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Abstract
In this paper, a regularization projection algorithm is investigated for solving common
elements of an equilibrium problem, a variational inequality problem and a fixed
point problem of a strictly pseudocontractive mapping. Strong convergence
theorems are established in the framework of real Hilbert spaces.
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1 Introduction and preliminaries
Let H be a real Hilbert space with the inner product 〈·, ·〉 and the norm ‖ · ‖. Let C be a
nonempty closed convex subset of H . PC stands for the metric projection from H onto C.
Let F be a bifunction of C × C into R, where R denotes the set of real numbers. Consider
the following equilibrium problem in the terminology of Blum and Oettli []:

Find x ∈ C such that F(x, y) ≥ , ∀y ∈ C. (.)

In this paper, the solution set of problem (.) is denoted by FP(F).
To study problem (.), we may assume that F satisfies the following conditions:
(A) F(x, x) =  for all x ∈ C;
(A) F is monotone, i.e., F(x, y) + F(y, x) ≤  for all x, y ∈ C;
(A) for each x, y, z ∈ C,

lim sup
t↓

F
(
tz + ( – t)x, y

) ≤ F(x, y);

(A) for each x ∈ C, y 
→ F(x, y) is convex and lower semi-continuous.
Let S be a self-mapping of C. F(S) stands for the fixed point set of S. Recall that S is said

to be β-contractive if there exists a constant β ∈ [, ) such that

‖Sx – Sy‖ ≤ β‖x – y‖, ∀x, y ∈ C.

S is said to be nonexpansive if

‖Sx – Sy‖ ≤ ‖x – y‖, ∀x, y ∈ C.
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S is said to be κ-strictly pseudocontractive if there exists a constant κ ∈ [, ) such that

‖Sx – Sy‖ ≤ ‖x – y‖ + κ
∥
∥(x – Sx) – (y – Sy)

∥
∥, ∀x, y ∈ C.

The class of κ-strictly pseudocontractive mappings was introduced by Browder and
Petryshyn []. It is clear that every nonexpansive mapping is a -strictly pseudocontractive
mapping.

Let A : C → H be a mapping. Recall that A is said to be monotone if

〈Ax – Ay, x – y〉 ≥ , ∀x, y ∈ C.

A is said to be strongly monotone if there exists a constant α >  such that

〈Ax – Ay, x – y〉 ≥ α‖x – y‖, ∀x, y ∈ C.

For such a case, we say that A is α-strongly monotone. A is said to be inverse-strongly
monotone if there exists a constant α >  such that

〈Ax – Ay, x – y〉 ≥ α‖Ax – Ay‖, ∀x, y ∈ C.

For such a case, we say that A is α-inverse-strongly monotone. It is clear that A is α-in-
verse-strongly monotone if and only if A– is α-strongly monotone.

Recall that the classical variational inequality is to find x ∈ C such that

〈Ax, y – x〉 ≥ , ∀y ∈ C. (.)

It is known that x ∈ C is a solution of (.) if and only if x is a fixed point of PC(I – rA),
where r >  is a constant and I is an identity mapping. From now on, the solution set of
(.) is denoted by VI(C, A).

A set-valued mapping T : H → H is said to be monotone if for all x, y ∈ H , f ∈ Tx and g ∈
Ty imply 〈x – y, f – g〉 ≥ . A monotone mapping T : H → H is maximal if the graph G(T)
of T is not properly contained in the graph of any other monotone mapping. It is known
that a monotone mapping T is maximal if and only if, for any (x, f ) ∈ H ×H , 〈x–y, f –g〉 ≥ 
for all (y, g) ∈ G(T) implies f ∈ Tx.

Recently, Iiduka and Takahshi [] investigated variational inequality (.) and fixed
points of a nonexpansive mapping based on a Halpern-like algorithm. To be more clear,
they proved the following result.

Theorem IT Let C be a closed convex subset of a real Hilbert space H . Let A be an
α-inverse-strongly monotone mapping of C into H , and let S be a nonexpansive mapping
of C into itself such that F(S) ∩ VI(C, A) = ∅. Suppose x = x ∈ C and {xn} is given by

xn+ = αnx + ( – αn)SPC(xn – λnAxn)

for every n = , , . . . , where {αn} is a sequence in [, ) and {λn} is a sequence in [, α]. If
{αn} and {λn} are chosen so that λn ∈ [a, b] for some a, b with  < a < b < α, limn→∞ αn = ,
∑∞

n= αn = ∞,
∑∞

n= |αn+ – αn| < ∞ and
∑∞

n= |λn+ – λn| < ∞, then {xn} converges strongly
to PF(S)∩VI(C,A)x.
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Since equilibrium problem (.) provides a unified model of several problems such as
variational inequalities, fixed point problems and inclusion problems. In [], Takahashi
and Takahashi further studied fixed points of a nonexpansive mapping and equilibrium
problem (.) based on the viscosity approximation method, which was introduced by
Moudafi []. To be more clear, they proved the following result.

Theorem TT Let C be a nonempty closed convex subset of a real Hilbert space H . Let F
be a bifunction from C × C to R satisfying (A)-(A), and let S be a nonexpansive mapping
of C into H such that F(S) ∩ EP(F) = ∅. Let f be a contraction of H into itself, and let {xn}
and {un} be sequences generated by x ∈ H and

⎧
⎨

⎩
F(un, y) + 

rn
〈y – un, un – xn〉 ≥ , ∀y ∈ C,

xn+ = αnf (xn) + ( – αn)Sun

for every n = , , . . . , where {αn} ⊂ [, ] and {rn} ⊂ (,∞) satisfy limn→∞ αn = ,
∑∞

n= αn =
∞,

∑∞
n= |αn+ – αn| < ∞, lim infn→∞ rn >  and

∑∞
n= |rn+ – rn| < ∞. Then {xn} and {un}

converge strongly to z ∈ F(S) ∩ EP(F), where z = PF(S)∩EP(F)f (z).

Subsequently, many authors investigated common solution problems based on hybrid
projection methods due to real world applications, for example, image restoration and
digital signal processing; see [–] and the references therein. In view of the complexity
of convex, hybrid projection methods, they are not easy to implement. In this paper, we
study a regularization projection algorithm for solving equilibrium problem (.), varia-
tional inequality (.) and a fixed point problem of a κ-strictly pseudocontractive map-
ping. Possible computation errors are taken into account. Strong convergence theorems
are established in the framework of real Hilbert spaces.

In order to prove our main results, we also need the following lemmas.

Lemma . [] Let C be a nonempty closed convex subset of H . Let A be a monotone
mapping of C into H , and let NCv be a normal cone to C at v ∈ C, i.e.,

NCv =
{

w ∈ H : 〈v – u, w〉 ≥ ,∀u ∈ C
}

and define a mapping T on C by

Tv =

⎧
⎨

⎩
Av + NCv, v ∈ C,

∅, v /∈ C.

Then T is maximal monotone and  ∈ Tv if and only if 〈Av, u – v〉 ≥  for all u ∈ C.

Lemma . [] Let C be a nonempty closed convex subset of H , and let S : C → H be a
κ-strictly pseudocontractive mapping. Then I – S is demi-closed at zero.

Lemma . [] Let C be a nonempty closed convex subset of H , and let F : C × C → R be a
bifunction satisfying (A)-(A). Then, for any r >  and x ∈ H , there exists z ∈ C such that

F(z, y) +

r
〈y – z, z – x〉 ≥ , ∀y ∈ C.
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Further, define

Trx =
{

z ∈ C : F(z, y) +

r
〈y – z, z – x〉 ≥ ,∀y ∈ C

}

for all r >  and x ∈ H . Then the following hold:
(a) Tr is single-valued;
(b) Tr is firmly nonexpansive, i.e., for any x, y ∈ H ,

‖Trx – Try‖ ≤ 〈Trx – Try, x – y〉;

(c) F(Tr) = EP(F);
(d) EP(F) is closed and convex.

Lemma . [] Let C be a nonempty closed convex subset of H , and let S : C → H be a
κ-strictly pseudocontractive mapping. Define a mapping T by T = δI + ( – δ)S, where δ is
a constant in (, ). If δ ∈ [κ , ) then T is nonexpansive and F(T) = F(S).

Lemma . [] Let {xn} and {yn} be bounded sequences in H , and let {βn} be a sequence
in [, ] with  < lim infn→∞ βn ≤ lim supn→∞ βn < . Suppose xn+ = ( – βn)yn + βnxn for all
integers n ≥  and

lim sup
n→∞

(‖yn+ – yn‖ – ‖xn+ – xn‖
) ≤ .

Then limn→∞ ‖yn – xn‖ = .

Lemma . [] Assume that {αn} is a sequence of nonnegative real numbers such that

αn+ ≤ ( – γn)αn + δn + μn,

where {γn} is a sequence in (, ) and {μn}, {δn} are real sequences such that
(i)

∑∞
n= γn = ∞ and

∑∞
n= μn < ∞;

(ii) lim supn→∞ δn/γn ≤  or
∑∞

n= |δn| < ∞.
Then limn→∞ αn = .

2 Main results
Theorem . Let C be a closed convex subset of a real Hilbert space H . Let A : C → H be
an α-inverse-strongly monotone mapping, and let F be a bifunction from C × C to R which
satisfies (A)-(A). Let S : C → H be a κ-strictly pseudocontractive mapping, and let f be
a β-contraction on H . Assume that � = F(S) ∩ VI(C, A) ∩ EP(F) = ∅. Let {rn} and {sn} be
positive real number sequences. Let {αn}, {βn}, {γn} and {δn} be real number sequences in
(, ) such that αn + βn + γn = . Let {xn} be a sequence generated in the following process:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x ∈ H ,

F(zn, z) + 
rn

〈z – zn, zn – xn〉 ≥ , ∀z ∈ C,

yn = PC(zn – snAzn + en),

xn+ = αnf (xn) + βnxn + γn(δnyn + ( – δn)Syn),
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where {en} is a sequence in H . Assume that the control sequences satisfy the following con-
ditions:

(a) limn→∞ αn =  and
∑∞

n= αn = ∞;
(b)  < lim infn→∞ βn ≤ lim supn→∞ βn < ;
(c)

∑∞
n= ‖en‖ < ∞, limn→∞ |δn+ – δn| =  and κ ≤ δn ≤ δ < ;

(d) limn→∞ |rn+ – rn| =  and lim infn→∞ rn > ;
(e) limn→∞ |sn+ – sn| = ,  < s ≤ sn ≤ s′ < α,

where δ, s, s′ are real constants. Then {xn} converges strongly to q, which is also a unique
solution to the variational inequality

〈
f (x) – x, x – y

〉 ≥ , ∀y ∈ C.

Proof For any x, y ∈ C, we see that

∥∥(I – snA)x – (I – snA)y
∥∥

= ‖x – y‖ – sn〈x – y, Ax – Ay〉 + s
n‖Ax – Ay‖

≤ ‖x – y‖ – sn(α – sn)‖Ax – Ay‖.

By using condition (e), we see that ‖(I – snA)x – (I – snA)y‖ ≤ ‖x – y‖. This proves that
I – snA is nonexpansive. Put Sn = δnI + ( – δn)S. It follows from Lemma . that Sn is
nonexpansive and F(Sn) = F(S). Let p ∈ � be fixed arbitrarily. Hence, we have

‖xn+ – p‖ ≤ αn
∥∥f (xn) – p

∥∥ + βn‖xn – p‖ + γn‖Snyn – p‖
≤ αnβ‖xn – p‖ + αn

∥
∥f (p) – p

∥
∥ + βn‖xn – p‖ + γn‖yn – p‖

≤ (
 – αn( – β)

)‖xn – p‖ + αn
∥∥f (p) – p

∥∥ + ‖en‖

≤ max

{
‖xn – p‖,

‖f (p) – p‖
 – β

}
+ ‖en‖.

It follows that ‖xn – p‖ ≤ max{‖x – p‖, ‖f (p)–p‖
–β

} +
∑∞

n= ‖en‖. This shows that {xn} is
bounded, so are {yn} and {zn}. Let λn = xn+–βnxn

–βn
. It follows that

λn+ – λn =
αn+f (xn+) + γn+Sn+yn+

 – βn+
–

αnf (xn) + γnSnyn

 – βn

=
αn+(f (xn+) – Sn+yn+) + ( – βn+)Sn+yn

 – βn+

–
αn(f (xn) – Snyn) + ( – βn)Snyn

 – βn

=
αn+(f (xn+) – Sn+yn+)

 – βn+
–

αn(f (xn) – Snyn)
 – βn

+ Sn+yn+ – Snyn.

Hence, we have

‖λn+ – λn‖ ≤ αn+‖f (xn+) – Sn+yn+‖
 – βn+

+
αn‖f (xn) – Snyn‖

 – βn

+ ‖Sn+yn+ – Snyn‖. (.)
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Since zn = Trn xn, we find that F(zn, z) + 
rn

〈z – zn, zn – xn〉 ≥ , ∀z ∈ C and F(zn+, z) +


rn+
〈z – zn+, zn+ – xn+〉 ≥ , ∀z ∈ C. It follows that F(zn, zn+) + 

rn
〈zn+ – zn, zn – xn〉 ≥ 

and F(zn+, zn) + 
rn+

〈zn – zn+, zn+ – xn+〉 ≥ , ∀z ∈ C. By using condition (A), we find
that 〈zn+ – zn, zn–xn

rn
– zn+–xn+

rn+
〉 ≥ . Hence, we have

〈
zn+ – zn, zn+ – xn –

rn

rn+
(zn+ – xn+)

〉
≥ ‖zn+ – zn‖.

This implies that 〈zn+ – zn, xn+ – xn + ( – rn
rn+

)(zn+ – xn+)〉 ≥ ‖zn+ – zn‖. Hence, we have

‖zn+ – zn‖ ≤ ‖xn+ – xn‖ +
|rn+ – rn|

rn+
‖Trn+ xn – xn+‖.

It follows that

‖yn+ – yn‖ ≤ ∥∥PC(zn+ – sn+Azn+ + en+) – PC(zn – sn+Azn + en+)
∥∥

+
∥∥PC(zn – sn+Azn + en+) – PC(zn – snAzn + en)

∥∥

≤ ∥∥(I – sn+A)zn+ – (I – sn+A)zn
∥∥

+
∥∥(zn – sn+Azn + en+) – (zn – snAzn + en)

∥∥

≤ ‖zn+ – zn‖ + |sn+ – sn|‖Azn‖ + ‖en+‖ + ‖en‖
≤ ‖xn+ – xn‖ +

|rn+ – rn|
rn+

‖Trn+ xn – xn‖
+ |sn+ – sn|‖Azn‖ + ‖en+‖ + ‖en‖.

This implies that

‖Sn+yn+ – Snyn‖
≤ ‖Sn+yn+ – Sn+yn‖ + ‖Sn+yn – Snyn‖
≤ ‖yn+ – yn‖ + ‖Sn+yn – Snyn‖

≤ ‖xn+ – xn‖ +
|rn+ – rn|

rn+
‖Trn+ xn – xn‖

+ |sn+ – sn|‖Azn‖ + ‖en+‖ + ‖en‖ + |δn+ – δn|‖Syn – yn‖. (.)

Substituting (.) into (.), we find that

‖λn+ – λn‖ – ‖xn+ – xn‖

≤ αn+‖f (xn+) – Sn+yn+‖
 – βn+

+
αn‖f (xn) – Snyn‖

 – βn

+
|rn+ – rn|

rn+
‖Trn+ xn – xn‖

+ |sn+ – sn|‖Azn‖ + ‖en+‖ + ‖en‖ + |δn+ – δn|‖Syn – yn‖.

It follows from conditions (a)-(e) that

lim sup
n→∞

(‖λn+ – λn‖ – ‖xn+ – xn‖
) ≤ .
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By using Lemma ., we see that limn→∞ ‖λn – xn‖ = , which in turn implies that

lim
n→∞‖xn+ – xn‖ = . (.)

Since Trn is firmly nonexpansive, we find that

‖zn – p‖ = ‖Trn xn – Trn p‖

≤ 〈xn – p, zn – p〉

=


(‖xn – p‖ + ‖zn – p‖ – ‖xn – zn‖).

That is,

‖zn – p‖ ≤ ‖xn – p‖ – ‖xn – zn‖.

It follows that

‖xn+ – p‖ ≤ αn
∥∥f (xn) – p

∥∥ + βn‖xn – p‖ + γn‖Snyn – p‖

≤ αn
∥∥f (xn) – p

∥∥ + βn‖xn – p‖ + γn‖yn – p‖

≤ αn
∥
∥f (xn) – p

∥
∥ + βn‖xn – p‖ + γn‖zn – p‖ + fn

≤ αn
∥
∥f (xn) – p

∥
∥ + ‖xn – p‖ – γn‖xn – zn‖ + fn,

where fn = ‖en‖(‖en‖ + ‖zn – p‖). This further implies that

γn‖xn – zn‖ ≤ αn
∥∥f (xn) – p

∥∥ + ‖xn – p‖ – ‖xn+ – p‖ + fn

≤ αn
∥∥f (xn) – p

∥∥ +
(‖xn – p‖ + ‖xn+ – p‖)‖xn – xn+‖ + fn.

By using conditions (a) and (b), we find from (.) that

lim
n→∞‖zn – xn‖ = . (.)

Since A is α-inverse-strongly monotone, we find that

‖yn – p‖ ≤ ∥
∥(zn – snAzn) – (p – snAp) + en

∥
∥

≤ ∥
∥(zn – p) – sn(Azn – Ap)

∥
∥ + fn

≤ ‖xn – p‖ – sn(αn – sn)‖Azn – Ap‖ + fn.

It follows that

‖xn+ – p‖ ≤ αn
∥
∥f (xn) – p

∥
∥ + βn‖xn – p‖ + γn‖Snyn – p‖

≤ αn
∥
∥f (xn) – p

∥
∥ + βn‖xn – p‖ + γn‖yn – p‖

≤ αn
∥
∥f (xn) – p

∥
∥ + ‖xn – p‖ – sn(α – sn)γn‖Azn – Ap‖ + fn.
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This yields that

sn(α – sn)γn‖Azn – Ap‖ ≤ αn
∥∥f (xn) – p

∥∥ + ‖xn – p‖ – ‖xn+ – p‖ + fn.

By using (.), we find from conditions (a), (c) and (d) that

lim
n→∞‖Azn – Ap‖ = . (.)

Since PC is firmly nonexpansive, we find that

‖yn – p‖ ≤ 〈
(I – snA)zn + en – (I – snA)p, yn – p

〉

=


{∥∥(I – snA)zn + en – (I – snA)p

∥∥ + ‖yn – p‖

–
∥
∥(I – snA)zn + en – (I – snA)p – (yn – p)

∥
∥}

≤ 

{‖zn – p‖ + fn + ‖yn – p‖ –

∥
∥zn – yn –

(
sn(Azn – Ap) – en

)∥∥}

=


{‖zn – p‖ + fn + ‖yn – p‖ – ‖zn – yn‖

+ 
〈
zn – yn, sn(Azn – Ap) – en

〉
–

∥
∥sn(Azn – Ap) – en

∥
∥}

≤ 

{‖xn – p‖ + fn + ‖yn – p‖ – ‖zn – yn‖

+ ‖zn – yn‖
∥
∥sn(Azn – Ap) – en

∥
∥ –

∥
∥sn(Azn – Ap) – en

∥
∥},

which yields that

‖yn – p‖ ≤ ‖xn – p‖ + fn – ‖zn – yn‖ + sn‖zn – yn‖‖Azn – Ap‖
+ ‖zn – yn‖‖en‖.

It follows that

‖xn+ – p‖ ≤ αn
∥
∥f (xn) – p

∥
∥ + βn‖xn – p‖ + γn‖Snyn – p‖

≤ αn
∥∥f (xn) – p

∥∥ + βn‖xn – p‖ + γn‖yn – p‖

≤ αn
∥∥f (xn) – p

∥∥ + ‖xn – p‖ + fn – γn‖zn – yn‖

+ snγn‖zn – yn‖‖Azn – Ap‖ + ‖zn – yn‖‖en‖.

This in turn leads to

γn‖zn – yn‖ ≤ αn
∥∥f (xn) – p

∥∥ + ‖xn – p‖ – ‖xn+ – p‖ + fn

+ snγn‖zn – yn‖‖Azn – Ap‖ + ‖zn – yn‖‖en‖.

By use of (.) and (.), we find from restrictions (a), (b), (c) and (e) that

lim
n→∞‖zn – yn‖ = . (.)



Bin Dehaish et al. Journal of Inequalities and Applications  (2015) 2015:51 Page 9 of 14

On the other hand, we have

γn‖Snyn – xn‖ ≤ ‖xn+ – xn‖ + αn
∥∥xn – f (xn)

∥∥.

By using conditions (a) and (b), we find from (.) that

lim
n→∞‖xn – Snyn‖ = . (.)

Since Sn is nonexpansive, we find that

‖Snxn – xn‖ ≤ ‖Snxn – Snyn‖ + ‖Snyn – xn‖
≤ ‖xn – zn‖ + ‖zn – yn‖ + ‖Snyn – xn‖.

It follows from (.), (.) and (.) that

lim
n→∞‖xn – Snxn‖ = . (.)

Notice that

‖Sxn – xn‖ ≤ ∥
∥Sxn –

(
δnxn + ( – δn)Sxn

)∥∥ + ‖Snxn – xn‖
≤ δn‖Sxn – xn‖ + ‖Snxn – xn‖.

By using condition (c), we find that

lim
n→∞‖xn – Sxn‖ = . (.)

Now, we are in a position to show lim supn→∞〈f (q) – q, xn – q〉 ≤ , where q = P�f (q). To
show it, we can choose a subsequence {xni} of {xn} such that

lim sup
n→∞

〈
f (q) – q, xn – q

〉
= lim

i→∞
〈
f (q) – q, xni – q

〉
.

Since {xni} is bounded, we can choose a subsequence {xnij
} of {xni} which converges weakly

to some point x̄. We may assume, without loss of generality, that {xni} converges weakly
to x̄.

Next, we prove x̄ ∈ �. First, we show x ∈ EP(F). Notice that

F(yn, y) +

rn

〈y – yn, yn – xn〉 ≥ , ∀y ∈ C.

By using condition (A), we see that 
rn

〈y – yn, yn – xn〉 ≥ F(y, yn), ∀y ∈ C. Replacing n by
ni, we arrive at

〈
y – yni ,

yni – xni

rni

〉
≥ F(y, yni ), ∀y ∈ C.

By using (.) and (.), we find that {yni} converges weakly to x̄. It follows that  ≥ F(y, x̄).
For each t with  < t ≤ , let zt = tz + ( – t)x̄, where z ∈ C. It follows that zt ∈ C. Hence,
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we have F(zt , x̄) ≤ . It follows that

 = F(zt , zt) ≤ tF(zt , z) + ( – t)F(zt , x̄) ≤ tF(zt , z),

which yields that F(zt , z) ≥ , ∀z ∈ C. Letting t ↓ , we obtain from condition (A) that
F(x̄, z) ≥ , ∀z ∈ C. This implies that x̄ ∈ EP(F).

Next, we show that x̄ ∈ VI(C, A). Let T be a maximal monotone mapping defined by

Tx =

⎧
⎨

⎩
Ax + NCx, x ∈ C,

∅, x /∈ C.

For any given (x, y) ∈ Graph(T), we have y – Ax ∈ NCx. Since yn ∈ C, we have 〈x – yn, y –
Ax〉 ≥ . Since yn = PC(zn – snAzn + en), we see that 〈x – yn, yn – (I – snA)zn – en〉 ≥  and
hence

〈
x – yn,

yn – zn – en

sn
+ Azn

〉
≥ .

It follows that

〈x – yni , y〉 ≥ 〈x – yni , Ax〉

≥ 〈x – yni , Ax〉 –
〈
x – yni ,

yni – zni – eni

sni

+ Azni

〉

= 〈x – yni , Ax – Ayni〉 + 〈x – yni , Ayni – Azni〉

–
〈
x – yni ,

yni – zni – eni

sni

〉

≥ 〈x – yni , Ayni – Azni〉 –
〈
x – yni ,

yni – zni – eni

sni

〉
.

Since A is Lipschitz continuous, we see that 〈x – x̄, y〉 ≥ . Notice that T is maximal mono-
tone and hence  ∈ Tx̄. This shows that x̄ ∈ VI(C, A). By using Lemma ., we find that
x̄ ∈ F(S). It follows that lim supn→∞〈f (q) – q, xn – q〉 ≤ ,

‖xn+ – q‖

≤ αn
〈
f (xn) – q, xn+ – q

〉
+ βn‖xn – q‖‖xn+ – q‖ + γn‖Snyn – q‖‖xn+ – q‖

≤ αn
〈
f (xn) – f (q), xn+ – q

〉
+ αn

〈
f (q) – q, xn+ – q

〉
+ βn‖xn – x̄‖‖xn+ – q‖

+ γn
(‖xn – q‖ + en

)‖xn+ – q‖

≤ αnβ + βn + γn


(‖xn – q‖ + ‖xn+ – q‖) + αn

〈
f (q) – q, xn+ – q

〉
+ en‖xn+ – q‖.

It follows that

‖xn+ – q‖ ≤ (
 – αn( – β)

)‖xn – q‖ + αn
〈
f (q) – q, xn+ – q

〉
+ Knen,

where K = supn≥{‖xn – q‖}. By using Lemma ., we find that limn→∞ ‖xn – q‖ = . This
completes the proof. �
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For nonexpansive mappings, we have the following result.

Corollary . Let C be a closed convex subset of a real Hilbert space H . Let A : C → H be
an α-inverse-strongly monotone mapping, and let F be a bifunction from C × C to R which
satisfies (A)-(A). Let S : C → H be nonexpansive, and let f be a β-contraction on H .
Assume that � = F(S) ∩ VI(C, A) ∩ EP(F) = ∅. Let {rn} and {sn} be positive real number se-
quences. Let {αn}, {βn} and {γn} be real number sequences in (, ) such that αn + βn + γn = .
Let {xn} be a sequence generated in the following process:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x ∈ H ,

F(zn, z) + 
rn

〈z – zn, zn – xn〉 ≥ , ∀z ∈ C,

yn = PC(zn – snAzn + en),

xn+ = αnf (xn) + βnxn + γnSyn,

where {en} is a sequence in H . Assume that the control sequences satisfy the following con-
ditions:

(a) limn→∞ αn =  and
∑∞

n= αn = ∞;
(b)  < lim infn→∞ βn ≤ lim supn→∞ βn < ;
(c)

∑∞
n= ‖en‖ < ∞;

(d) limn→∞ |rn+ – rn| =  and lim infn→∞ rn > ;
(e) limn→∞ |sn+ – sn| = ,  < s ≤ sn ≤ s′ < α,

where s, s′ are real constants. Then {xn} converges strongly to q, which is also a unique
solution to the variational inequality

〈
f (x) – x, x – y

〉 ≥ , ∀y ∈ C.

Further, if S is an identity, we have the following result.

Corollary . Let C be a closed convex subset of a real Hilbert space H . Let A : C → H be
an α-inverse-strongly monotone mapping, and let F be a bifunction from C × C to R which
satisfies (A)-(A). Let f be a β-contraction on H . Assume that � = VI(C, A) ∩ EP(F) = ∅.
Let {rn} and {sn} be positive real number sequences. Let {αn}, {βn} and {γn} be real number
sequences in (, ) such that αn +βn +γn = . Let {xn} be a sequence generated in the following
process:

⎧
⎪⎪⎨

⎪⎪⎩

x ∈ H ,

F(zn, z) + 
rn

〈z – zn, zn – xn〉 ≥ , ∀z ∈ C,

xn+ = αnf (xn) + βnxn + γnPC(zn – snAzn + en),

where {en} is a sequence in H . Assume that the control sequences satisfy the following con-
ditions:

(a) limn→∞ αn =  and
∑∞

n= αn = ∞;
(b)  < lim infn→∞ βn ≤ lim supn→∞ βn < ;
(c)

∑∞
n= ‖en‖ < ∞;

(d) limn→∞ |rn+ – rn| =  and lim infn→∞ rn > ;
(e) limn→∞ |sn+ – sn| = ,  < s ≤ sn ≤ s′ < α,
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where s, s′ are real constants. Then {xn} converges strongly to q, which is also a unique
solution to the variational inequality

〈
f (x) – x, x – y

〉 ≥ , ∀y ∈ C.

Putting F(x, y) =  and rn = , we find the following result.

Corollary . Let C be a closed convex subset of a real Hilbert space H . Let A : C → H be
an α-inverse-strongly monotone mapping. Let S : C → H be a κ-strictly pseudocontractive
mapping, and let f be a β-contraction on H . Assume that � = F(S) ∩ VI(C, A) = ∅. Let {sn}
be a positive real number sequence. Let {αn}, {βn}, {γn} and {δn} be real number sequences
in (, ) such that αn + βn + γn = . Let {xn} be a sequence generated in the following process:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x ∈ H ,

zn = PCxn,

yn = PC(zn – snAzn + en),

xn+ = αnf (xn) + βnxn + γn(δnyn + ( – δn)Syn),

where {en} is a sequence in H . Assume that the control sequences satisfy the following con-
ditions:

(a) limn→∞ αn =  and
∑∞

n= αn = ∞;
(b)  < lim infn→∞ βn ≤ lim supn→∞ βn < ;
(c)

∑∞
n= ‖en‖ < ∞, limn→∞ |δn+ – δn| =  and κ ≤ δn ≤ δ < ;

(d) limn→∞ |sn+ – sn| = ,  < s ≤ sn ≤ s′ < α,
where δ, s, s′ are real constants. Then {xn} converges strongly to q, which is also a unique
solution to the variational inequality

〈
f (x) – x, x – y

〉 ≥ , ∀y ∈ C.

Corollary . Let C be a closed convex subset of a real Hilbert space H . Let F be a bifunc-
tion from C × C to R which satisfies (A)-(A). Let S : C → H be a κ-strict pseudocontrac-
tion, and let f be a β-contraction on H . Assume that � = F(S) ∩ EP(F) = ∅. Let {rn} be a
positive real number sequence. Let {αn}, {βn}, {γn} and {δn} be real number sequences in
(, ) such that αn + βn + γn = . Let {xn} be a sequence generated in the following process:

⎧
⎪⎪⎨

⎪⎪⎩

x ∈ H ,

F(zn, z) + 
rn

〈z – zn, zn – xn〉 ≥ , ∀z ∈ C,

xn+ = αnf (xn) + βnxn + γn(δnzn + ( – δn)Szn),

where {en} is a sequence in H . Assume that the control sequences satisfy the following con-
ditions:

(a) limn→∞ αn =  and
∑∞

n= αn = ∞;
(b)  < lim infn→∞ βn ≤ lim supn→∞ βn < ;
(c)

∑∞
n= ‖en‖ < ∞, limn→∞ |δn+ – δn| =  and κ ≤ δn ≤ δ < ;

(d) limn→∞ |rn+ – rn| =  and lim infn→∞ rn > ,
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where δ is a real constant. Then {xn} converges strongly to q, which is also a unique solution
to the variational inequality

〈
f (x) – x, x – y

〉 ≥ , ∀y ∈ C.

Remark . Comparing Theorem ., Corollaries .-. with Theorems IT, TT and the
corresponding results in [–], we have the following.

(a) We extend the nonlinear mapping from the class of nonexpansive mappings to the
class of κ-strictly pseudocontractive mappings.

(b) Possible computation errors are taken into account.
(c) The conditions imposed on control sequences {αn} and {sn} are relaxed.
(d) The common element is also a unique solution of variational inequality (.).

Theorem . Let C be a closed convex subset of a real Hilbert space H . Let A : C → H be
an α-inverse-strongly monotone mapping, and let f be a β-contraction on H . Assume that
VI(C, A) = ∅. Let {sn} be a positive real number sequence. Let {αn}, {βn} and {γn} be real
number sequences in (, ) such that αn + βn + γn = . Let {xn} be a sequence generated in
x ∈ C, xn+ = αnf (xn) +βnxn +γnyn, where yn = PC(xn – snAxn + en), where {en} is a sequence
in H . Assume that the control sequences satisfy the following conditions:

(a) limn→∞ αn =  and
∑∞

n= αn = ∞;
(b)  < lim infn→∞ βn ≤ lim supn→∞ βn < ;
(c)

∑∞
n= ‖en‖ < ∞, limn→∞ |sn+ – sn| = ,  < s ≤ sn ≤ s′ < α,

where s and s′ are real constants. Then {xn} converges strongly to q = PVI(C,A)f (q).

Remark . To construct a mathematical model which is as close as possible to a real
complex problem, we often have to use more than one constraint. Solving such problems,
we have to obtain some solution which is simultaneously the solution of two or more
subproblems. This is a common problem in diverse areas of mathematics and physical
sciences. It consists of trying to find a solution satisfying certain constraints. In this pa-
per, we investigate the problem of solving common solutions of an equilibrium problem,
a variational inequality problem and a fixed point problem of a strictly pseudocontractive
mapping based on a regularization projection algorithm. Possible computation errors are
also taken into account. Strong convergence theorems are established without compact
assumptions and additional metric projections in the framework of real Hilbert spaces.
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