
inequality. The aim of this paper is to introduce and investigate a viscosity splitting al-
gorithm with computational errors for solving common solutions of inclusion and equi-

© 2015 Bin Dehaish et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly credited.

http://dx.doi.org/10.1186/s13660-015-0554-2
mailto:bbendehaish@kau.edu.sa


Bin Dehaish et al. Journal of Inequalities and Applications  (2015) 2015:50 Page 2 of 14

librium problems. The common solution is a unique solution of a monotone variational
inequality. Strong convergence is guaranteed without the aid of compactness assumptions
or metric projections. The main results mainly improve the corresponding results in [–
].

The organization of this paper is as follows. In Section , we provide some necessary
preliminaries. In Section , a viscosity splitting algorithm with computational errors is
investigated. A strong convergence theorem is established. In Section , applications of
the main results are discussed.

2 Preliminaries
From now on, we always assume that H is a real Hilbert space with the inner product 〈·, ·〉
and the norm ‖ · ‖. Let C is a nonempty, closed, and convex subset of H .

Let F be a bifunction of C × C into R, where R denotes the set of real numbers. We
consider the following equilibrium problem in the terminology of Blum and Oettli [],
which is also known as the Ky Fan inequality []:

Find x ∈ C such that F(x, y) ≥ , ∀y ∈ C. (.)

In this paper, the set of such an x ∈ C is denoted by EP(F), i.e., EP(F) = {x ∈ C : F(x, y) ≥
,∀y ∈ C}.

To study equilibrium problem (.), we may assume that F satisfies the following condi-
tions:

(A) F(x, x) =  for all x ∈ C;
(A) F is monotone, i.e., F(x, y) + F(y, x) ≤  for all x, y ∈ C;
(A) for each x, y, z ∈ C,

lim sup
t↓

F
(
tz + ( – t)x, y

) ≤ F(x, y);

(A) for each x ∈ C, y 
→ F(x, y) is convex and lower semicontinuous.
Let S be a mapping on C. F(S) stands for the fixed point set of S. Recall that S is said to

be contractive iff there exists a constant κ ∈ (, ) such that

‖Sx – Sy‖ ≤ κ‖x – y‖, ∀x, y ∈ C.

S is said to be nonexpansive iff

‖Sx – Sy‖ ≤ ‖x – y‖, ∀x, y ∈ C.

If C is closed, convex, and bounded, then F(S) is not empty; see [] and the references
therein.

Let A : C → H be a mapping. Recall that A is said to be monotone iff

〈Ax – Ay, x – y〉 ≥ , ∀x, y ∈ C.

A is said to be strongly monotone iff there exists a constant α >  such that

〈Ax – Ay, x – y〉 ≥ α‖x – y‖, ∀x, y ∈ C.
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For such a case, we say that A is an α-strongly monotone mapping. A is said to be inverse-
strongly monotone iff there exists a constant α >  such that

〈Ax – Ay, x – y〉 ≥ α‖Ax – Ay‖, ∀x, y ∈ C.

For such a case, we say that A is an α-inverse-strongly monotone mapping. It is clear that
A is inverse-strongly monotone if and only if A– is strongly monotone.

A set-valued mapping T : H → H is said to be monotone iff for all x, y ∈ H , f ∈ Tx, and
g ∈ Ty imply 〈x – y, f – g〉 ≥ . A monotone mapping T : H → H is maximal iff the graph
G(T) of T is not properly contained in the graph of any other monotone mapping. It is well
known that a monotone mapping T is maximal iff, for any (x, f ) ∈ H × H , 〈x – y, f – g〉 ≥ 
for all (y, g) ∈ G(T) implies f ∈ Tx. Let A be a monotone mapping of C into H and NCv the
normal cone to C at v ∈ C, i.e.,

NCv =
{

w ∈ H : 〈v – u, w〉 ≥ ,∀u ∈ C
}

,

and define a mapping T on C by

Tv =

⎧
⎨

⎩
Av + NCv, v ∈ C,

∅, v /∈ C.

Then T is maximal monotone and  ∈ Tv iff 〈Av, u – v〉 ≥  for all u ∈ C; see [] and the
references therein. Let I denote the identity operator on H and B : H → H be a maximal
monotone operator. Then we can define, for each λ > , a nonexpansive single valued map-
ping Jr : H → H by Jr = (I + rB)–. It is called the resolvent of B. We know that B– = F(Jr)
for all r >  and Jr is firmly nonexpansive, that is,

‖Jrx – Jry‖ ≤ 〈Jrx – Jry, x – y〉, x, y ∈ H .

In order to prove our main results, we also need the following lemmas.

Lemma . [] Let C be a nonempty, closed, and convex subset of H and let F : C×C →R

be a bifunction satisfying (A)-(A). Then, for any r >  and x ∈ H , there exists z ∈ C such
that

F(z, y) +

r
〈y – z, z – x〉 ≥ , ∀y ∈ C.

Further, define

Trx =
{

z ∈ C : F(z, y) +

r
〈y – z, z – x〉 ≥ ,∀y ∈ C

}

for all r >  and x ∈ H . Then, the following hold:
(a) F(Tr) = EP(F);
(b) Tr is single-valued;
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(c) Tr is firmly nonexpansive, i.e., for any x, y ∈ H ,

‖Trx – Try‖ ≤ 〈Trx – Try, x – y〉;

(d) The solution set is closed and convex.

Lemma . Let C be a nonempty, closed, and convex subset of H . Let A : C → H be a
mapping and let B : H ⇒ H be a maximal monotone operator. Then F(Jr(I – rA)) = (A +
B)–().

Proof

p ∈ F
(
Jr(I – rA)

) ⇐⇒ p = Jr(I – rA)p

⇐⇒ p + rBp = p – rAp

⇐⇒ p ∈ (A + B)–(). �

The following lemma appears implicitly in []. For the sake of completeness, we still
give the proof.

Lemma . Let C be a nonempty, closed, and convex subset of H and let F : C × C → R

be a bifunction satisfying (A)-(A). Tt and Ts are defined as in Lemma .. Then

‖Tsx – Ttx‖ ≤ |s – t|
t

‖x – Ttx‖.

Proof Putting ς = Tsx and τ = Ttx, we find that F(τ ,ς ) + 
t 〈ς – τ , τ – x〉 ≥  and F(ς , τ ) +


s 〈τ – ς ,ς – x〉 ≥ . It follows that


s
〈τ – ς ,ς – x〉 +


t
〈ς – τ , τ – x〉 ≥ .

Hence, we have
〈
τ – ς ,ς – x +

s
t

(x – τ )
〉
≥ .

That is,

‖τ – ς‖ ≤
∣∣
∣∣
t – s

t

∣∣
∣∣‖τ – x‖.

This proves the lemma. �

Lemma . [] Let {xn} and {yn} be bounded sequences in H and let {βn} be a sequence
in (, ) with  < lim infn→∞ βn ≤ lim supn→∞ βn < . Suppose that xn+ = ( – βn)yn + βnxn

for all integers n ≥  and

lim sup
n→∞

(‖yn+ – yn‖ – ‖xn+ – xn‖
) ≤ .

Then limn→∞ ‖yn – xn‖ = .
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Lemma . [] Assume that {αn} is a sequence of nonnegative real numbers such that

αn+ ≤ ( – γn)αn + δn + en,

where {γn} is a real number sequence in (, ), and {δn} and {en} are nonnegative real num-
ber sequences such that

(i)
∑∞

n= γn = ∞;
(ii) lim supn→∞ δn/γn ≤  or

∑∞
n= δn < ∞;

(iii)
∑∞

n= en < ∞.
Then limn→∞ αn = .

3 Main results
Theorem . Let C be a nonempty, closed, and convex subset of H and let F be a bifunction
from C × C to R which satisfies (A)-(A). Let f : C → C be a contraction with the contrac-
tive constant κ ∈ (, ). Let A : C → H be an α-inverse-strongly monotone mapping and let
B : H ⇒ H be a maximal monotone mapping. Assume (A+B)–()∩EP(F) �= ∅. Let {rn} and
{sn} be positive real number sequences. Let {αn}, {βn}, and {γn} be real number sequences
in (, ) such that αn + βn + γn = . Let {en} be a sequence in H such that

∑∞
n= ‖en‖ < ∞. Let

{xn} be a sequence generated in the following process: x ∈ C, xn+ = αnf (xn) + βnxn + γnyn,
where {yn} is a sequence in C such that F(yn, y) + 

sn
〈y – yn, yn – Jrn (xn – rnAxn + en)〉 ≥ ,

∀y ∈ C. Assume that the control sequences {αn}, {βn}, {rn}, and {sn} satisfy the conditions:
limn→∞ αn = ,

∑∞
n= αn = ∞,  < lim infn→∞ βn ≤ lim supn→∞ βn < ,  < lim infn→∞ sn,

 < r ≤ rn ≤ r′ < α, limn→∞ |rn – rn+| = limn→∞ |sn – sn+| = , where r and r′ are real
constants. Then {xn} converges strongly to q = P(A+B)–()∩EP(F)f (q).

Proof From Lemmas . and ., we see that (A + B)–() and EP(F) are closed and convex.
It follows that the projection onto the intersection (A + B)–() ∩ EP(F) is well defined. For
any x, y ∈ C, we see that

∥∥(I – rnA)x – (I – rnA)y
∥∥

= ‖x – y‖ – rn〈x – y, Ax – Ay〉 + r
n‖Ax – Ay‖

≤ ‖x – y‖ – rn(α – rn)‖Ax – Ay‖.

By using the condition imposed on {rn}, we see that ‖(I – rnA)x – (I – rnA)y‖ ≤ ‖x – y‖.
This proves that I – rnA is nonexpansive. Let p ∈ (A + B)–() ∩ EP(F) be fixed arbitrarily.
By using Lemma ., we find that yn = Tsn Jrn (xn – rnAxn + en). It follows that

‖xn+ – p‖ ≤ αn
∥∥f (xn) – p

∥∥ + βn‖xn – p‖ + γn‖yn – p‖
≤ αn

∥
∥xn – f (p)

∥
∥ + αn

∥
∥f (p) – p

∥
∥ + βn‖xn – p‖

+ γn
∥
∥Jrn (xn – rnAxn + en) – Jrn (p – rnAp)

∥
∥

≤ αnκ‖xn – p‖ + αn
∥∥f (p) – p

∥∥ + βn‖xn – p‖
+ γn

∥∥(xn – rnAxn + en) – (p – rnAp)
∥∥

≤ (
 – αn( – κ)

)‖xn – p‖ + αn
∥∥f (p) – p

∥∥ + ‖en‖
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≤ max

{
‖xn – p‖,

‖f (p) – p‖
 – κ

}
+ ‖en‖

≤ · · ·

≤ max

{
‖x – p‖,

‖f (p) – p‖
 – κ

}
+

∞∑

i=

‖ei‖ < ∞.

This implies that {xn} is bounded, and so is {yn}. Letting ξn = xn+–βnxn
–βn

, we have

ξn+ – ξn =
αn+(f (xn+) – yn) + ( – βn+)yn+

 – βn+

–
αn(f (xn) – yn) + ( – βn)yn

 – βn

=
αn+(f (xn+) – yn+)

 – βn+
–

αn(f (xn) – yn)
 – βn

+ yn+ – yn.

It follows that

‖ξn+ – ξn‖ ≤ αn+

 – βn+

∥
∥f (xn+) – yn+

∥
∥ +

αn

 – βn

∥
∥f (xn) – yn

∥
∥ + ‖yn+ – yn‖. (.)

Put un = xn – rnAxn + en. Since B is monotone, we see that

〈
Jrn+ un – Jrn un,

un – Jrn+ un

rn+
–

un – Jrn un

rn

〉
≥ .

It follows that

〈
Jrn+ un – Jrn un,

(
 –

rn+

rn

)
(un – Jrn un)

〉
≥ ‖Jrn+ un – Jrn un‖.

This in turn implies that

‖Jrn+ un – Jrn un‖ ≤ |rn+ – rn|
rn

‖un – Jrn un‖. (.)

Putting zn = Jrn (xn – rnAxn + en), we have

‖zn+ – zn‖ ≤ ∥∥Jrn+ (xn+ – rn+Axn+ + en+) – Jrn+ (xn – rnAxn + en)
∥∥

+
∥∥Jrn+ (xn – rnAxn + en) – Jrn (xn – rnAxn + en)

∥∥

≤ ∥∥(xn+ – rn+Axn+ + en+) – (xn – rnAxn + en)
∥∥

+
∥∥Jrn+ (xn – rnAxn + en) – Jrn (xn – rnAxn + en)

∥∥. (.)
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From (.) and (.), we find that

‖zn+ – zn‖ ≤ ∥
∥(xn+ – rn+Axn+ + en+) – (xn – rnAxn + en)

∥
∥

+
|rn+ – rn|

rn
‖un – Jrn un‖

≤ ‖xn+ – xn‖ + |rn+ – rn|
(

‖Axn‖ +
‖un – Jrn un‖

rn

)

+ ‖en+‖ + ‖en‖. (.)

By using Lemma ., we find that

‖yn+ – yn‖ ≤ ∥∥Tsn+ Jrn+ (xn+ – rn+Axn+ + en+) – Tsn+ Jrn (xn – rnAxn + en)
∥∥

+
∥
∥Tsn+ Jrn (xn – rnAxn + en) – Tsn Jrn (xn – rnAxn + en)

∥
∥

≤ ‖zn+ – zn‖ +
‖Tsn zn – zn‖

sn
|sn+ – sn|. (.)

From (.) and (.), we find that

‖yn+ – yn‖ ≤ ‖xn+ – xn‖ + |rn+ – rn|
(

‖Axn‖ +
‖un – Jrn un‖

rn

)

+
‖Tsn zn – zn‖

sn
|sn+ – sn| + ‖en+‖ + ‖en‖. (.)

Substituting (.) into (.), we arrive at

‖ξn+ – ξn‖ – ‖xn+ – xn‖ ≤ αn+

 – βn+

∥∥f (xn+) – yn+
∥∥ +

αn

 – βn

∥∥f (xn) – yn
∥∥

+ |rn+ – rn|
(

‖Axn‖ +
‖un – Jrn un‖

rn

)

+
‖Tsn zn – zn‖

sn
|sn+ – sn| + ‖en+‖ + ‖en‖.

It follows from the conditions that

lim sup
n→∞

(‖ξn+ – ξn‖ – ‖xn+ – xn‖
)

= .

By using Lemma ., we see that limn→∞ ‖ξn – xn‖ = , which in turn implies that

lim
n→∞‖xn+ – xn‖ = . (.)

Since Jrn is firmly nonexpansive, we find that

‖zn – p‖ ≤ 〈
(xn – rnAxn + en) – (p – rnAp), zn – p

〉

=


(∥∥(xn – rnAxn + en) – (p – rnAp)

∥∥ + ‖zn – p‖

–
∥∥(

(xn – rnAxn + en) – (p – rnAp)
)

– (zn – p)
∥∥)
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≤ 

(‖xn – p‖ + ‖en‖

(‖en‖ + ‖xn – p‖) + ‖zn – p‖

–
∥∥xn – zn – rn(Axn – Ap) + en

∥∥)

≤ 

(‖xn – p‖ + ‖en‖

(‖en‖ + ‖xn – p‖) + ‖zn – p‖ – ‖xn – zn‖

–
∥∥rn(Axn – Ap) – en

∥∥ + ‖xn – zn‖
∥∥rn(Axn – Ap) – en

∥∥)
.

It follows that

‖zn – p‖ ≤ ‖xn – p‖ + ‖en‖
(‖en‖ + ‖xn – p‖) – ‖xn – zn‖

+ rn‖xn – zn‖‖Axn – Ap‖ + ‖xn – zn‖‖en‖. (.)

Since Tsn is firmly nonexpansive, we find from (.) that

‖xn+ – p‖ ≤ αn
∥
∥f (xn) – p

∥
∥ + βn‖xn – p‖ + γn‖yn – p‖

≤ αn
∥
∥f (xn) – p

∥
∥ + βn‖xn – p‖ + γn‖zn – p‖

≤ αn
∥∥f (xn) – p

∥∥ + ‖xn – p‖ + ‖en‖
(‖en‖ + ‖xn – p‖) – γn‖xn – zn‖

+ rn‖xn – zn‖‖Axn – Ap‖ + ‖xn – zn‖‖en‖.

It follows that

γn‖xn – zn‖ ≤ αn
∥
∥f (xn) – p

∥
∥ + ‖en‖

(‖en‖ + ‖xn – p‖ + ‖xn – zn‖
)

+ rn‖xn – zn‖‖Axn – Ap‖ + ‖xn – xn+‖
(‖xn – p‖ + ‖xn+ – p‖). (.)

Since A is inverse-strongly monotone, we find that

‖zn – p‖ ≤ ∥∥(xn – rnAxn) – (p – rnAp) + en
∥∥

≤ ∥∥(xn – p) – rn(Axn – Ap)
∥∥ + ‖en‖

(‖en‖ + ‖xn – p‖)

≤ ‖xn – p‖ – rn(αn – rn)‖Axn – Ap‖ + ‖en‖
(‖en‖ + ‖xn – p‖).

Hence, we have

∥∥xn+ – p
∥∥ ≤ αn

∥∥f (xn) – p
∥∥ + βn‖xn – p‖ + γn‖yn – p‖

≤ αn
∥∥f (xn) – p

∥∥ + βn‖xn – p‖ + γn
∥∥(xn – rnAxn + en) – (p – rnAp)

∥∥

≤ αn
∥∥f (xn) – p

∥∥ + ‖xn – p‖ – rn(αn – rn)γn‖Axn – Ap‖

+ ‖en‖
(‖en‖ + ‖en‖‖xn – p‖).

This implies that

rn(αn – rn)γn‖Axn – Ap‖ ≤ αn
∥∥f (xn) – p

∥∥ + ‖xn – xn+‖
(‖xn – p‖ + ‖xn+ – p‖)

+ ‖en‖
(‖en‖ + ‖xn – p‖).
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By using the conditions imposed on the control sequences, we find from (.) that
limn→∞ ‖Axn – Ap‖ = . This in turn implies from (.) and the conditions that

lim
n→∞‖xn – zn‖ = . (.)

Since Tsn is firmly nonexpansive, we find that

‖yn – p‖ ≤ 〈zn – p, yn – p〉

=


(‖zn – p‖ + ‖yn – p‖ – ‖yn – zn‖).

That is,

‖yn – p‖ ≤ ‖zn – p‖ – ‖yn – zn‖

≤ ‖xn – p‖ + ‖en‖
(‖en‖ + ‖xn – p‖) – ‖yn – zn‖.

It follows that

‖xn+ – p‖ ≤ αn
∥
∥f (xn) – p

∥
∥ + βn‖xn – p‖ + γn‖yn – p‖

≤ αn
∥
∥f (xn) – p

∥
∥ + ‖xn – p‖ + ‖en‖

(‖en‖ + ‖xn – p‖) – γn‖yn – zn‖.

This implies that

γn‖yn – zn‖ ≤ αn
∥∥f (xn) – p

∥∥ +
(‖xn – p‖ + ‖xn+ – p‖)‖xn – xn+‖

+ ‖en‖
(‖en‖ + ‖xn – p‖).

By using the conditions imposed on the control sequences, we find from (.) that

lim
n→∞‖zn – yn‖ = . (.)

It follows from (.) and (.) that

lim
n→∞‖xn – yn‖ = . (.)

Since the mapping P(A+B)–()∩EP(F)f is contractive, we see that there exists a unique fixed
point. Next, we use q to denote the unique fixed point of the mapping. That is, q =
P(A+B)–()∩EP(F)f (q). Now, we are in a position to show lim supn→∞〈f (q) – q, xn – q〉 ≤ .
To show it, we can choose a subsequence {xni} of {xn} such that

lim sup
n→∞

〈
f (q) – q, xn – q

〉
= lim

i→∞
〈
f (q) – q, xni – q

〉
.

Since {xni} is bounded, we can choose a subsequence {xnij
} of {xni} which converges weakly

some point x̄. We may assume, without loss of generality, that {xni} converges weakly to x̄.
Now, we are in a position to show x̄ ∈ (A + B)–() ∩ EP(F).
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First, we prove x̄ ∈ (A + B)–(). Notice that

xn – zn + en

rn
– Axn ∈ Bzn.

Let μ ∈ Bν . Since B is monotone, we find that

〈
xn – zn + en

rn
– Axn – μ, zn – ν

〉
≥ .

It follows from (.) that 〈–Ax̄ – μ, x̄ – ν〉 ≥ . This implies that –Ax̄ ∈ Bx̄, that is, x̄ ∈
(A + B)–().

Next, we prove x̄ ∈ EP(F). Notice that

F(yn, y) +

sn

〈y – yn, yn – zn〉 ≥ , ∀y ∈ C.

By using condition (A), we see that 
sn

〈y – yn, yn – zn〉 ≥ F(y, yn), ∀y ∈ C. Replacing n by
ni, we arrive at

〈
y – yni ,

yni – zni

sni

〉
≥ F(y, yni ), ∀y ∈ C.

By using the condition lim infn→∞ sn > , (.), and (.), we find that {yni} converges
weakly to x̄. It follows that  ≥ F(y, x̄). This proves that x̄ ∈ EP(F). This shows that
lim supn→∞〈f (q) – q, xn – q〉 ≤ . Note that

‖xn+ – q‖ ≤ αn
〈
f (xn) – q, xn+ – q

〉
+ βn‖xn – q‖‖xn+ – q‖

+ γn‖yn – q‖‖xn+ – q‖
≤ αn

〈
f (xn) – f (q), xn+ – q

〉
+ αn

〈
f (q) – q, xn+ – q

〉

+ βn‖xn – q‖‖xn+ – q‖ + γn
(‖xn – q‖ + en

)‖xn+ – q‖

≤ αnκ + βn + γn


(‖xn – q‖ + ‖xn+ – q‖)

+ αn
〈
f (q) – q, xn+ – q

〉
+ en‖xn+ – q‖.

It follows that

‖xn+ – q‖ ≤ (
 – αn( – κ)

)‖xn – q‖ + αn
〈
f (q) – q, xn+ – q

〉
+ ‖xn+ – q‖en.

By using Lemma ., we find that limn→∞ ‖xn – q‖ = . This completes the proof. �

From Theorem ., we have the following result on the equilibrium problem immedi-
ately.

Corollary . Let C be a nonempty, closed, and convex subset of H and let F be a bi-
function from C × C to R which satisfies (A)-(A). Assume EP(F) �= ∅. Let f : C → C be a
contraction with the contractive constant κ ∈ (, ). Let {sn} be a positive real number se-
quence. Let {αn}, {βn}, and {γn} be real number sequences in (, ) such that αn +βn +γn = .
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Let {en} be a sequence in H such that
∑∞

n= ‖en‖ < ∞. Let {xn} be a sequence gener-
ated in the following process: x ∈ C, xn+ = αnf (xn) + βnxn + γnyn, where {yn} is a se-
quence such that F(yn, y) + 

sn
〈y – yn, yn – xn – en〉 ≥ , ∀y ∈ C. Assume that the con-

trol sequences {αn}, {βn}, and {sn} satisfy the conditions: limn→∞ αn = ,
∑∞

n= αn = ∞,
 < lim infn→∞ βn ≤ lim supn→∞ βn < ,  < lim infn→∞ sn, limn→∞ |sn – sn+| = . Then {xn}
converges strongly to q = PEP(F)f (q).

From Theorem ., we have the following result on the inclusion problem immediately.

Corollary . Let C be a nonempty, closed, and convex subset of H and let f : C → C
be a contraction with the contractive constant κ ∈ (, ). Let A : C → H be an α-inverse-
strongly monotone mapping and let B : H ⇒ H be a maximal monotone mapping such
that the domain of B is in C. Assume (A + B)–() �= ∅. Let {rn} be a positive real number se-
quence. Let {αn}, {βn}, and {γn} be real number sequences in (, ) such that αn + βn + γn = .
Let {en} be a sequence in H such that

∑∞
n= ‖en‖ < ∞. Let {xn} be a sequence generated

in the following process: x ∈ C and xn+ = αnf (xn) + βnxn + γnJrn (xn – rnAxn + en), n ≥ .
Assume that the control sequences {αn}, {βn}, and {rn} satisfy the following conditions:
limn→∞ αn = ,

∑∞
n= αn = ∞,  < lim infn→∞ βn ≤ lim supn→∞ βn < ,  < r ≤ rn ≤ r′ < α,

limn→∞ |rn – rn+| = , where r and r′ are real constants. Then {xn} converges strongly to
q = P(A+B)–()f (q).

4 Applications
In this section, we give some results on equilibrium problems, variational inequalities, and
convex functions.

Lemma . [] Let G be a bifunction from C × C to R which satisfies (A)-(A), and let
W be a multivalued mapping of H into itself defined by

Wx =

⎧
⎨

⎩
{z ∈ H : G(x, y) ≥ 〈y – x, z〉,∀y ∈ C}, x ∈ C,

∅, x /∈ C.
(.)

Then W is a maximal monotone operator with the domain D(W ) ⊂ C and EP(G) =
W –().

Theorem . Let C be a nonempty, closed, and convex subset of H and let F and G be two
bifunctions from C × C to R which satisfies (A)-(A). Assume that EP(G) ∩ EP(F) �= ∅. Let
f : C → C be a contraction with the contractive constant κ ∈ (, ). Let {rn} and {sn} be pos-
itive real number sequences. Let {αn}, {βn}, and {γn} be real number sequences in (, ) such
that αn + βn + γn = . Let {en} be a sequence in H such that

∑∞
n= ‖en‖ < ∞. Let {xn} be a se-

quence generated in the following process: x ∈ C, xn+ = αnf (xn) + βnxn + γnyn, n ≥ , where
F(yn, y) + 

sn
〈y – yn, yn – (I + rnW )–(xn + en)〉 ≥ , ∀y ∈ C. Assume that the control sequences

{αn}, {βn}, {rn}, and {sn} satisfy the following conditions: limn→∞ αn = ,
∑∞

n= αn = ∞,
 < lim infn→∞ βn ≤ lim supn→∞ βn < ,  < lim infn→∞ sn,  < r ≤ rn, limn→∞ |rn – rn+| =
limn→∞ |sn – sn+| = , where r is a real constant. Then {xn} converges strongly to q =
PEP(G)∩EP(F)f (q).
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Recall that the classical variational inequality is to find an x ∈ C such that

〈Ax, y – x〉 ≥ , ∀y ∈ C, (.)

where A : C → H is a monotone mapping. The solution set of (.) is denoted by VI(C, A).
Projection methods have been recently investigated for solving variational inequality (.).
It is well known that x is a solution to (.) iff x is a fixed point of the mapping ProjC(I –rA),
where ProjC is the metric projection from H onto C and I denotes the identity on H . If A is
inverse-strongly monotone, then ProjC(I –rA) is nonexpansive. Moreover, if C is bounded,
closed, and convex, then the existence of solutions of the variational inequality is guaran-
teed by the nonexpansivity of the mapping ProjC(I – rA). Next, we consider solutions of
variational inequality (.). Let iC be a function defined by

iC(x) =

⎧
⎨

⎩
, x ∈ C,

∞, x /∈ C.

It is easy to see that iC is a proper lower and semicontinuous convex function on H , and
the subdifferential ∂iC of iC is maximal monotone. Define the resolvent Jr := (I + r∂iC)–

of the subdifferential operator ∂iC . Letting x = Jry, we find that

y ∈ x + r∂iCx ⇐⇒ y ∈ x + rNCx

⇐⇒ 〈y – x, v – x〉 ≤ , ∀v ∈ C

⇐⇒ x = ProjC y,

where NCx := {e ∈ H : 〈e, v – x〉,∀v ∈ C}. Putting B = ∂iC in Theorems ., we find the
following result immediately.

Theorem . Let C be a nonempty, closed, and convex subset of H and let f : C → C be a
contraction with the contractive constant κ ∈ (, ). Let A : C → H be an α-inverse-strongly
monotone mapping such that VI(C, A) �= ∅. Let {rn} be a positive real number sequence.
Let {αn}, {βn}, and {γn} be real number sequences in (, ) such that αn + βn + γn = . Let
{en} be a sequence in H such that

∑∞
n= ‖en‖ < ∞. Let {xn} be a sequence generated in the

following process: x ∈ C, xn+ = αnf (xn) + βnxn + γnyn, n ≥ , yn = ProjC(xn – rnAxn + en).
Assume that the control sequences {αn}, {βn}, and {rn} satisfy the conditions: limn→∞ αn = ,
∑∞

n= αn = ∞,  < lim infn→∞ βn ≤ lim supn→∞ βn < ,  < r ≤ rn ≤ r′ < α, limn→∞ |rn –
rn+| = , where r and r′ are real constants. Then {xn} converges strongly to q = PVI(C,A)f (q).

Proof Put F(x, y) =  for any x, y ∈ C and sn = . From Theorem ., we draw the desired
conclusion immediately. �

Now, we are in a position to consider the problem of finding minimizers of proper lower
semicontinuous convex functions. For a proper lower semicontinuous convex function
g : H → (–∞,∞], the subdifferential mapping ∂g of g is defined by ∂g(x) = {x∗ ∈ H : g(x) +
〈y – x, x∗〉 ≤ g(y),∀y ∈ H}, ∀x ∈ H . Rockafellar [] proved that ∂g is a maximal monotone
operator. It is easy to verify that  ∈ ∂g(v) iff g(v) = minx∈H g(x).
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Theorem . Let g : H → (–∞, +∞] be a proper convex lower semicontinuous func-
tion such that (∂g)–() is not empty. Let f be a contraction on H with the contractive
constant κ ∈ (, ). Let {αn}, {βn}, and {γn} be real number sequences in (, ) such that
αn + βn + γn = . Let {en} be a sequence in H such that

∑∞
n= ‖en‖ < ∞. Let {xn} be a

sequence generated in the following process: x ∈ C, xn+ = αnf (xn) + βnxn + γnyn, n ≥ ,
yn = arg minz∈H{g(z)+ ‖z–xn+en‖

rn
}. Assume that the control sequences {αn}, {βn}, and {rn} sat-

isfy the conditions: limn→∞ αn = ,
∑∞

n= αn = ∞,  < lim infn→∞ βn ≤ lim supn→∞ βn < ,
 < r ≤ rn < ∞ limn→∞ |rn – rn+| = , where r is a real constant. Then {xn} converges
strongly to q = P(∂g)–()f (q).

Proof Since g : H → (–∞,∞] is a proper convex and lower semicontinuous function, we
see that subdifferential ∂g of g is maximal monotone. Putting F(x, y) =  for any x, y ∈ C,
sn = , and A = , we find yn = Jrn (xn + en). It follows that

yn = arg min
z∈H

{
g(z) +

‖z – xn – en‖

rn

}

is equivalent to

 ∈ ∂g(yn) +

rn

(yn – xn – en).

Hence, we have

xn + en ∈ yn + rn∂g(yn).

By using Theorem ., we find the desired conclusion immediately. �
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