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Abstract
In this paper, a viscosity splitting for common solution problems is proposed. Strong
convergence theorems are obtained in the framework of Hilbert spaces. Applications
are also provided to support the main results.
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1 Introduction; preliminaries
In this paper, we always assume that H is a real Hilbert space with the inner product 〈x, y〉
and the induced norm ‖x‖ =√〈x,x〉 for x, y ∈H . Recall that a set-valuedmappingM :H ⇒
H is said to be monotone iff, for all x, y ∈ H , f ∈ Mx, and g ∈ My imply 〈x – y, f – g〉 ≥ .
In this paper, we use M–() to denote the zero point set of M. A monotone mapping
M :H ⇒H ismaximal iff the graphGraph(M) ofM is not properly contained in the graph
of any other monotonemapping. It is well known that a monotonemappingM is maximal
if and only if, for any (x, f ) ∈ H × H , 〈x – y, f – g〉 ≥ , for all (y, g) ∈ Graph(M) implies
f ∈ Mx. For a maximal monotone operator M on H , and r > , we may define the single-
valued resolvent Jr : H → Dom(M), where Dom(M) denotes the domain of M. It is well
known that Jr is firmly nonexpansive, andM–() = F(Jr).
The proximal point algorithm, which was proposed by Martinet [, ] and generalized

by Rockafellar [, ] is one of the classical methods for solving zero points of maximal
monotone operators. In this paper, we investigate the problem of finding a zero of the
sum of twomonotone operators. The problem is very general in the sense that it includes,
as special cases, convexly constrained linear inverse problems, split feasibility problem,
convexly constrained minimization problems, fixed point problems, variational inequal-
ities, Nash equilibrium problem in noncooperative games and others. Because of their
importance, splitting methods, which were proposed by Lions andMercier [] and Passty
[], for zero problems have been studied extensively recently; see, for instance, [–] and
the references therein.
LetC be a nonempty closed and convex subset ofH . LetA : C →H be amapping. Recall

that the classical variational inequality problem is to find a point x ∈ C such that

〈y – x,Ax〉 ≥ , ∀y ∈ C. (.)

Such a point x ∈ C is called a solution of variational inequality (.). In this paper, we use
VI(C,A) to denote the solution set of variational inequality (.). Recall that A is said to be
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monotone iff

〈Ax –Ay,x – y〉 ≥ , ∀x, y ∈ C.

Recall that A is said to be inverse-strongly monotone iff there exists a constant κ >  such
that

〈Ax –Ay,x – y〉 ≥ κ‖Ax –Ay‖, ∀x, y ∈ C.

For such a case, we also call A is κ-inverse-strongly monotone. It is also not hard to see
that every inverse-strongly monotone mapping is monotone and continuous.
Let S : C → C be a mapping. In this paper, we use F(S) to denote the fixed point set of S.

S is said to be contractive iff there exists a constant β ∈ (, ) such that

‖Sx – Sy‖ ≤ β‖x – y‖, ∀x, y ∈ C.

We also call S is β-contractive. S is said to be nonexpansive iff

‖Sx – Sy‖ ≤ ‖x – y‖, ∀x, y ∈ C.

It is well known if C is nonempty closed convex of H , then F(S) is not empty. S is said to
be firmly nonexpansive iff

‖Sx – Sy‖ ≤ ‖x – y‖ – ∥∥(I – S)x – (I – S)y
∥∥, ∀x, y ∈ C.

In order to prove our main results, we also need the following lemmas.

Lemma . [] Let A be a maximal monotone operator on H . For λ > , μ > , and x ∈ E,
we have Jλx = Jμ(μ

λ
x + ( – μ

λ
)Jλx), where Jλ = (I + λA)– and Jμ = (I +μA)–.

Lemma . [] Let {xn} and {yn} be bounded sequences in H . Let {βn} be a sequence in
(, ) with  < lim infn→∞ βn ≤ lim supn→∞ βn < . Suppose that xn+ = ( – βn)yn + βnxn,
∀n≥  and

lim sup
n→∞

(‖yn+ – yn‖ – ‖xn+ – xn‖
) ≤ .

Then limn→∞ ‖yn – xn‖ = .

Lemma . [] Let {an} be a sequence of nonnegative numbers satisfying the condi-
tion an+ ≤ ( – tn)an + tnbn, ∀n ≥ , where {tn} is a number sequence in (, ) such that
limn→∞ tn =  and

∑∞
n= tn = ∞, {bn} is a number sequence such that lim supn→∞ bn ≤ .

Then limn→∞ an = .

Lemma . [] Let C be a nonempty closed convex subset of H . Let A : C → H be a
mapping and let B : H ⇒ H be a maximal monotone operator. Then ‖x – (I + sB)–x‖ ≤
‖x – (I + rB)–x‖ for all  < s≤ r.

http://www.journalofinequalitiesandapplications.com/content/2015/1/2


Zhang Journal of Inequalities and Applications 2015, 2015:2 Page 3 of 15
http://www.journalofinequalitiesandapplications.com/content/2015/1/2

Lemma . [] Let {λn} be a real sequence that does not decreasing at infinity, in the sense
that there exists a subsequence {λnk } such that λnk ≤ λnk+ for all k ≥ . For every n > n,
define an integer sequence d(n) as d(n) =max{n ≤ k ≤ n|λnk ≤ λnk+}.Then limn→∞ d(n) =
 and for all n > n max{λd(n),λn} ≤ λd(n)+.

Lemma . [] Let C be a nonempty closed convex subset of H . Let S : C → C be a
nonexpansive mapping with a nonempty fixed point set. If {xn} converges weakly to x and
{‖xn – Txn‖} converges to zero. Then x ∈ F(S).

2 Main results
Now, we are in a position to state our main results.

Theorem . Let C be a nonempty closed convex subset of H . Let S : C → C be a non-
expansive mapping with fixed points and let f : C → C be a β-contractive mapping. Let
A : C →H be an α-inverse-strongly monotone mapping and let B be a maximal monotone
operator on H .Assume thatDom(B) ⊂ C and F(S)∩ (A+B)–() is not empty. Let {αn} and
{βn} be real number sequences in (, ) and let {rn} be a positive real number sequence in
(, α). Let {xn} be a sequence generated in the following process: x ∈ C and

⎧⎨
⎩
yn = αnf (xn) + ( – αn)xn,

xn+ = βnxn + ( – βn)S(I + rnB)–(yn – rnAyn), ∀n≥ .

Assume that the control sequences satisfy the following restrictions:
(a) limn→∞ αn = ,

∑∞
n= αn =∞;

(b)  < lim infn→∞ βn ≤ lim supn→∞ βn < ;
(c)  < a≤ rn ≤ b < α and

∑∞
n= |rn – rn–| <∞,

where a and b are two real numbers. Then {xn} converges strongly to a point x̄ ∈ F(S)∩ (A+
B)–(), which is also a unique solution to the following variational inequality:

〈
f (x̄) – x̄,p – x̄

〉 ≤ , ∀p ∈ F(S)∩ (A + B)–().

Proof Note that the mapping I – rnA is nonexpansive. Indeed, we have

∥∥(I – rnA)x – (I – rnA)y
∥∥

= ‖x – y‖ – rn〈x – y,Ax –Ay〉 + rn‖Ax –Ay‖

≤ ‖x – y‖ – rn(α – rn)‖Ax –Ay‖.

In light of restriction (c), one finds that I – rnA is nonexpansive. It is obvious that F((I +
rnB)–(I – rnA)) = (A + B)–(). Fix p ∈ (A + B)–()∩ F(S). It follows that

‖yn – p‖ ≤ αn
∥∥f (xn) – p

∥∥ + ( – αn)‖xn – p‖
≤ (

 – αn( – β)
)‖xn – p‖ + αn

∥∥f (p) – p
∥∥.

http://www.journalofinequalitiesandapplications.com/content/2015/1/2
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Putting Jrn = (I + rnB)–, we see that

‖xn+ – p‖ ≤ βn‖xn – p‖ + ( – βn)
∥∥SJrn (yn – rnAyn) – p

∥∥
≤ βn‖xn – p‖ + ( – βn)

∥∥(yn – rnAyn) – p
∥∥

≤ (
 – αn( – βn)( – β)

)‖xn – p‖ + αn( – βn)( – β)
‖f (p) – p‖

 – β
.

By mathematical induction, we find that the sequence {xn} is bounded. Note that

‖yn – yn–‖ ≤ αn
∥∥f (xn) – f (xn–)

∥∥ + ( – αn)‖xn – xn–‖
+ |αn – αn–|

∥∥f (xn–) – xn–
∥∥

≤ (
 – αn( – β)

)‖xn – xn–‖ + |αn – αn–|
∥∥f (xn–) – xn–

∥∥.

Putting zn = yn – rnAyn, we find from Lemma . that

‖Jrnzn – Jrn–zn–‖ ≤
∥∥∥∥ rn–rn

(zn – zn–) +
(
 –

rn–
rn

)
(Jrnzn – zn–)

∥∥∥∥
≤ ‖zn – zn–‖ + |rn – rn–|

a
‖Jrnzn – zn‖

≤ ‖yn – yn–‖ + |rn – rn–|‖Ayn–‖ + |rn – rn–|
a

‖Jrnzn – zn‖

≤ (
 – αn( – β)

)‖xn – xn–‖ + |αn – αn–|
∥∥f (xn–) – xn–

∥∥
+ |rn – rn–|‖Ayn–‖ + |rn – rn–|

a
‖Jrnzn – zn‖.

This yields

‖SJrnzn – SJrn–zn–‖ ≤ ‖Jrnzn – Jrn–zn–‖
≤ ‖xn – xn–‖ + |αn – αn–|

∥∥f (xn–) – xn–
∥∥

+ |rn – rn–|‖Ayn–‖ + |rn – rn–|
a

‖Jrnzn – zn‖.

It follows from restrictions (a) and (c) that

lim sup
n→∞

(‖SJrnzn – SJrn–zn–‖ – ‖xn – xn–‖
) ≤ .

Using Lemma ., we have limn→∞ ‖SJrnzn – xn‖ = . It follows that

lim
n→∞‖xn+ – xn‖ = . (.)

Since ‖yn – xn‖ = αn‖f (xn) – xn‖, we find that

lim
n→∞‖yn – xn‖ = . (.)

http://www.journalofinequalitiesandapplications.com/content/2015/1/2
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Since ‖ · ‖ is convex, we find that

‖yn – p‖ ≤ αn
∥∥f (xn) – p

∥∥ + ( – αn)‖xn – p‖. (.)

It follows that

‖xn+ – p‖ ≤ βn‖xn – p‖ + ( – βn)‖SJrnzn – p‖

≤ βn‖xn – p‖ + ( – βn)
∥∥Jrn (I – rnA)yn – p

∥∥

≤ βn‖xn – p‖ + ( – βn)
∥∥(I – rnA)yn – p

∥∥

≤ βn‖xn – p‖ + ( – βn)‖yn – p‖ – rn( – βn)(α – rn)‖Ayn –Ap‖

≤ ‖xn – p‖ + αn
∥∥f (xn) – p

∥∥ – rn( – βn)(α – rn)‖Ayn –Ap‖.

Hence, we have

rn( – βn)(α – rn)‖Ayn –Ap‖

≤ (‖xn – p‖ + ‖xn+ – p‖)‖xn+ – xn‖ + αn
∥∥f (xn) – p

∥∥.

In view of restrictions (a), (b), and (c), we find from (.) that

lim
n→∞‖Ayn –Ap‖ = . (.)

Since Jrn is firmly nonexpansive, we have

‖Jrnzn – p‖ ≤ 〈
Jrnzn – p, (yn – rnAyn) – (p – rnAp)

〉

=


(‖Jrnzn – p‖ + ∥∥(yn – rnAyn) – (p – rnAp)

∥∥

–
∥∥(Jrnzn – p) –

(
(yn – rnAyn) – (p – rnAp)

)∥∥)

≤ 

(‖Jrnzn – p‖ + ‖yn – p‖ – ‖Jrnzn – yn‖

+ rn‖Ayn –Ap‖‖Jrnzn – yn‖
)
.

This implies from (.) that

‖Jrnzn – p‖ ≤ ‖yn – p‖ – ‖Jrnzn – yn‖ + rn‖Ayn –Ap‖‖Jrnzn – yn‖
≤ αn

∥∥f (xn) – p
∥∥ + ( – αn)‖xn – p‖ – ‖Jrnzn – yn‖

+ rn‖Ayn –Ap‖‖Jrnzn – yn‖.

On the other hand, we have

‖xn+ – p‖ ≤ βn‖xn – p‖ + ( – βn)‖SJrnzn – p‖

≤ βn‖xn – p‖ + ( – βn)‖Jrnzn – p‖

http://www.journalofinequalitiesandapplications.com/content/2015/1/2
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≤ ‖xn – p‖ + αn
∥∥f (xn) – p

∥∥ – ( – βn)‖Jrnzn – yn‖

+ rn‖Ayn –Ap‖‖Jrnzn – yn‖.

This implies that

( – βn)‖Jrnzn – yn‖ ≤ (‖xn – p‖ + ‖xn+ – p‖)‖xn – xn+‖ + αn
∥∥f (xn) – p

∥∥

+ rn‖Ayn –Ap‖‖Jrnzn – yn‖.

In view of restrictions (a) and (b), we find from (.) and (.) that

lim
n→∞‖Jrnzn – yn‖ = . (.)

Next, we show that lim supn→∞〈f (x̄) – x̄, yn – x̄〉 ≤ , where x̄ = ProjF(S)∩(A+B)–() f (x̄). To
show it, we can choose a subsequence {yni} of {yn} such that

lim sup
n→∞

〈
f (x̄) – x̄, yn – x̄

〉
= lim

i→∞
〈
f (x̄) – x̄, yni – x̄

〉
.

Since {yni} is bounded, we can choose a subsequence {ynij } of {yni}which converges weakly
some point x. We may assume, without loss of generality, that yni converges weakly to x.
Now, we are in a position to show that x ∈ (A+B)–(). Set λn = Jrn (yn – rnAyn). It follows

that yn–λn
rn –Ayn ∈ Bλn. Since B is monotone, we get, for any (μ,ν) ∈ B,

〈
λn –μ,

yn – λn

rn
–Ayn – ν

〉
≥ .

Replacing n by ni and letting i→ ∞, we obtain from (.) that

〈x –μ, –Ax – ν〉 ≥ .

This gives –Ax ∈ Bx, that is,  ∈ (A + B)(x). This proves that x ∈ (A + B)–().
Now, we are in a position to prove that x ∈ F(S). Notice that

‖Sλn – yn‖ ≤ 
 – βn

‖xn+ – yn‖ + βn

 – βn
‖yn – xn‖.

This implies that limn→∞ ‖Sλn – yn‖ = . This implies from (.) that ‖Sλn – λn‖ → .
Since I – S is demiclosed at zero, we find that x ∈ F(S). This complete the proof that x ∈
F(S)∩ (A + B)–(). It follows that

lim sup
n→∞

〈
f (x̄) – x̄, yn – x̄

〉 ≤ .

Finally, we show that xn → x̄. Notice that

‖yn – x̄‖ ≤ αn
〈
f (xn) – x̄, yn – x̄

〉
+ ( – αn)‖xn – x̄‖‖yn – x̄‖

≤ (
 – αn( – β)

)‖xn – x̄‖‖yn – x̄‖ + αn
〈
f (x̄) – x̄, yn – x̄

〉
.

http://www.journalofinequalitiesandapplications.com/content/2015/1/2
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This implies that

‖yn – x̄‖ ≤ αn
〈
f (x̄) – x̄, yn – x̄

〉
+

(
 – αn( – β)

)‖xn – x̄‖.

It follows that

‖xn+ – x̄‖ ≤ βn‖xn – x̄‖ + ( – βn)
∥∥SJrn (I – rnA)yn – x̄

∥∥

≤ βn‖xn – x̄‖ + ( – βn)‖yn – x̄‖

≤ (
 – αn( – βn)( – β)

)‖xn – x̄‖ + αn( – βn)
〈
f (x̄) – x̄, yn – x̄

〉
.

In view of restrictions (a) and (b), we find from Lemma . that xn → x̄. This completes
the proof. �

From Theorem ., we have the following results immediately.

Corollary . Let C be a nonempty closed convex subset of H . Let S : C → C be a non-
expansive mapping with fixed points and let f : C → C be a β-contractive mapping. Let
{αn} and {βn} be real number sequences in (, ). Let {xn} be a sequence generated in the
following process: x ∈ C and

⎧⎨
⎩
yn = αnf (xn) + ( – αn)xn,

xn+ = βnxn + ( – βn)Syn, ∀n≥ .

Assume that the control sequences satisfy the following restrictions:
(a) limn→∞ αn = ,

∑∞
n= αn =∞;

(b)  < lim infn→∞ βn ≤ lim supn→∞ βn < .
Then {xn} converges strongly to a point x̄ ∈ F(S), which is also a unique solution to the
following variational inequality:

〈
f (x̄) – x̄,p – x̄

〉 ≤ , ∀p ∈ F(S).

Corollary . Let C be a nonempty closed convex subset of H . Let f : C → C be a β-
contractive mapping. Let A : C → H be an α-inverse-strongly monotone mapping and let
B be a maximal monotone operator on H . Assume that Dom(B) ⊂ C and (A + B)–() is
not empty. Let {αn} and {βn} be real number sequences in (, ) and {rn} be a positive real
number sequence in (, α). Let {xn} be a sequence generated in the following process: x ∈ C
and

⎧⎨
⎩
yn = αnf (xn) + ( – αn)xn,

xn+ = βnxn + ( – βn)(I + rnB)–(yn – rnAyn), ∀n≥ .

Assume that the control sequences satisfy the following restrictions:
(a) limn→∞ αn = ,

∑∞
n= αn =∞;

(b)  < lim infn→∞ βn ≤ lim supn→∞ βn < ;

http://www.journalofinequalitiesandapplications.com/content/2015/1/2
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(c)  < a≤ rn ≤ b < α and
∑∞

n= |rn – rn–| <∞,
where a and b are two real numbers.Then {xn} converges strongly to a point x̄ ∈ (A+B)–(),
which is also a unique solution to the following variational inequality:

〈
f (x̄) – x̄,p – x̄

〉 ≤ , ∀p ∈ (A + B)–().

Next, we give a result on the zeros of the sum of the operators A and B based on a
different method.

Theorem . Let C be a nonempty closed convex subset of H . Let f : C → C be a β-
contractive mapping. Let A : C → H be an α-inverse-strongly monotone mapping and let
B be a maximal monotone operator on H . Assume that Dom(B) ⊂ C and (A + B)–() is
not empty. Let {αn} and {βn} be real number sequences in (, ) and {rn} be a positive real
number sequence in (, α). Let {xn} be a sequence generated in the following process: x ∈ C
and

⎧⎨
⎩
yn = αnf (xn) + ( – αn)xn,

xn+ = βnxn + ( – βn)(I + rnB)–(yn – rnAyn), ∀n≥ .

Assume that the control sequences satisfy the following restrictions:
(a) limn→∞ αn = ,

∑∞
n= αn =∞;

(b)  ≤ βn ≤ β̄ < ;
(c)  < a≤ rn ≤ b < α,

where β̄ , a, and b are real numbers.Then {xn} converges strongly to a point x̄ ∈ (A+B)–(),
which is also a unique solution to the following variational inequality:

〈
f (x̄) – x̄,p – x̄

〉 ≤ , ∀p ∈ (A + B)–().

Proof From the proof of Theorem ., we find that {xn} is bounded. Since PF(S)∩(A+B)–()f
is contractive, it has a unique fixed point. Next, we use x̄ to denote the unique fixed point.
Note that

‖yn – x̄‖ = αn
〈
f (xn) – x̄, yn – x̄

〉
+ ( – αn)〈xn – x̄, yn – x̄〉

≤ (
 – αn( – β)

)‖xn – x̄‖‖yn – x̄‖ + αn
〈
f (x̄) – x̄, yn – x̄

〉

≤ ( – αn( – β)


(‖xn – x̄‖ + ‖yn – x̄‖) + αn
〈
f (x̄) – x̄, yn – x̄

〉
.

It follows that

‖yn – x̄‖ ≤
(
 –

αn( – β)
 + αn( – β)

)
‖xn – x̄‖ + αn

 + αn( – β)
〈
f (x̄) – x̄, yn – x̄

〉
. (.)

Since Jrn is firmly nonexpansive and A is inverse-strongly monotone, we find that

∥∥Jrn (yn – rnAyn) – x̄
∥∥ ≤ ∥∥(yn – rnAyn) – (x̄ – rnAx̄)

∥∥

–
∥∥(I – Jrn )(yn – rnAyn) – (I – Jrn )(x̄ – rnAx̄)

∥∥

http://www.journalofinequalitiesandapplications.com/content/2015/1/2
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≤ ‖yn – x̄‖ – rn(α – rn)‖Ayn –Ax̄‖

–
∥∥(I – Jrn )(yn – rnAyn) – (I – Jrn )(x̄ – rnAx̄)

∥∥. (.)

Substituting (.) into (.), we find that

∥∥Jrn (yn – rnAyn) – x̄
∥∥

≤
(
 –

αn( – β)
 + αn( – β)

)
‖xn – x̄‖ + αn

 + αn( – β)
〈
f (x̄) – x̄, yn – x̄

〉

– rn(α – rn)‖Ayn –Ax̄‖ – ∥∥(I – Jrn )(yn – rnAyn) – (I – Jrn )(x̄ – rnAx̄)
∥∥.

It follows that

‖xn+ – x̄‖ ≤ βn‖xn – x̄‖ + ( – βn)
∥∥Jrn (yn – rnAyn) – x̄

∥∥

≤
(
 –

αn( – βn)( – β)
 + αn( – β)

)
‖xn – x̄‖ + αn( – βn)

 + αn( – β)
〈
f (x̄) – x̄, yn – x̄

〉

– ( – βn)rn(α – rn)‖Ayn –Ax̄‖

– ( – βn)
∥∥(I – Jrn )(yn – rnAyn) – (I – Jrn )(x̄ – rnAx̄)

∥∥. (.)

Next, we consider the following possible two cases.
Case . Suppose that there exists some nonnegative integer m such that the sequence

{‖xn – x̄‖} is eventually decreasing. Then limn→∞ ‖xn – x̄‖ exists. By (.), we find that

( – βn)rn(α – rn)‖Ayn –Ax̄‖

≤ ‖xn – x̄‖ – ‖xn+ – x̄‖ + αn
∥∥f (x̄) – x̄

∥∥‖yn – x̄‖.

By use of restrictions (b) and (c), we have limn→∞ ‖Ayn –Ax̄‖ = . It also follows from (.)
that

( – βn)
∥∥(I – Jrn )(yn – rnAyn) – (I – Jrn )(x̄ – rnAx̄)

∥∥

≤ ‖xn – x̄‖ – ‖xn+ – x̄‖ + αn
∥∥f (x̄) – x̄

∥∥‖yn – x̄‖.

From restrictions (b) and (c), we obtain

lim
n→∞

∥∥(I – Jrn )(yn – rnAyn) – (I – Jrn )(x̄ – rnAx̄)
∥∥ = .

Hence, we have limn→∞ ‖yn – Jrn (yn – rnAyn)‖ = . From Lemma ., we find that ‖yn –
Jr(yn – rAyn)‖ ≤ ‖yn – Jrn (yn – rnAyn)‖. This implies that limn→∞ ‖yn – Jr(yn – rAyn)‖ = .
Next, we show that lim supn→∞〈f (x̄) – x̄, yn – x̄〉 ≤ . To show it, we can choose a subse-
quence {yni} of {yn} such that

lim sup
n→∞

〈
f (x̄) – x̄, yn – x̄

〉
= lim

i→∞
〈
f (x̄) – x̄, yni – x̄

〉
.

Since {yni} is bounded, we can choose a subsequence {ynij } of {yni}which converges weakly
to some point x. Wemay assume, without loss of generality, that yni converges weakly to x.

http://www.journalofinequalitiesandapplications.com/content/2015/1/2
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Since the mapping Jr(I – rA) is nonexpansive, we find that x ∈ F(Jr(I – rA)) = (A + B)–().
It follows that lim supn→∞〈f (x̄) – x̄, yn – x̄〉 ≤ . In view of (.), we find from Lemma .
that xn → x̄.
Next, we consider another case.
Case . Suppose that the sequence {‖xn – x̄‖} is not eventually decreasing. There exists a

subsequence {‖xni – x̄‖} such that ‖xni – x̄‖ ≤ ‖xni+ – x̄‖ for all i≥ .We define an integer
sequence k(n) as in Lemma .. By use of (.), we have

‖xk(n)+ – x̄‖

≤
(
 –

αk(n)( – βk(n))( – β)
 + αk(n)( – β)

)
‖xk(n) – x̄‖

+
αk(n)( – βk(n))
 + αk(n)( – β)

〈
f (x̄) – x̄, yk(n) – x̄

〉

– ( – βk(n))rk(n)(α – rk(n))‖Ayk(n) –Ax̄‖

– ( – βk(n))
∥∥(I – Jrk(n) )(yk(n) – rk(n)Ayk(n)) – (I – Jrk(n) )(x̄ – rk(n)Ax̄)

∥∥. (.)

It follows that

lim
n→∞

∥∥yk(n) – Jrk(n) (yk(n) – rk(n)Ayk(n))
∥∥ = . (.)

Hence, we have lim supn→∞〈f (x̄) – x̄, yk(n) – x̄〉 ≤ . In view of (.), we find that

lim
n→∞‖xk(n) – x̄‖ = .

Note that

‖yk(n)+ – x̄‖ ≤ ‖yk(n)+ – xk(n)+‖ + ‖xk(n)+ – xk(n)‖ + ‖xk(n) – x̄‖
≤ αk(n)+

∥∥f (xk(n)+) – xk(n)+
∥∥

+ ( – βk(n))
∥∥Jrk(n) (yk(n) – rk(n)Ayk(n)) – xk(n)

∥∥ + ‖xk(n) – x̄‖
≤ αk(n)+

∥∥f (xk(n)+) – xk(n)+
∥∥ +

∥∥Jrk(n) (yk(n) – rk(n)Ayk(n)) – yk(n)
∥∥

+ αk(n)
∥∥f (xk(n)) – xk(n)

∥∥ + ‖xk(n) – x̄‖.

By use of (.), we find that limn→∞ ‖yn– x̄‖ = . Since ‖xn– x̄‖ ≤ αn‖f (xn)–xn‖+‖yn– x̄‖,
we find that limn→∞ ‖xn – x̄‖ = . This completes the proof. �

Remark . Comparing Theorem . with the recent results announced in [, ] and
[], we have the following:

(i) Our proofs are different from theirs.
(ii) We remove the additional restriction

∑∞
n= |rn+ – rn| < ∞.

3 Applications
In this section, we investigate solutions of equilibrium problems, variational inequalities
and convex minimization problems, respectively.

http://www.journalofinequalitiesandapplications.com/content/2015/1/2
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Let F be a bifunction of C × C into R, where R denotes the set of real numbers. Recall
the following equilibrium problem:

Find x ∈ C such that F(x, y)≥ , ∀y ∈ C. (.)

In this paper, we use EP(F) to denote the solution set of the equilibrium problem.
To study equilibrium problems (.), we may assume that F satisfies the following con-

ditions:
(A) F(x,x) =  for all x ∈ C;
(A) F is monotone, i.e., F(x, y) + F(y,x)≤  for all x, y ∈ C;
(A) for each x, y, z ∈ C,

lim sup
t↓

F
(
tz + ( – t)x, y

) ≤ F(x, y);

(A) for each x ∈ C, y �→ F(x, y) is convex and weakly lower semi-continuous.

Lemma . [] Let C be a nonempty closed convex subset of a real Hilbert space H . Let
F be a bifunction from C × C to R which satisfies (A)-(A) and let B be a multivalued
mapping of H into itself defined by

Bx =

⎧⎨
⎩

{z ∈H : F(x, y) ≥ 〈y – x, z〉,∀y ∈ C}, x ∈ C,

∅, x /∈ C.
(.)

Then B is a maximal monotone operator with the domain D(BF )⊂ C, EP(F) = B–(), and
Trx = (I + rB)–x, ∀x ∈ H , r > , where Tr is defined as

Trx =
{
z ∈ C : F(z, y) +


r
〈y – z, z – x〉 ≥ ,∀y ∈ C

}
.

Theorem . Let C be a nonempty closed convex subset of H . Let S : C → C be a non-
expansive mapping with fixed points and let f : C → C be a β-contractive mapping. Let
A : C → H be an α-inverse-strongly monotone mapping and let F be a bifunction from
C ×C to R which satisfies (A)-(A). Assume that F(S)∩ EP(F) is not empty. Let {αn} and
{βn} be real number sequences in (, ) and let {rn} be a positive real number sequence in
(, α). Let {xn} be a sequence generated in the following process: x ∈ C and

⎧⎨
⎩
yn = αnf (xn) + ( – αn)xn,

xn+ = βnxn + ( – βn)S(I + rnB)–(yn – rnAyn), ∀n≥ ,

where B is a mapping defined as in (.). Assume that the control sequences satisfy the
following restrictions:
(a) limn→∞ αn = ,

∑∞
n= αn =∞;

(b)  < lim infn→∞ βn ≤ lim supn→∞ βn < ;
(c)  < a≤ rn ≤ b < α and

∑∞
n= |rn – rn–| <∞,

http://www.journalofinequalitiesandapplications.com/content/2015/1/2
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where a and b are two real numbers. Then {xn} converges strongly to a point x̄ ∈ F(S) ∩
EP(F), which is a unique solution to the following variational inequality:

〈
f (x̄) – x̄,p – x̄

〉 ≤ , ∀p ∈ F(S)∩ EP(F).

Theorem . Let C be a nonempty closed convex subset of H . Let f : C → C be a β-
contractivemapping. Let A : C →H be an α-inverse-strongly monotonemapping and Let F
be a bifunction from C×C to R which satisfies (A)-(A). Assume that EP(F) is not empty.
Let {αn} and {βn} be real number sequences in (, ) and let {rn} be a positive real number
sequence in (, α). Let {xn} be a sequence generated in the following process: x ∈ C and

⎧⎨
⎩
yn = αnf (xn) + ( – αn)xn,

xn+ = βnxn + ( – βn)(I + rnB)–(yn – rnAyn), ∀n≥ .

Assume that the control sequences satisfy the following restrictions:
(a) limn→∞ αn = ,

∑∞
n= αn =∞;

(b)  ≤ βn ≤ β̄ < ;
(c)  < a≤ rn ≤ b < α,

where β̄ , a, and b are real numbers.Then {xn} converges strongly to a point x̄ ∈ (A+B)–(),
which is also a unique solution to the following variational inequality:

〈
f (x̄) – x̄,p – x̄

〉 ≤ , ∀p ∈ (A + B)–().

Let g : H → (–∞, +∞] be a proper convex lower semi-continuous function. Then the
subdifferential ∂g of g is defined as follows:

∂g(x) =
{
y ∈H : g(z) ≥ g(x) + 〈z – x, y〉, z ∈H

}
, ∀x ∈H .

From Rockafellar [], we know that ∂g is maximal monotone. It is easy to verify that  ∈
∂g(x) if and only if g(x) =miny∈H g(y). Let IC be the indicator function of C, i.e.,

IC(x) =

⎧⎨
⎩
, x ∈ C,

+∞, x /∈ C.
(.)

Since IC is a proper lower semi-continuous convex function on H , we see that the subdif-
ferential ∂IC of IC is a maximal monotone operator.

Lemma . [] Let C be a nonempty closed convex subset of H and let ProjC be themetric
projection fromH onto C. Let ∂IC be the subdifferential of IC ,where IC is as defined in (.).
Then y = (I + λ∂IC)–x⇐⇒ y = ProjC x, ∀x ∈H , y ∈ C,

Theorem . Let C be a nonempty closed convex subset of H . Let S : C → C be a non-
expansive mapping with fixed points and let f : C → C be a β-contractive mapping. Let
A : C → H be an α-inverse-strongly monotone mapping. Assume that F(S) ∩ VI(C,A) is
not empty. Let {αn} and {βn} be real number sequences in (, ) and let {rn} be a positive

http://www.journalofinequalitiesandapplications.com/content/2015/1/2
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real number sequence in (, α). Let {xn} be a sequence generated in the following process:
x ∈ C and

⎧⎨
⎩
yn = αnf (xn) + ( – αn)xn,

xn+ = βnxn + ( – βn)SProjC(yn – rnAyn), ∀n≥ .

Assume that the control sequences satisfy the following restrictions:
() limn→∞ αn = ,

∑∞
n= αn =∞;

()  < lim infn→∞ βn ≤ lim supn→∞ βn < ;
()  < a≤ rn ≤ b < α and

∑∞
n= |rn – rn–| < ∞,

where a and b are two real numbers. Then {xn} converges strongly to a point x̄ ∈ F(S) ∩
VI(C,A), which is a unique solution to the following variational inequality:

〈
f (x̄) – x̄,p – x̄

〉 ≤ , ∀p ∈ F(S)∩VI(C,A).

Proof Putting Bx = ∂IC , we find from Theorem . and Lemma . the desired conclusion
immediately. �

Theorem . Let C be a nonempty closed convex subset of H . Let f : C → C be a β-
contractive mapping and let A : C → H be an α-inverse-strongly monotone mapping. As-
sume that FVI(C,A) is not empty. Let {αn} and {βn} be real number sequences in (, ) and
let {rn} be a positive real number sequence in (, α). Let {xn} be a sequence generated in
the following process: x ∈ C and

⎧⎨
⎩
yn = αnf (xn) + ( – αn)xn,

xn+ = βnxn + ( – βn)ProjC(yn – rnAyn), ∀n≥ .

Assume that the control sequences satisfy the following restrictions:
(a) limn→∞ αn = ,

∑∞
n= αn =∞;

(b)  ≤ βn ≤ β̄ < ;
(c)  < a≤ rn ≤ b < α,

where β̄ , a, and b are real numbers.Then {xn} converges strongly to a point x̄ ∈ (A+B)–(),
which is also a unique solution to the following variational inequality:

〈
f (x̄) – x̄,p – x̄

〉 ≤ , ∀p ∈ (A + B)–().

Proof Putting B = ∂IC , we find from Theorem . and Lemma . the desired conclusion
immediately. �

Let W : H → R be a convex and differentiable function and M : H → R is a convex
function. Consider the convex minimization problem minx∈H (W (x) +M(x)). From [],
we know if∇W is 

L -Lipschitz continuous, then it is L-inverse-strongly monotone. Hence,
we have the following results.

Theorem . Let W :H →R be a convex and differentiable function such that ∇W is 
L -

Lipschitz continuous and let M : H → R be a convex and lower semi-continuous function

http://www.journalofinequalitiesandapplications.com/content/2015/1/2
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such that (∇W + ∂M)–() is not empty. Let f be a β-contractive mapping on H . Let {αn}
and {βn} be real number sequences in (, ) and let {rn} be a positive real number sequence
in (, α). Let {xn} be a sequence generated in the following process: x ∈ C and

⎧⎨
⎩
yn = αnf (xn) + ( – αn)xn,

xn+ = βnxn + ( – βn)(I + rnM)–(yn – rn∇Wyn), ∀n≥ .

Assume that the control sequences satisfy the following restrictions:
(a) limn→∞ αn = ,

∑∞
n= αn =∞;

(b)  ≤ βn ≤ β̄ < ;
(c)  < a≤ rn ≤ b < α,

where β̄ , a, and b are real numbers. Then {xn} converges strongly to a point x̄ ∈ (∇W +
∂M)–, which is also a unique solution to the following variational inequality:

〈
f (x̄) – x̄,p – x̄

〉 ≤ , ∀p ∈ (∇W + ∂M)–.

Proof Putting A = ∇W and B = ∂M, we find from Theorem . the desired conclusion
immediately. �

4 Conclusions
In this paper, we study a convex feasibility problem via two monotone mappings and a
nonexpansive mapping. The common solution is also a unique solution of another vari-
ational inequality. The restrictions imposed on the sequence {rn} are mild. The results
presented in this paper mainly improve the corresponding results in [] and [].
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