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Abstract
It is well known that a normed space is uniformly convex (smooth) if and only if its
dual space is uniformly smooth (convex). We extend the notions of uniform convexity
(smoothness) from normed spaces to countably normed spaces ‘in which there is a
countable number of compatible norms’. We get some fundamental links between
Lindenstrauss duality formulas. A duality property between uniform convexity and
uniform smoothness of countably normed spaces is also given. Moreover, based on
the compatibility of those norms, it is interesting to show that ‘from any point in a real
uniformly convex complete countably normed space, the nearest point to a nonempty
convex closed subset of the space is the same for all norms’, which is helpful in
further studies for fixed points.

1 Introduction
Definition . (Uniformly convex space [–]) A normed linear space E is called uni-
formly convex if for any ε ∈ (, ] there exists a δ = δ(ε) >  such that if x, y ∈ E with ‖x‖ = ,
‖y‖ =  and ‖x – y‖ ≥ ε then ‖ 

 (x + y)‖ ≤  – δ.

Definition . (Modulus of convexity [–]) Let E be a normed linear space with dim E ≥
. The modulus of convexity of E is the function δE : (, ] → [, ] defined by

δE(ε) := inf

{
 –

∥∥∥∥x + y


∥∥∥∥ : ‖x‖ ≤ ,‖y‖ ≤ ;‖x – y‖ ≥ ε

}
.

Definition . (Uniformly smooth space [–]) A normed linear space E is said to be
uniformly smooth if whenever given ε >  there exists δ >  such that if ‖x‖ =  and ‖y‖ ≤ δ

then

‖x + y‖ + ‖x – y‖ <  + ε‖y‖.

Definition . (Modulus of smoothness [–]) Let E be a normed linear space with
dim E ≥ . The modulus of smoothness of E is the function ρE : [,∞) → [,∞) defined by

ρE(τ ) := sup

{‖x + y‖ + ‖x – y‖


–  : ‖x‖ = ;‖y‖ = τ

}

= sup

{‖x + τy‖ + ‖x – τy‖


–  : ‖x‖ =  = ‖y‖
}

.
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Let K be a nonempty convex subset of a real normed linear space E. For strict contrac-
tion self-mappings of K into itself, with a fixed point in K , a well known iterative method
‘the celebrated Picard method’ has successfully been employed to approximate such fixed
points. If, however, the domain of a mapping is a proper subset of E (and this is the case
in several applications), and it maps K into E, this iteration method may not be well de-
fined. In this situation, for Hilbert spaces and uniformly convex uniformly smooth Banach
spaces, this problem has been overcome by the introduction of the metric projection in the
recursion formulas (see, for example, [–]).

Definition . (Metric projection [, , , ]) Let E be a real uniformly convex and
uniformly smooth Banach space, K be a nonempty proper subset of E. The operator
PK : E → K is called a metric projection operator if it assigns to each x ∈ E its nearest
point x̄ ∈ K , which is the solution of the minimization problem

PK x = x̄; x̄: ‖x – x̄‖ = inf
ξ∈K

‖x – ξ‖.

It is our purpose in this paper to extend the notion of uniform convexity and uniform
smoothness of Banach spaces to countably normed spaces. Moreover, by extending some
theorems to the case of uniformly convex uniformly smooth countably normed spaces,
we prove the existence and uniqueness of nearest points in these spaces. Our theorems
generalize some results of [, , ].

2 Preliminaries
Definition . (Countably normed space [, ]) Two norms ‖ · ‖ and ‖ · ‖ in a linear
space E are said to be compatible if, whenever a sequence {xn} in E is Cauchy with respect
to both norms and converges to a limit x ∈ E with respect to one of them, it also converges
to the same limit x with respect to the other norm. A linear space E equipped with a
countable system of compatible norms ‖ · ‖n is said to be countably normed. One can
prove that every countably normed linear space becomes a topological linear space when
equipped with the topology generated by the neighborhood base consisting of all sets of
the form

Ur,ε =
{

x : x ∈ E;‖x‖ < ε, . . . ,‖x‖r < ε
}

for some number ε >  and positive integer r.

Remark . ([]) By considering the new norms ‖|x‖|n = maxn
i= ‖x‖i we may assume that

the sequence of norms {‖ · ‖n; n = , , . . .} is increasing, i.e.,

‖x‖ ≤ ‖x‖ ≤ · · · ≤ ‖x‖n ≤ · · · , ∀x ∈ E.

If E is a countably normed space, the completion of E in the norm ‖ ·‖n is denoted by En.
Then, by definition, En is a Banach space. Also in the light of Remark ., we can assume
that

E ⊂ · · · ⊂ En+ ⊂ En ⊂ · · · ⊂ E.
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Proposition . ([]) Let E be a countably normed space. Then E is complete if and only
if E =

⋂∞
n= En.

Each Banach space En has a dual, which is a Banach space and denoted by E∗
n .

Proposition . ([]) The dual of a countably normed space E is given by E∗ =
⋃∞

n= E∗
n

and we have the following inclusions:

E∗
 ⊂ · · · ⊂ E∗

n ⊂ E∗
n+ ⊂ · · · ⊂ E∗.

Moreover, for f ∈ E∗
n we have ‖f ‖n ≥ ‖f ‖n+.

Remark . A countably normed space is metrizable and its metric d can be defined by
d(x, y) =

∑∞
i=


i

‖x–y‖i
+‖x–y‖i

.

Example . An example of a countably normed space is the space of entire functions
that are analytic in the unit disc |z| <  with the topology of the uniform convergence on
any closed subset of the disc and with the collection of norms ‖x(z)‖n = max|z|≤– 

n
|x(z)|.

Example . For  < p < ∞, the space �p+ :=
⋂

q>p �q is a countably normed space. In fact,
one can easily see that �p+ =

⋂
n �pn for any choice of a monotonic decreasing sequence

{pn} converging to p. Using Proposition . and the fact that �pn is Banach for every n, it
is clear now that the countably normed space �p+ is complete.

3 Main results
In this section, we give new definitions and prove our main theorems.

Definition . A countably normed space E is said to be uniformly convex if (Ei,‖ · ‖i)
is uniformly convex for all i, i.e., if for each i, ∀ε > , ∃δi(ε) >  such that if x, y ∈ Ei with
‖x‖i =  = ‖y‖i and ‖x – y‖i ≥ ε, then  – ‖ x+y

 ‖i > δi.

If inf δi > , then one may call the space E equi-uniformly convex.

Definition . A countably normed space E is said to be uniformly smooth if (Ei,‖ · ‖i) is
uniformly smooth for all i, i.e., if for each i whenever given ε >  there exists δi >  such
that if ‖x‖i =  and ‖y‖i ≤ δi then

‖x + y‖i + ‖x – y‖i <  + ε‖y‖i.

Proposition . A countably normed linear space E is uniformly convex if and only if for
each i we have δEi (ε) >  for all ε ∈ (, ].

Proof Assume that (Ei,‖ · ‖i) is uniformly convex for all i. Then, for each i, given ε > 
there exists δi >  such that δi ≤  – ‖ x+y

 ‖i for every x and y in Ei such that ‖x‖i =  = ‖y‖i

and ‖x – y‖i ≥ ε. Therefore δEi (ε) ≥ δi >  for all i.
Conversely, assume that for each i, δEi (ε) >  for all ε ∈ (, ]. Fix ε ∈ (, ] and take

x, y in Ei with ‖x‖i =  = ‖y‖i and ‖x – y‖i ≥ ε, then  < δEi (ε) ≤  – ‖ x+y
 ‖i and therefore
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‖ x+y
 ‖i ≤  –δi with δi = δEi (ε) which does not depend on x or y. Then (Ei,‖ ·‖i) is uniformly

convex for all i and hence the countably normed space E is uniformly convex. �

In Proposition ., we showed the conditions of equivalence to uniform convexity of
countably normed spaces, and now in Theorem ., we show the conditions of equivalence
to uniform smoothness of countably normed spaces.

Theorem . A countably normed space E is uniformly smooth if and only if

lim
t→+

ρEi (t)
t

= , ∀i.

Proof Assume that (Ei,‖ · ‖i) is uniformly smooth for each i and if ε > , then there exists
δi >  such that ‖x+y‖i+‖x–y‖i

 –  < ε
‖y‖i for every x, y in Ei with ‖x‖i =  and ‖y‖i = δi. This

implies that for each i, we have ρEi (t) < ε
 t for every t < δi.

Conversely, for each i, given ε >  suppose that there exists δi >  such that ρEi (t)
t < ε

 for
every t < δi. Let x, y be in Ei such that ‖x‖i =  and ‖y‖i = δi. Then with t = ‖y‖i we have
‖x + y‖i + ‖x – y‖i <  + ε‖y‖i. Then (Ei,‖ · ‖i) is uniformly smooth for all i and hence the
countably normed space E is uniformly smooth. �

Now, we prove one of the fundamental links between the Lindenstrauss duality formu-
las.

Proposition . Let E be a countably normed space and for each n, let En be the completion
of E in the norm ‖ · ‖n. Then for each i we have: for every τ > , x ∈ Ei, ‖x‖i = , and x∗ ∈ E∗

i

with ‖x∗‖i = ,

ρEi (τ ) = sup

{
τε


– δE∗

i
(ε) :  < ε ≤ 

}
.

Proof Let τ >  and let x∗, y∗ ∈ E∗
i with ‖x∗‖i = ‖y∗‖i = . For any η > , from the definition

of ‖ · ‖i in E∗
i there exist x, y ∈ Ei with ‖x‖i = ‖y‖i =  such that

∥∥x∗ + y∗∥∥
i – η ≤ 〈

x, x∗ + y∗〉
i,

∥∥x∗ – y∗∥∥
i – η ≤ 〈

y, x∗ – y∗〉
i.

Using these two inequalities together with the fact that in Banach spaces we have ‖x‖i =
sup{|〈x, x∗〉i| : ‖x∗‖i = }, we have

∥∥x∗ + y∗∥∥
i + τ

∥∥x∗ – y∗∥∥
i – 

≤ 〈
x, x∗ + y∗〉

i + τ
〈
y, x∗ – y∗〉

i –  + η( + τ )

=
〈
x + τy, x∗〉

i +
〈
x – τy, y∗〉

i –  + η( + τ )

≤ ‖x + τy‖i + ‖x – τy‖i –  + η( + τ )

≤ sup
{‖x + τy‖i + ‖x – τy‖i –  : ‖x‖i = ‖y‖i = 

}
+ η( + τ )

= ρEi (τ ) + η( + τ ).
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If  < ε ≤ ‖x∗ – y∗‖i ≤ , then we have

τε


– ρEi (τ ) –

η


( + τ ) ≤  –

∥∥∥∥x∗ + y∗



∥∥∥∥
i
,

which implies that

τε


– ρEi (τ ) –

η


( + τ ) ≤ δE∗

i
(ε).

Since η is arbitrary we conclude that

τε


– ρEi (τ ) ≤ δE∗

i
(ε), ∀ε ∈ (, ]

�⇒ sup

{
τε


– δE∗

i
(ε) : ε ∈ (, ]

}
≤ ρEi (τ ).

On the other hand, let x, y be in Ei with ‖x‖i = ‖y‖i =  and let τ > . By the Hahn-Banach
theorem there exist x∗

, y∗
 ∈ E∗

i with ‖x∗
‖i = ‖y∗

‖i =  and such that

〈
x + τy, x∗


〉
i = ‖x + τy‖i,

〈
x – τy, y∗


〉
i = ‖x – τy‖i.

Then

‖x + τy‖i + ‖x – τy‖i –  =
〈
x + τy, x∗


〉
i +

〈
x – τy, y∗


〉
i – 

=
〈
x, x∗

 + y∗

〉
i + τ

〈
y, x∗

 – y∗

〉
i – 

≤ ∥∥x∗
 + y∗


∥∥

i + τ
∣∣〈y, x∗

 – y∗

〉
i

∣∣ – .

Hence, if we define ε := |〈y, x∗
 – y∗

〉i|, then  < ε ≤ ‖x – y‖i ≤  and

‖x + τy‖i + ‖x – τy‖i


–  ≤ ‖x∗

 + y∗
‖i + τ |〈y, x∗

 – y∗
〉i|


– 

=
τε


–

(
 –

‖x∗
 + y∗

‖i



)

≤ τε


– δE∗

i
(ε)

≤ sup

{
τε


– δE∗

i
(ε) :  < ε ≤ 

}
.

Therefore,

ρEi (τ ) ≤ sup

{
τε


– δE∗

i
(ε) :  < ε ≤ 

}
. �

The following two theorems give or determine some duality property concerning uni-
form convexity and uniform smoothness of countably normed spaces.

Theorem . Let E be a countably normed space, then

E is uniformly smooth ⇐⇒ E∗
i is uniformly convex for all i.
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Proof We will prove both directions by contradiction.

‘�⇒’ Assume that (E∗
i ,‖ · ‖i ) is not uniformly convex for some i. Therefore, δE∗

i
(ε) = 

for some ε ∈ (, ]. Using Proposition ., we get for any τ > ,

 <
ε


≤ ρEi

(τ )
τ

, hence lim
τ

ρEi
(τ )

τ
�= ,

which shows that E is not uniformly smooth.
‘⇐�’ Assume that E is not uniformly smooth, then

∃i: lim
t→+

ρEi (t)

t
�= ,

this means that there exists ε >  such that for every δ >  we can find tδ with  < tδ < δ

and ρEi
(tδ) ≥ tδε. Consequently, one can choose a sequence (τn) such that  < τn < ,

τn → , and ρEi
(τn) ≥ ετn > ε

τn. Using Proposition ., for every n there exists εn ∈
(, ] such that

ε


τn ≤ τnεn


– δE∗

i
(εn),

which implies

 < δE∗
i

(εn) ≤ τn


(εn – ε),

in particular ε < εn and δE∗
i

(εn) → . Recalling the fact that δE∗ is a nondecreasing
function we get δE∗

i
(ε) ≤ δE∗

i
(εn) → . Therefore E∗ is not uniformly convex. �

The proof of the following theorem is easy.

Theorem . Let E be a countably normed space, then

E is uniformly convex ⇐⇒ E∗
i is uniformly smooth for all i.

The following example is a direct application on the previous theorems.

Example . (Uniformly convex and uniformly smooth countably normed space) It is well
known that the space � = {(xn) : xn ∈ R,∀n ∈ N,

∑∞
n= |xn| < ∞} with the norm ‖(xn)‖ =√∑∞

n= |xn| is uniformly convex normed space. Besides, it is uniformly smooth, because
(�)∗ = �.

On �, we define a countable number of seminorms by pi,i+((xn)) =
√

x
i + x

i+, where
i = , , , . . . . Also defining a countable number of compatible norms on � by ‖(xn)‖i =
pi,i+((xn)) + ‖(xn)‖. Then (�, {‖ · ‖i, i = , , , . . .}) is a countably normed space.

Now, it is clear that (�, {‖ · ‖i, i = , , , . . .}) is uniformly smooth (convex) countably
normed space, as its completion �

i = (�,‖ · ‖i) is uniformly smooth (convex) complete
normed space for all i.

Moreover, ρ�
i
(t) ≤ ρ�

pi,i+
(t) + ρ� (t). Then limt→+

ρ
� (t)

t =  because (�,‖ · ‖) is uni-

formly smooth normed space. Also limt→+

ρ
�pi,i+

(t)

t =  because (�, pi,i+) looks like R
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with the Euclidean norm and it is uniformly smooth although (�, pi,i+) is seminormed
space. Therefore,

lim
t→+

ρ�
i
(t)

t
= , ∀i.

Proposition . Let E be a countably normed space, {xn} be a sequence in E. Then {xn} is
a Cauchy sequence in (E, d) if and only if it is a Cauchy sequence in (E,‖ · ‖i) for all i. We
have

d(xn, xm) =
∞∑
i=


i

‖xn – xm‖i

 + ‖xn – xm‖i
→  ⇐⇒ ‖xn – xm‖i → , ∀i.

Proof The first direction is trivial.
Conversely, assume that ‖xn –xm‖i → , ∀i. Then, for each i, ∀ε > , ∃ni: n, m > ni implies

‖xn – xm‖i < ε
 .

∀ε > , ∃i such that
∑∞

i=i+

i < ε

 . Let n = maxi
i= ni, then ∀ε > , ∃n such that ‖xn –

xm‖i < ε
 , ∀i ≤ i, ∀n, m ≥ n. Therefore,

n, m ≥ n �⇒ d(xn, xm) <
i∑
i=


i

‖xn – xm‖i

 + ‖xn – xm‖i
+

ε


<

ε


+

ε


. �

In the following theorem, we establish one of the most important and interesting ge-
ometric property in uniformly convex countably normed spaces, the metric projection
point x̄ ‘the solution of the minimization problem’ is well defined, that is to say, we have
‘existence and uniqueness’ for all norms.

Theorem . Let E be a real uniformly convex complete countably normed space, K be
a nonempty convex proper subset of E such that K is closed in each Ei. Then the metric
projection is well defined on K , i.e.,

∀x ∈ E \ K ,∃!x̄ ∈ K : ‖x – x̄‖i = inf
ξ∈K

‖x – ξ‖i, ∀i.

Claim Let E be a real uniformly convex Banach space. If {xn} is a sequence in E:
(a) limn→∞ ‖xn‖ =  and (b) limn,m→∞ ‖xn + xm‖ = . Then {xn} is a Cauchy sequence in
(E,‖ · ‖).

Proof of the claim Suppose contrarily that the sequence {xn} is not a Cauchy sequence in
(E,‖ · ‖), then

∃ε: ∀N ∈N,∃m, n ∈ N: m, n > N while ‖xn – xm‖ ≥ ε. ()

(E,‖ · ‖) being uniformly convex implies that

∀ε > ,∃δ > : ∀x, y ∈ E: ‖x‖ ≤ ,‖y‖ ≤ ,‖x – y‖ ≥ ε �⇒
∥∥∥∥x + y



∥∥∥∥ ≤  – δ. ()
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Let  ≤ M <  be fixed, then ‖ xn
M ‖ → 

M <  as n → ∞. Then

∃n ∈N: n, m ≥ n �⇒
∥∥∥∥xn

M

∥∥∥∥ ≤ ;
∥∥∥∥xm

M

∥∥∥∥ ≤ ,

now () implies ‖ xn–xm
M ‖ ≥ ε

M > ε
 , ∀n, m ≥ n, i.e., ∀N ≥ n. Hence, () implies

∥∥∥∥xn + xm

M

∥∥∥∥ ≤  – δ �⇒ ‖xn + xm‖ ≤ ( – δ)M, ∀N ≥ n. ()

As N → ∞ �⇒ n, m → ∞, therefore ‖xn + xm‖ →  together with (), we get  ≤ ( –
δ)M. Without loss of generality, we may assume that M → . Then  ≤  – δ, which is
impossible because δ > . This contradiction finishes the proof of the claim. �

Proof of Theorem . Since x /∈ K and K is closed for each i, we have di := infξ∈K ‖x –
ξ‖i > .

That is, there exists a sequence ξ i
n ∈ K : limn ‖x – ξ i

n‖i = di, which implies limn ‖ x–ξ i
n

di
‖i = .

For each i, ui
n :=

x – ξ i
n

di
∈ Ei �⇒ ∥∥ui

n
∥∥

i →  as n → ∞. ()

Since K is convex, then ξ i
n+ξ i

m
 ∈ K , ∀ξ i

n, ξ i
m ∈ K , ∀n, m ∈N. Then

di ≤
∥∥∥∥x –

ξ i
n + ξ i

m


∥∥∥∥
i
=

∥∥∥∥x – ξ i
n


+

x – ξ i
m



∥∥∥∥
i
≤

∥∥∥∥x – ξ i
n



∥∥∥∥
i
+

∥∥∥∥x – ξ i
m



∥∥∥∥
i

�⇒  ≤
∥∥∥∥x – ξ i

n
di

+
x – ξ i

m
di

∥∥∥∥
i
≤

∥∥∥∥x – ξ i
n

di

∥∥∥∥
i
+

∥∥∥∥x – ξ i
m

di

∥∥∥∥
i

�⇒  ≤ ∥∥ui
n + ui

m
∥∥

i ≤ ∥∥ui
n
∥∥

i +
∥∥ui

m
∥∥

i,∥∥ui
n + ui

m
∥∥

i →  as n, m → ∞. ()

From () and (), using the claim, then, for each i, {ui
n} is a Cauchy sequence in Ei, i.e.,

‖ui
n – ui

m‖i → , which gives ‖ ξ i
n–ξ i

m
di

‖i → . Therefore, {ξ i
n} is a Cauchy sequence in K ⊂

E ⊂ Ei. Since Ei is a complete space for each ‖·‖i, for each i, ξ i
n → ξ i ∈ Ei in ‖·‖i as n → ∞.

Compatibility of norms implies that the limit ξ i ∈ Ei is equal to the limit ξ j ∈ Ej for all i �= j,
i.e., for each i, ξ i

n → x̄ ∈ Ei in ‖ · ‖i as n → ∞. Since E is complete, using Proposition .,
E =

⋂
i Ei, therefore there exists x̄ ∈ E such that ξ i

n → x̄ ∈ E. Since K is closed in each
(Ei,‖ · ‖i) and ξ i

n ∈ K , ∀n, we have x̄ ∈ K , hence x – ξ i
n → x – x̄ in each ‖ · ‖i. Using the

continuity of the ‖ · ‖i function, then ‖x – ξ i
n‖i → ‖x – x̄‖i. We know that ‖x – ξ i

n‖i → di,
so from the uniqueness of the limit, we get ‖x – x̄‖i = di: x̄ ∈ K .

Now we prove the uniqueness: Assume that x∗ ∈ K : ‖x – x∗‖i = di and x∗ �= x̄. Since x̄+x∗
 ∈

K , because of the convexity of K ,

di ≤
∥∥∥∥x –

x̄ + x∗



∥∥∥∥
i
≤

∥∥∥∥x – x̄


∥∥∥∥
i
+

∥∥∥∥x – x∗



∥∥∥∥
i
=

di


+

di


= di,

i.e., ‖x– x̄+x∗
 ‖i = di where x̄ �= x̄+x∗

 �= x∗. This contradicts the fact that in a uniformly convex
space E, for all y �= y∗ ∈ B(x, δ) := {x : ‖x – x‖ ≤ δ}, we must have ‖x – y+y∗

 ‖ < δ. �
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