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Abstract
In this paper, we introduce a general iterative method for a split variational inclusion
and nonexpansive semigroups in Hilbert spaces. We also prove that the sequences
generated by the proposed algorithm converge strongly to a common element of
the set of solutions of a split variational inclusion and the set of common fixed points
of one-parameter nonexpansive semigroups, which also solves a class of variational
inequalities as an optimality condition for a minimization problem. Moreover,
a numerical example is given, to illustrate our methods and results, which may be
viewed as a refinement and improvement of the previously known results announced
by many other authors.
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1 Introduction
Let H and H be real Hilbert spaces with inner product 〈·, ·〉 and norm ‖ · ‖, respectively.
Recall that a mapping T : H → H is called nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈ H.

A one-parameter family T := {T(s) :  ≤ s < ∞} is said to be a nonexpansive semigroup
on H if the following conditions are satisfied:

() T()x = x for all x ∈ H;
() T(s + t) = T(s)T(t) for all s, t ≥ ;
() ‖T(s)x – T(s)y‖ ≤ ‖x – y‖, for all x, y ∈ H and s > ;
() for each x ∈ H, the mapping s �→ T(s)x is continuous.

Denote by Fix(T ) the common fixed point set of the semigroup T , i.e., Fix(T ) := {x ∈
H : T(s)x = x,∀s > }. It is well known that Fix(T ) is closed and convex (see Lemma  in
Browder []).

Recently, the fixed point problem of nonexpansive mappings and its iterative methods
have become an attractive subject, and various algorithms have been developed for solving
variational inequalities and equilibrium problems; see [–] and the references therein. In
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, Marino and Xu [] introduced the following general iterative methods to approxi-
mate a fixed point of a nonexpansive mapping:

xn+ = αnγ f (xn) + (I – αnB)Txn, (.)

where αn ∈ [, ] satisfies certain conditions, f is a contraction of H into itself, and B is a
strongly positive bounded linear operator on H. Moreover, they prove that {xn} converges
strongly to x∗ ∈ Fix(T), the unique solution of the following variational inequality:

〈
(B – γ f )x∗, x∗ – w

〉 ≤ , ∀w ∈ Fix(T),

which is also the optimality condition of the minimization problem. Thereafter, Li et al. []
and Cianciaruso et al. [] modified the general iterative method (.) to the case of non-
expansive semigroups and equilibrium problems. To obtain a mean ergodic theorem of
nonexpansive mappings, Shehu [] proposed an iterative method for nonexpansive semi-
groups, variational inclusions, and generalized equilibrium problems.

Recall also that a multi-valued mapping M : H → H is called monotone if, for all x, y ∈
H, u ∈ Mx and v ∈ My such that

〈x – y, u – v〉 ≥ .

A monotone mapping M is maximal if the Graph(M) is not properly contained in the graph
of any other monotone mapping. It is well known that a monotone mapping M is maximal
if and only if for (x, u) ∈ H × H, 〈x – y, u – v〉 ≥  for every (y, v) ∈ Graph(M) implies that
u ∈ Mx.

Let M : H → H be a multi-valued maximal monotone mapping. Then the resolvent
mapping JM

λ : H → H associated with M is defined by

JM
λ (x) := (I + λM)–(x), ∀x ∈ H,

for some λ > , where I stands for the identity operator on H. Note that for all λ >  the
resolvent operator JM

λ is single-valued, nonexpansive, and firmly nonexpansive.
In , Moudafi [] introduced the following split monotone variational inclusion prob-

lem: Find x∗ ∈ H such that

{
 ∈ f(x∗) + B(x∗),
y∗ = Ax∗ ∈ H:  ∈ f(y∗) + B(y∗),

(.)

where B : H → H and B : H → H are multi-valued maximal monotone mappings.
The split monotone variational inclusion problem (.) includes as special cases: the split
common fixed point problem, the split variational inequality problem, the split zero prob-
lem, and the split feasibility problem, which have already been studied and used in practice
as a model in intensity-modulated radiation therapy treatment planning, see e.g. [–].
This formalism is also at the core of the modeling of many inverse problems arising for
phase retrieval and other real-world problems; for instance, in sensor networks in com-
puterized tomography and data compression; see [, ] and the references therein.
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If f ≡  and f ≡ , then problem (.) reduces to the following split variational inclusion
problem: Find x∗ ∈ H such that

{
 ∈ B(x∗),
y∗ = Ax∗ ∈ H:  ∈ B(y∗),

(.)

which constitutes a pair of variational inclusion problems connected with a bounded linear
operator A in two different Hilbert spaces H and H. The solution set of problem (.) is
denoted by Z = {x∗ ∈ H:  ∈ B(x∗), y∗ = Ax∗ ∈ H:  ∈ B(y∗)}.

Very recently, Byrne et al. [] studied the weak and strong convergence of the following
iterative method for problem (.): For given x ∈ H and λ > , compute iterative sequence
{xn} generated by the following scheme:

xn+ = JB
λ

[
xn + εA∗(JB

λ – I
)
Axn

]
. (.)

In , Kazmi and Rizvi [] modified scheme (.) to the case of a split variational
inclusion and the fixed point problem of a nonexpansive mapping. To be more precise,
they proved the following strong convergence theorem.

Theorem KR Let H and H be two real Hilbert spaces and A : H → H be a bounded
linear operator. Let f : H → H be a contraction mapping with constant ρ ∈ (, ) and
T : H → H be a nonexpansive mapping such that � = Fix(T)∩Z �= ∅. For a given x ∈ H

arbitrarily, let the iterative sequences {un} and {xn} be generated by
{

un = JB
λ [xn + εA∗(JB

λ – I)Axn],
xn+ = αnf (xn) + ( – αn)Tun,

(.)

where λ >  and ε ∈ (, /L), L is the spectral radius of the operator A∗A, and A∗ is the
adjoint of A; {αn} is a sequence in (, ) such that limn→∞ αn = ,

∑∞
n= αn = ∞, and

∑∞
n= |αn – αn–| < ∞. Then the sequences {un} and {xn} both converge strongly to z ∈ �,

where z = P�f (z).

Inspired and motivated by research going on in this area, we introduce a modified gen-
eral iterative method for a split variational inclusion and nonexpansive semigroups, which
is defined in the following way:

xn+ = αnγ f (xn) + (I – αnB)

sn

∫ sn


T(s)JB

λ

[
xn + εA∗(JB

λ – I
)
Axn

]
ds, (.)

where γ ∈ [, ] and αn,βn ∈ [, ], B is a strongly positive bounded linear operator on H.
Note that, if γ = , B = I , and T(s) = T , a nonexpansive mapping, scheme (.) reduces
to the approximate method (.), which is mainly due to Byrne et al. [] and has been
applied by Kazmi and Rizvi [].

Our purpose is not only to modify the general iterative method (.) to the case of a split
variational inclusion and nonexpansive semigroups from a nonexpansive mapping, but
also to prove that the sequences generated by the proposed algorithm converge strongly
to a common element of the set of solutions of a split variational inclusion and the set
of common fixed points of one-parameter nonexpansive semigroups, which also solves
a class of variational inequalities as an optimality condition for a minimization problem.



Wen and Chen Journal of Inequalities and Applications  (2015) 2015:24 Page 4 of 14

Moreover, a numerical example is given to illustrate our algorithm and our results, which
improve and extend the corresponding results of [, , , , ] and many others.

2 Preliminaries
Let C be a nonempty, closed, and convex subset of a real Hilbert space H. For every point
x ∈ H, there exists a unique nearest point in C, denoted by PC , such that

‖x – PCx‖ ≤ ‖x – y‖, ∀y ∈ C.

Then PC is called the metric projection of H onto C. It is well known that PC is a nonex-
pansive mapping and the following inequality holds:

〈x – u, y – u〉 ≤ , ∀y ∈ C,

if and only if u = PCx for given x ∈ H and u ∈ C.
Recall that a mapping f : H → H is a contraction, if there exists a constant ρ ∈ (, )

such that

∥∥f (x) – f (y)
∥∥ ≤ ρ‖x – y‖, ∀x, y ∈ H.

Throughout the rest of this paper, we always assume that B is strongly positive; that is,
there is a constant γ >  such that

〈Bx, x〉 ≥ γ ‖x‖, ∀x ∈ H.

A mapping S : H → H is said to be averaged if and only if it can be written as the av-
erage of the identity mapping and a nonexpansive mapping, i.e., S := ( – α)I + αT where
α ∈ (, ) and T : H → H is nonexpansive and I is the identity operator on H. We note
that averaged mappings are nonexpansive. Further, firmly nonexpansive mappings (in par-
ticular, projections on nonempty, closed, and convex subsets and resolvent operators of
maximal monotone operators) are averaged.

In order to prove our main results, we need the following lemmas and propositions.

Lemma . Let H be a real Hilbert space. The following well-known results hold:
(i) ‖x + y‖ ≤ ‖x‖ + 〈y, (x + y)〉, ∀x, y ∈ H;

(ii) ‖tx + ( – t)y‖ = t‖x‖ + ( – t)‖y‖ – t( – t)‖x – y‖, t ∈ [, ], ∀x, y ∈ H.

Lemma . [, ] Let D be a nonempty, bounded, closed, and convex subset of a real
Hilbert space H and let T := {T(s) :  ≤ s < ∞} a nonexpansive semigroup on D, then for
any u ≥ ,

lim
t→∞ sup

x∈D

∥∥∥∥

t

∫ t


T(s)x ds – T(u)


t

∫ t


T(s)x ds

∥∥∥∥ = .

Lemma . [, ] Let S : H → H be averaged and T : H → H be nonexpansive; we
have:

(i) W = ( – α)S + αT is averaged, where α ∈ (, ).
(ii) The composite of finitely many averaged mappings is averaged.
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Lemma . [] The split variational inclusion problem (.) is equivalent to finding x∗ ∈
H such that y∗ = Ax∗ ∈ H: x∗ = JB

λ (x∗) and y∗ = JB
λ (y∗) for some λ > .

Lemma . [] Let B be a strongly positive linear bounded operator on a Hilbert space H

with a coefficient γ >  and  < 	 < ‖B‖–. Then ‖I – 	B‖ ≤  – 	γ .

Lemma . [] Let C be a nonempty, closed, and convex subset of a Hilbert space H.
Assume that f : C → C is a contraction with a coefficient ρ ∈ (, ) and B is a strongly
positive linear bounded operator with a coefficient γ > . Then, for  < γ < γ /ρ ,

〈
x – y, (B – γ f )x – (B – γ f )y

〉 ≥ (γ – γρ)‖x – y‖, ∀x, y ∈ H.

That is, B – γ f is strongly monotone with coefficient γ – γρ .

Lemma . [] Let {an}∞n= be a sequence of nonnegative real numbers such that

an+ ≤ ( – γn)an + γnbn + σn,

where {γn}∞n= ⊂ (, ) and {bn}∞n=, {σn}∞n= are sequences in R such that
(i) limn→∞ γn =  and

∑∞
n= γn = ∞;

(ii) lim supn→∞ bn ≤ ;
(iii) σn ≥  and

∑∞
n= σn < ∞.

Then limn→∞ an = .

3 Main results
Theorem . Let H and H be two real Hilbert spaces, let A : H → H be a bounded
linear operator and B be a strongly positive bounded linear operator on H with constant
γ > . Let B : H → H , B : H → H be maximal monotone mappings and T := {T(s) :
 ≤ s < ∞} be a one-parameter nonexpansive semigroup on H such that Fix(T ) ∩ Z �= ∅.
Assume that f : H → H is a contraction mapping with constant ρ ∈ (, ). For any α ∈
(, ), define the mapping � on H by

�(x) = αγ f (x) + (I – αB)

t

∫ t


T(s)JB

λ

[
x + εA∗(JB

λ – I
)
Ax

]
ds,

where t > , γ ∈ (, γ

ρ
), and ε ∈ (, 

L ), L is the spectral radius of the operator A∗A, and A∗

is the adjoint of A. Then the mapping � is a contraction and has a unique fixed point.

Proof Since JB
λ and JB

λ are firmly nonexpansive, they are averaged. For ε ∈ (, /L), the
mapping I + εA∗(JB

λ – I)A is averaged; see e.g. []. It follows from Lemma .(ii) that the
mapping JB

λ (I + εA∗(JB
λ – I)A) is averaged and hence nonexpansive. By Lemma ., for

any x, y ∈ H, we have

∥∥�(x) – �(y)
∥∥ =

∥∥∥∥αγ f (x) + (I – αB)

t

∫ t


T(s)JB

λ

[
x + εA∗(JB

λ – I
)
Ax

]
ds

– αγ f (y) – (I – αB)

t

∫ t


T(s)JB

λ

[
y + εA∗(JB

λ – I
)
Ay

]
ds

∥∥∥∥
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≤ αγ
∥∥f (x) – f (y)

∥∥ + ( – αγ )
∥∥JB

λ

[
x + εA∗(JB

λ – I
)
Ax

]

– JB
λ

[
y + εA∗(JB

λ – I
)
Ay

]∥∥

≤ αγρ‖x – y‖ + ( – αγ )‖x – y‖
=

[
 – α(γ – γρ)

]‖x – y‖.

It follows from γ ∈ (, γ

ρ
) that � is a contraction mapping. Therefore, by the Banach con-

traction principle, �(x) has a unique fixed point xα , that is,

xα = αγ f (xα) + (I – αB)

t

∫ t


T(s)JB

λ

[
xα + εA∗(JB

λ – I
)
Axα

]
ds. �

Theorem . Let H and H be two real Hilbert spaces, let A : H → H be a bounded
linear operator and B be a strongly positive bounded linear operator on H with con-
stant γ > . Let B : H → H , B : H → H be maximal monotone mappings and
T := {T(s) :  ≤ s < ∞} be a one-parameter nonexpansive semigroup on H such that
� = Fix(T ) ∩ Z �= ∅. Assume that f : H → H is a contraction mapping with constant
ρ ∈ (, ), L is the spectral radius of the operator A∗A, and A∗ is the adjoint of A. For
given x ∈ H, λ > , γ ∈ (, γ

ρ
), and ε ∈ (, 

L ), suppose that the sequences {αn} ⊂ (, )
and {tn} ⊂ (,∞) satisfy:

(i) limn→∞ αn = ,
∑∞

n= αn = ∞, and
∑∞

n= |αn – αn–| < ∞;
(ii) limn→∞ sn = +∞ and limn→∞ |sn–sn–|

sn


αn
= .

Then the sequence {xn} generated by (.) converges strongly to q ∈ �, which is the unique
solution of the following variational inequality:

〈
(B – γ f )q, q – w

〉 ≤ , ∀w ∈ �.

Proof Taking p ∈ � = Fix(T ) ∩ Z , we have p = JB
λ p, Ap = JB

λ (Ap), and T(s)p = p. From
(.), un = JB

λ [xn + εA∗(JB
λ – I)Axn], and Lemma ., we estimate

‖un – p‖ =
∥∥JB

λ

[
xn + εA∗(JB

λ – I
)
Axn

]
– JB

λ p
∥∥

≤ ∥∥xn + εA∗(JB
λ – I

)
Axn – p

∥∥

≤ ‖xn – p‖ + ε
〈
xn – p, A∗(JB

λ – I
)
Axn

〉
+ ε∥∥A∗(JB

λ – I
)
Axn

∥∥. (.)

By the definition of A and A∗, we obtain

ε∥∥A∗(JB
λ – I

)
Axn

∥∥ ≤ ε〈(JB
λ – I

)
Axn, AA∗(JB

λ – I
)
Axn

〉

≤ Lε〈(JB
λ – I

)
Axn,

(
JB
λ – I

)
Axn

〉

= Lε∥∥(
JB
λ – I

)
Axn

∥∥. (.)

Using a similar method to [, Theorem .] and [, Theorem .], we have

� = ε
〈
xn – p, A∗(JB

λ – I
)
Axn

〉

= ε
〈
A(xn – p),

(
JB
λ – I

)
Axn

〉
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= ε
〈
A(xn – p) +

(
JB
λ – I

)
Axn –

(
JB
λ – I

)
Axn,

(
JB
λ – I

)
Axn

〉

= ε
[〈

JB
λ Axn – Ap,

(
JB
λ – I

)
Axn

〉
–

∥∥(
JB
λ – I

)
Axn

∥∥]

≤ ε

[


∥∥(

JB
λ – I

)
Axn

∥∥ –
∥∥(

JB
λ – I

)
Axn

∥∥
]

≤ –ε
∥∥(

JB
λ – I

)
Axn

∥∥.

Combining (.) and (.), we obtain

‖un – p‖ ≤ ‖xn – p‖ + ε(Lε – )
∥∥(

JB
λ – I

)
Axn

∥∥. (.)

Setting wn = 
sn

∫ sn
 T(s)un ds for n ≥ , it follows from ε ∈ (, 

L ) and (.) that

‖wn – p‖ =
∥∥∥∥


sn

∫ sn



[
T(s)un – T(s)p

]
ds

∥∥∥∥ ≤ ‖un – p‖ ≤ ‖xn – p‖. (.)

It follows from (.), (.), and Lemma . that

‖xn+ – p‖ =
∥∥∥∥αn

(
γ f (xn) – Bp

)
+ (I – αnB)


sn

∫ sn



[
T(s)un – T(s)p

]
ds

∥∥∥∥

≤ αn
∥∥γ f (xn) – Bp

∥∥ + ( – αnγ )
∥∥∥∥


sn

∫ sn



[
T(s)un – T(s)p

]
ds

∥∥∥∥

≤ αnγ
∥∥f (xn) – f (p)

∥∥ + αn
∥∥γ f (p) – Bp

∥∥ + ( – αnγ )‖un – p‖
≤ [

 – αn(γ – γρ)
]‖xn – p‖ + αn

∥∥γ f (p) – Bp
∥∥.

By a simple induction, we have

‖xn – p‖ ≤ max

{
‖x – p‖,


γ – γρ

∥∥γ f (p) – Bp
∥∥
}

. (.)

Therefore, {xn} is bounded, and so are {un} and {wn}.
Now, we show that limn→∞ ‖xn+ – xn‖ = . From (.), we have

‖xn+ – xn‖ =
∥∥αnγ

[
f (xn) – f (xn–)

]
+ (αn – αn–)γ f (xn–)

+ (I – αnB)(wn – wn–) – (αn – αn–)Bwn–
∥∥

≤ αnγρ‖xn – xn–‖ + ( – αnγ )‖wn – wn–‖
+ |αn – αn–|

[‖Bwn–‖ + γ
∥∥f (xn–)

∥∥]
. (.)

On the other hand, for p ∈ �, we have

‖wn – wn–‖ =
∥∥∥∥


sn

∫ sn



[
T(s)un – T(s)un–

]
ds

+
(


sn

–


sn–

)∫ sn–



[
T(s)un– – T(s)p

]
ds

+

sn

∫ sn

sn–

[
T(s)un– – T(s)p

]
ds

∥∥∥∥. (.)
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Given that
(


v

–

w

)
w = –

v – w
v

, v, w �= .

It follows from (.) that

‖wn – wn–‖ ≤ ‖un – un–‖ +
(

|sn – sn–|
sn

)
‖un– – p‖. (.)

Moreover, for ε ∈ (, 
L ), mapping JB

λ [I + εA∗(JB
λ – I)A] is averaged and hence nonexpan-

sive, then we have

‖un – un–‖ =
∥∥JB

λ

[
xn + εA∗(JB

λ – I
)
Axn

]
– JB

λ

[
xn– + εA∗(JB

λ – I
)
Axn–

]∥∥

≤ ∥∥JB
λ

[
I + εA∗(JB

λ – I
)
A

]
xn – JB

λ

[
I + εA∗(JB

λ – I
)
A

]
xn–

∥∥

≤ ‖xn – xn–‖. (.)

Combining (.), (.), and (.), we obtain

‖xn+ – xn‖ ≤ αnγρ‖xn – xn–‖ + ( – αnγ )
[
‖xn – xn–‖ +

(
|sn – sn–|

sn

)
‖un– – p‖

]

+ |αn – αn–|
[‖Bwn–‖ + γ

∥∥f (xn–)
∥∥]

≤ [
 – αn(γ – γρ)

]‖xn – xn–‖ +
(

|αn – αn–| +
|sn – sn–|

sn

)
M, (.)

where M = max{supn∈N [‖Bwn–‖ + γ ‖f (xn–)‖], supn∈N ‖un– – p‖}. It follows from condi-
tions (i)-(ii) and Lemma . that

lim
n→∞‖xn+ – xn‖ = . (.)

Next, we will show that limn→∞ ‖xn – un‖ = . Note that wn = 
sn

∫ sn
 T(s)un ds and

‖xn – wn‖ ≤ ‖xn – xn+‖ + ‖xn+ – wn‖
= ‖xn – xn+‖ +

∥∥αnγ f (xn) + (I – αnB)wn – wn
∥∥

≤ ‖xn – xn+‖ + αn
∥∥γ f (xn) – Bwn

∥∥.

Together with condition (i) and (.), we obtain

lim
n→∞‖xn – wn‖ = lim

n→∞

∥∥∥∥xn –

sn

∫ sn


T(s)un ds

∥∥∥∥ = . (.)

Observe that

∥∥xn – T(u)xn
∥∥ ≤

∥∥∥∥xn –

sn

∫ sn


T(s)un ds

∥∥∥∥

+
∥∥∥∥


sn

∫ sn


T(s)un ds – T(u)


sn

∫ sn


T(s)un ds

∥∥∥∥
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+
∥∥∥∥T(u)


sn

∫ sn


T(s)un ds – T(u)xn

∥∥∥∥

≤ 
∥∥∥∥xn –


sn

∫ sn


T(s)un ds

∥∥∥∥

+
∥∥∥∥


sn

∫ sn


T(s)un ds – T(u)


sn

∫ sn


T(s)un ds

∥∥∥∥.

It follows from (.) and Lemma . that

lim
n→∞

∥∥xn – T(u)xn
∥∥ = . (.)

By (.), (.), and Lemma ., we have

‖xn+ – p‖ =
∥∥wn – p + αn

[
γ f (xn) – Bwn

]∥∥

≤ ‖wn – p‖ + αn
〈
γ f (xn) – Bwn, xn+ – p

〉

≤ ‖un – p‖ + αn
〈
γ f (xn) – Bwn, xn+ – p

〉

≤ [‖xn – p‖ + ε(Lε – )
∥∥(

JB
λ – I

)
Axn

∥∥] + αn
〈
γ f (xn) – Bwn, xn+ – p

〉

≤ ‖xn – p‖ – ε( – Lε)
∥∥(

JB
λ – I

)
Axn

∥∥ + αnM
, (.)

where M = max{supn∈N ‖γ f (xn) – Bwn‖, supn∈N ‖xn+ – p‖} and ε ∈ (, 
L ), which implies

that

ε( – Lε)
∥∥(

JB
λ – I

)
Axn

∥∥ ≤ ‖xn – p‖ – ‖xn+ – p‖ + αnM


≤ ‖xn+ – xn‖
(‖xn – p‖ + ‖xn+ – p‖) + αnM

. (.)

It follows from condition (i) and (.) that

lim
n→∞

∥∥(
JB
λ – I

)
Axn

∥∥ = . (.)

Furthermore, using (.), (.), and ε ∈ (, 
L ), we obtain

‖un – p‖ =
∥∥JB

λ

[
xn + εA∗(JB

λ – I
)
Axn

]
– JB

λ p
∥∥

≤ 〈
un – p, xn + εA∗(JB

λ – I
)
Axn – p

〉

=


{‖un – p‖ +

∥∥xn + εA∗(JB
λ – I

)
Axn – p

∥∥

–
∥∥un – p –

[
xn + εA∗(JB

λ – I
)
Axn – p

]∥∥}

≤ 

{‖un – p‖ + ‖xn – p‖ + ε(Lε – )

∥∥(
JB
λ – I

)
Axn

∥∥

–
∥∥un – xn – εA∗(JB

λ – I
)
Axn

∥∥}

≤ 

{‖un – p‖ + ‖xn – p‖ –

[‖un – xn‖ + ε∥∥A∗(JB
λ – I

)
Axn

∥∥

– ε
〈
un – xn, A∗(JB

λ – I
)
Axn

〉]}

≤ 

{‖un – p‖ + ‖xn – p‖ – ‖un – xn‖ + ε

∥∥A(un – xn)
∥∥∥∥(

JB
λ – I

)
Axn

∥∥}
,
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which implies that

‖un – p‖ ≤ ‖xn – p‖ – ‖un – xn‖ + ε
∥∥A(un – xn)

∥∥∥∥(
JB
λ – I

)
Axn

∥∥. (.)

It follows from (.) and (.) that

‖xn+ – p‖ ≤ ‖un – p‖ + αnM


≤ ‖xn – p‖ – ‖un – xn‖ + ε
∥∥A(un – xn)

∥∥∥∥(
JB
λ – I

)
Axn

∥∥ + αnM
,

that is,

‖un – xn‖ ≤ ‖xn – p‖ – ‖xn+ – p‖ + ε
∥∥A(un – xn)

∥∥∥∥(
JB
λ – I

)
Axn

∥∥ + αnM


≤ ‖xn – xn+‖
(‖xn – p‖ + ‖xn+ – p‖)

+ ε
∥∥A(un – xn)

∥∥∥∥(
JB
λ – I

)
Axn

∥∥ + αnM
.

Combining condition (i), (.), and (.), we have

lim
n→∞‖un – xn‖ = . (.)

Since {xn} and {un} are bounded, we consider a weak cluster point w of {xn}. Without
loss of generality, we may assume that subsequence {xnj} of {xn} converges weakly to w,
i.e., xnj ⇀ w as j → ∞. From (.), we have {unj} of {un}, which converges weakly to w.
Moreover, unj = JB

λ [xnj + εA∗(JB
λ – I)Axnj ] can be rewritten as

(xnj – unj ) + εA∗(JB
λ – I)Axnj

λ
∈ Bunj . (.)

By passing to the limit j → ∞ in (.) and by taking into account (.), (.), and the
fact that the graph of a maximal monotone operator is weakly-strongly closed, we obtain
 ∈ B(w). Furthermore, since {xn} and {un} have the same asymptotical behavior, {Axnj}
weakly converges to Aw. From (.) and the fact that the resolvent JB

λ is nonexpansive,
we obtain Aw ∈ B(Aw). It follows from Lemma . that w ∈ Z .

We now show that lim supn→∞〈γ f (q) – Bq, xn – q〉 ≤ , where q = P�(I – B + γ f )q. Note
that the subsequence {xnj} of {xn} converges weakly to w and

lim sup
n→∞

〈
γ f (q) – Bq, xn – q

〉
= lim

j→∞
〈
γ f (q) – Bq, xnj – q

〉
. (.)

Assume that w �= T(u)w. By (.) and Opial’s property, we obtain

lim inf
j→∞ ‖xnj – w‖ < lim inf

j→∞
∥∥xnj – T(u)w

∥∥

≤ lim inf
j→∞

(∥∥xnj – T(u)xnj

∥∥ +
∥∥T(u)xnj – T(u)w

∥∥)

≤ lim inf
j→∞

(∥∥xnj – T(u)xnj

∥∥ + ‖xnj – w‖)

≤ lim inf
j→∞ ‖xnj – w‖.
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This is a contradiction. Then w ∈ Fix(T ). Consequently, w ∈ � = Fix(T ) ∩ Z . It follows
from (.) that

lim sup
n→∞

〈
γ f (q) – Bq, xn – q

〉
=

〈
γ f (q) – Bq, w – q

〉 ≤ . (.)

On the other hand, we shall show that the uniqueness of a solution of the variational in-
equality

〈
(B – γ f )x, x – w

〉 ≤ , w ∈ �. (.)

Suppose q ∈ � and q̂ ∈ � both are solutions to (.), then

〈
(B – γ f )q, q – q̂

〉 ≤  (.)

and

〈
(B – γ f )q̂, q̂ – q

〉 ≤ . (.)

Adding up (.) and (.) one gets

〈
(B – γ f )q – (B – γ f )q̂, q – q̂

〉 ≤ . (.)

By Lemma ., the strong monotonicity of B – γ f , we obtain q = q̂ and the uniqueness is
proved.

Finally, we show that {xn} converges strongly to q as n → ∞. From (.), (.), and Lem-
ma ., we have (note that wn = 

sn

∫ sn
 T(s)un ds)

‖xn+ – q‖ =
〈
αnγ f (xn) + (I – αnB)wn – q, xn+ – q

〉

= αn
〈
γ f (xn) – Bq, xn+ – q

〉
+

〈
(I – αnB)(wn – q), xn+ – q

〉

≤ αnγ
〈
f (xn) – f (q), xn+ – q

〉
+ αn

〈
γ f (q) – Bq, xn+ – q

〉

+ ( – αnγ )‖wn – q‖‖xn+ – q‖
≤ αnγρ‖xn – q‖‖xn+ – q‖ + αn

〈
γ f (q) – Bq, xn+ – q

〉

+ ( – αnγ )‖xn – q‖‖xn+ – q‖
=

[
 – αn(γ – γρ)

]‖xn – q‖‖xn+ – q‖ + αn
〈
γ f (q) – Bq, xn+ – q

〉

≤  – αn(γ – γρ)


(‖xn – q‖ + ‖xn+ – q‖) + αn
〈
γ f (q) – Bq, xn+ – q

〉

≤  – αn(γ – γρ)


‖xn – q‖ +


‖xn+ – q‖ + αn

〈
γ f (q) – Bq, xn+ – q

〉
.

It follows that

‖xn+ – q‖ ≤ [
 – (γ – γρ)αn

]‖xn – q‖ + αn
〈
γ f (q) – Bq, xn+ – q

〉
. (.)

From  < γ < γ

ρ
, condition (i), and (.), we can arrive at the desired conclusion

limn→∞ ‖xn – q‖ =  by applying Lemma . to (.). This completes the proof. �
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Theorem . Let H and H be two real Hilbert spaces and A : H → H be a bounded
linear operator. Let B : H → H , B : H → H be maximal monotone mappings and
T := {T(s) :  ≤ s < ∞} be a one-parameter nonexpansive semigroup on H such that � =
Fix(T ) ∩ Z �= ∅. Assume that f : H → H is a contraction mapping with constant ρ ∈
(, ), L is the spectral radius of the operator A∗A, and A∗ is the adjoint of A. For given
x ∈ H, λ > , and ε ∈ (, 

L ), define {xn} in the following manner:

xn+ = αnf (xn) + ( – αn)

sn

∫ sn


T(s)JB

λ

[
xn + εA∗(JB

λ – I
)
Axn

]
ds, (.)

where the sequence {αn} ⊂ (, ) satisfies the following conditions:
(i) limn→∞ αn = ,

∑∞
n= αn = ∞, and

∑∞
n= |αn – αn–| < ∞;

(ii) limn→∞ sn = +∞ and limn→∞ |sn–sn–|
sn


αn

= .
Then the sequence {xn} converges strongly to q = P�f (q), which is equivalent to the unique
solution of the following variational inequality:

〈
(I – f )q, q – w

〉 ≤ , ∀w ∈ �.

Proof Putting γ =  and B = I , iterative scheme (.) reduces to viscosity iteration (.).
The desired conclusion follows immediately from Theorem .. This completes the
proof. �

Theorem . Let H and H be two real Hilbert spaces, let A : H → H be a bounded
linear operator and B be a strongly positive bounded linear operator on H with constant
γ > . Let B : H → H , B : H → H be maximal monotone mappings and T : H → H

be a nonexpansive mapping such that � = Fix(T) ∩ Z �= ∅. Assume that f : H → H is a
contraction mapping with constant ρ ∈ (, ), L is the spectral radius of the operator A∗A,
and A∗ is the adjoint of A. For given x ∈ H, λ > , γ ∈ (, γ

ρ
), and ε ∈ (, 

L ), define {xn} in
the following manner:

{
un = JB

λ [xn + εA∗(JB
λ – I)Axn],

xn+ = αnγ f (xn) + (I – αnB)Tun,
(.)

where the sequence {αn} ⊂ (, ) satisfies limn→∞ αn = ,
∑∞

n= αn = ∞, and
∑∞

n= |αn –
αn–| < ∞. Then the sequence {xn} converges strongly to q, which is the unique solution
of the following variational inequality:

〈
(B – γ f )q, q – w

〉 ≤ , ∀w ∈ �.

Proof Clearly, Theorem . is valid for a nonexpansive mapping. Therefore, the desired
conclusion follows immediately from Theorem .. This completes the proof. �

Remark . Theorems . and . extend the approximation scheme of Byrne et al. []
and the viscosity results of Kazmi and Rizvi [] to a general iterative method for a split
variational inclusion and one-parameter nonexpansive semigroups, which includes the
results of [, ] as special cases.
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Table 1 Numerical results for some initial points x1 = –1, 0, 1, 2, 15

Iter. (n) x(1)
n x(2)

n x(3)
n x(4)

n x(5)
n

0 –1.0000 0.0000 1.0000 2.0000 15.000
1 –0.5000 0.0000 0.5000 1.0000 7.5000
2 –0.1891 0.0000 0.1891 0.3781 2.8358
3 –0.0600 0.0000 0.6000 0.1199 0.8996
4 –0.0167 0.0000 0.0167 0.0334 0.2506
5 –0.0042 0.0000 0.0042 0.0084 0.0630

. . . . . . . . . . . . . . . . . .
8 0.0000 0.0000 0.0000 0.0001 0.0006
9 0.0000 0.0000 0.0000 0.0000 0.0001
10 0.0000 0.0000 0.0000 0.0000 0.0000

Remark . Theorems . and . improve and extend the main results of Marino and
Xu [] for nonexpansive mappings, and [–] for nonexpansive semigroups in different
directions.

4 Numerical results
In this section, we give an example and numerical results to illustrate our algorithm and
the main result of this paper.

Example . Let H = H = R. Let Bx = x and Bx = x. Let T := {T(s) :  ≤ s < ∞},
where T(s)x = 

+s x, ∀x ∈R. Then B, B, and T satisfy all conditions of Theorem . and
� = Fix(T ) ∩ L = {}. Let {xn} be the sequence generated by x and

xn+ = αnγ f (xn) + (I – αnB)

sn

∫ sn




 + s

JB
λ

[
xn + εA∗(JB

λ – I
)
Axn

]
ds. (.)

Let A = B = I , the identity operator, and f (x) = 
 x, ∀x ∈ R. Putting γ = λ = , ε = 

 , and
αn = √

n , sn = n, then scheme (.) reduces to

xn+ =



√

n

[
xn +


n

(
√

n – ) ln( + n)xn

]
. (.)

Setting ‖xn – x∗‖ ≤ – as stop criterion, then we obtain the numerical results of scheme
(.) with different initial points x in Table .

The computations are performed by Matlab Ra running on a PC Desktop Intel(R)
Core(TM)i-M, CPU @. GHz,  MHz, . GB,  GB RAM.
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