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1 Introduction
Assuming that f , g ∈ L(R+), ‖f ‖ = {∫ ∞

 f (x)dx} 
 > , ‖g‖ > , we have the following

Hilbert integral inequality (cf. []):

∫ ∞



∫ ∞



f (x)g(y)
x + y

dxdy < π‖f ‖‖g‖, ()

where the constant factor π is best possible. If a = {an}∞n=, b = {bn}∞n= ∈ l, ‖a‖ =
{∑∞

n= an}

 > , ‖b‖ > , then we have the following analogous discrete Hilbert inequality:

∞∑
m=

∞∑
n=

ambn
m + n

< π‖a‖‖b‖, ()

with the same best constant factor π . Inequalities () and () are important in analysis and
its applications (cf. [–]).
In , by introducing an independent parameter λ ∈ (, ], Yang [] gave an extension

of (). For generalizing the results from [], Yang [] gave some best extensions of () and
(): If p > , 

p +

q = , λ +λ = λ, kλ(x, y) is a non-negative homogeneous function of degree

–λ satisfying k(λ) =
∫ ∞
 kλ(t, )tλ– dt ∈ R+, φ(x) = xp(–λ)–, ψ(x) = xq(–λ)–, f (≥ ) ∈

Lp,φ(R+) = {f |‖f ‖p,φ := {∫ ∞
 φ(x)|f (x)|p dx} 

p < ∞}, g (≥ ) ∈ Lq,ψ (R+), and ‖f ‖p,φ ,‖g‖q,ψ >
, then∫ ∞



∫ ∞


kλ(x, y)f (x)g(y)dxdy < k(λ)‖f ‖p,φ‖g‖q,ψ , ()
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where the constant factor k(λ) is best possible.Moreover if the value of kλ(x, y) is finite and
kλ(x, y)xλ– (kλ(x, y)yλ–) is decreasing for x >  (y > ), then for am,bn ≥ , a = {am}∞m= ∈
lp,φ = {a|‖a‖p,φ := {∑∞

n= φ(n)|an|p}

p < ∞}, and b = {bn}∞n= ∈ lq,ψ , ‖a‖p,φ ,‖b‖q,ψ > , we

have

∞∑
m=

∞∑
n=

kλ(m,n)ambn < k(λ)‖a‖p,φ‖b‖q,ψ , ()

where the constant k(λ) is still best value. Clearly, for p = q = , λ = , k(x, y) = 
x+y , λ =

λ = 
 , () reduces to (), while () reduces to (). The reverses of () and () as well as the

equivalent forms are also considered by [].
Some other results about integral and discrete Hilbert-type inequalities can be found

in [–]. On half-discrete Hilbert-type inequalities with the general non-homogeneous
kernels, Hardy et al. provided a few results in Theorem  of []. But they did not prove
that the constant factors are best possible. In , Yang [] gave a result with the kernel


(+nx)λ by introducing a variable and proved that the constant factor is best possible. Very
recently, Yang [] and [] gave the following half-discrete reverse Hilbert inequality with
best constant factor: For  < p < , 

p +

q = , λ > ,  < λ ≤ , λ +λ = λ, θλ(x) =O( 

xλ ) ∈
(, ), φ̃(x) = ( – θλ(x))xp(–λ)–,

∫ ∞


f (x)

∞∑
n=

an
(x + n)λ

dx > B(λ,λ)‖f ‖p,φ̃‖a‖q,ψ . ()

In this paper, by means of weight functions and the improved Euler-Maclaurin summa-
tion formula, a more accurate half-discrete reverse Hilbert-type inequality with the kernel
(min{,(x–γ )(n–η)})β
(max{,(x–γ )(n–η)})α similar to () and a best constant factor is given. Moreover, some equiva-
lent forms, the dual forms as well as some relating homogeneous cases are also considered.

2 Some lemmas
Lemma  If n ∈ N, s > n, g(y) (y ∈ [n, s)), g(y) (y ∈ [s,∞)) are continuous decreasing
functions satisfying g(n) – g(s–)+ g(s) > , g(∞) = , define a function g(y) as follows:

g(y) :=

{
g(y), y ∈ [n, s),
g(y), y ∈ [s,∞).

()

Then there exists ε ∈ [, ], such that

–


[
g(n) + ε

(
g(s) – g(s – )

)]
<

∫ ∞

n
ρ(y)g(y)dy <

 – ε


(
g(s) – g(s – )

)
, ()

where ρ(y) = y–[y]– 
 is the Bernoulli function of the first order. In particular, for g(y) = ,

y ∈ [n, s), we have g(s) >  and

–

g(s) <

∫ ∞

s
ρ(y)g(y)dy <



g(s); ()
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for g(y) = , y ∈ [s,∞), if g(s – ) ≥ , then it follows g(n) >  and

–

g(n) <

∫ s

n
ρ(y)g(y)dy < . ()

Proof Define a continuous decreasing function g̃(y) as follows:

g̃(y) :=

{
g(y) + g(s) – g(s – ), y ∈ [n, s),
g(y), y ∈ [s,∞).

Then it follows that∫ ∞

n
ρ(y)g(y)dy =

∫ s

n
ρ(y)g(y)dy +

∫ ∞

s
ρ(y)g(y)dy

=
∫ s

n
ρ(y)

(̃
g(y) – g(s) + g(s – )

)
dy +

∫ ∞

s
ρ(y)̃g(y)dy

=
∫ ∞

n
ρ(y)̃g(y)dy –

(
g(s) – g(s – )

)∫ s

n
ρ(y)dy,

∫ s

n
ρ(y)dy =

∫ [s]

n
ρ(y)dy +

∫ s

[s]
ρ(y)dy =

∫ s

[s]

(
y – [s] –




)
dy

=



[

(
s – [s] –




)

– 
]
=

ε – 


(
ε ∈ [, ]

)
.

Since g̃(n) = g(n) + g(s) – g(s – ) > , g̃(y) is a non-constant continuous decreasing
function with g̃(∞) = g(∞) = , by the improved Euler-Maclaurin summation formula
(cf. [], Theorem ..), it follows that

–


(
g(n) + g(s) – g(s – )

)
=
–

g̃(n) <

∫ ∞

n
ρ(y)̃g(y)dy < ,

and then in view of the above results and by simple calculation, we have (). �

Lemma  If  < α+β ≤ , γ ∈ R, η ≤ – α+β

 (+
√
 + 

α+β
), and ω(n) and� (x) are weight

functions given by

ω(n) :=
∫ ∞

γ

(min{, (x – γ )(n – η)})β
(max{, (x – γ )(n – η)})α

(n – η)
α–β


(x – γ )–
α–β


dx, n ∈N,

� (x) :=
∞∑
n=

(min{, (x – γ )(n – η)})β
(max{, (x – γ )(n – η)})α

(x – γ )
α–β


(n – η)–
α–β


, x > γ , ()

then we have

 <


α + β

(
 – θ (x)

)
< � (x) < ω(n) =


α + β

, ()

θ (x) =

{

 ( – η)

α+β
 (x – γ )

α+β
 ,  < x – γ ≤ 

–η
,

 – 
 ( – η)–

α+β
 (x – γ )–

α+β
 , x – γ > 

–η
.

()
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Proof Substituting t = (x – γ )(n – η) in (), and by simple calculation, we have

ω(n) =
∫ ∞



(min{, t})β
(max{, t})α t

α–β
 – dt =

∫ 


tβ+

α–β
 – dt +

∫ ∞


t–α+ α–β

 – dt =


α + β
.

For fixed x > γ , we find

h(x, y) := (x – γ )
α–β


(min{, (x – γ )(y – η)})β
(max{, (x – γ )(y – η)})α (y – η)

α–β
 –

=

{
(x – γ )

α+β
 (y – η)

α+β
 –, η < y < η + 

x–γ
,

(x – γ )–
α+β
 (y – η)–

α+β
 –, y ≥ η + 

x–γ
,

h′
y(x, y) =

{
–( – α+β

 )(x – γ )
α+β
 (y – η)

α+β
 –, η < y < η + 

x–γ
,

–( α+β

 + )(x – γ )–
α+β
 (y – η)–

α+β
 –, y≥ η + 

x–γ
,∫ ∞

η

h(x, y)dy t=(x–γ )(y–η)=
∫ ∞



(min{, t})β
(max{, t})α t

α–β
 – dt =


α + β

.

By the Euler-Maclaurin summation formula (cf. []), it follows that

� (x) =
∞∑
n=

h(x,n) =
∫ ∞


h(x, y)dy +



h(x, ) +

∫ ∞


ρ(y)h′

y(x, y)dy

=
∫ ∞

η

h(x, y)dy – R(x) =


α + β
– R(x),

R(x) :=
∫ 

η

h(x, y)dy –


h(x, ) –

∫ ∞


ρ(y)h′

y(x, y)dy. ()

(i) For  < x – γ < 
–η

, we obtain – 
h(x, ) = – 

 (x – γ )
α+β
 ( – η)

α+β
 –, and

∫ 

η

h(x, y)dy = (x – γ )
α+β


∫ 

η

(y – η)
α+β
 – dy =

( – η)
α+β


α + β
(x – γ )

α+β
 .

Setting g(y) := –h′
y(x, y), wherefrom g(y) = ( – α+β

 )(x – γ )
α+β
 (y – η)

α+β
 –, g(y) = ( α+β

 +
)(x – γ )–

α+β
 (y – η)–

α+β
 – and

g
(

η +


x – γ

)
– g

((
η +


x – γ

)
– 

)
=

(
α + β


+ 

)
(x – γ ) –

(
 –

α + β



)
(x – γ )

= (α + β)(x – γ ) > ,

then by (), we find

–
∫ ∞


ρ(y)h′

y(x, y)dy =
∫ ∞


ρ(y)g(y)dy

>
–


[
g() + g

(
η +


x – γ

)
– g

((
η +


x – γ

)
– 

)]
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=
–


[(
 –

α + β



)
(x – γ )

α+β
 ( – η)

α+β
 – + (α + β)(x – γ )

]
>
–


[(
 –

α + β



)
( – η)

α+β
 –(x – γ )

α+β


+ (α + β)( – η)
α+β
 –(x – γ )

α+β
 –(x – γ )

]
=
–


(
 +

α + β



)
( – η)

α+β
 –(x – γ )

α+β
 .

In view of () and the above results, since for η ≤  – α+β

 ( +
√
 + 

α+β
), namely  – η ≥

α+β

 ( +
√
 + 

α+β
), it follows that

R(x) >


α + β
( – η)

α+β
 (x – γ )

α+β
 –



(x – γ )

α+β
 ( – η)

α+β
 –

–



(
 +

α + β



)
( – η)

α+β
 –(x – γ )

α+β


=
[
( – η)

α + β
–
( – η)


–
 + α + β



]
(x – γ )

α+β


( – η)–
α+β


≥ .

(ii) For x – γ ≥ 
–η

, we obtain – 
h(x, ) = – 

 (x – γ )–
α+β
 ( – η)–

α+β
 –, and

∫ 

η

h(x, y)dy =
∫ η+ 

x–γ

η

(x – γ )
α+β


(y – η)–
α+β


dy +
∫ 

η+ 
x–γ

(x – γ )–
α+β


(y – η)
α+β
 +

dy

=


α + β
–


α + β

( – η)–
α+β
 (x – γ )–

α+β


≥ ( – η)–
α+β


α + β
(x – γ )–

α+β
 –

( – η)–
α+β


α + β
(x – γ )–

α+β


=


α + β
( – η)–

α+β
 (x – γ )–

α+β
 .

Since for y ≥ , y–η ≥ 
x–γ

, by the improved Euler-Maclaurin summation formula (cf. []),
it follows that

–
∫ ∞


ρ(y)h′

y(x, y)dy =
(

α + β


+ 

)
(x – γ )–

α+β


∫ ∞


ρ(y)(y – η)–

α+β
 – dy

> –



(
α + β


+ 

)
(x – γ )–

α+β
 ( – η)–

α+β
 –.

In view of () and the above results, for  – η ≥ α+β

 ( +
√
 + 

α+β
), we find

R(x) >


α + β
( – η)–

α+β
 (x – γ )–

α+β
 –



( – η)–

α+β
 –(x – γ )–

α+β


–



(
α + β


+ 

)
( – η)–

α+β
 –(x – γ )–

α+β


=
[
( – η)

α + β
–
 – η


–
 + α + β



]
(x – γ )–

α+β


( – η)+
α+β


≥ .
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Hence for x > γ , we have R(x) > , and then � (x) < ω(n) = 
α+β

.
On the other-hand, since h(x, y) is decreasing with respect to y > η, we find

� (x) >
∫ ∞



(min{, (x – γ )(y – η)})β
(max{, (x – γ )(y – η)})α

(x – γ )
α–β


(y – η)–
α–β


dy

t=(x–γ )(y–η)=
∫ ∞

(–η)(x–γ )

(min{, t})β
(max{, t})α t

α–β
 – dt =


α + β

(
 – θ (x)

)
,

where θ (x) := α+β


∫ (–η)(x–γ )


(min{,t})β
(max{,t})α t

α–β
 – dt ∈ (, ).

(i) For  < x – γ ≤ 
–η

, we obtain

θ (x) =
α + β



∫ (–η)(x–γ )


tβ+

α–β
 – dt =



( – η)

α+β
 (x – γ )

α+β
 .

(ii) For x – γ > 
–η

, it follows that

θ (x) =
α + β



[∫ 


tβ+

α–β
 – dt +

∫ (–η)(x–γ )


t–α+ α–β

 – dt
]

=  –


( – η)–

α+β
 (x – γ )–

α+β
 .

Hence we have () and (). �

Lemma  Let the assumptions of Lemma  be fulfilled and additionally, let  < p <  or
p < , 

p +

q = , an ≥ , n ∈N, f (x) be a non-negative measurable function in (γ ,∞). Then

we have the following inequalities:

J :=

{ ∞∑
n=

(n – β)
p(α–β)

 –
[∫ ∞

γ

(min{, (x – γ )(n – η)})β
(max{, (x – γ )(n – η)})α f (x)dx

]p
} 

p

≥
(


α + β

) 
q
{∫ ∞

γ

� (x)(x – γ )p(–
α–β
 )–f p(x)dx

} 
p
, ()

L :=

{∫ ∞

γ

(x – α)
q(α–β)

 –

[� (x)]q–

[ ∞∑
n=

(min{, (x – γ )(n – η)})βan
(max{, (x – γ )(n – η)})α

]q

dx

} 
q

≥
{


α + β

∞∑
n=

(n – η)q(–
α–β
 )–aqn

} 
q

. ()

Proof For  < p < , setting k(x,n) := (min{,(x–γ )(n–η)})β
(max{,(x–γ )(n–η)})α , by the reverse Hölder inequality (cf.

[]) and (), it follows that

[∫ ∞

γ

(min{, (x – γ )(n – η)})β
(max{, (x – γ )(n – η)})α f (x)dx

]p

=
{∫ ∞

γ

k(x,n)
[
(x – γ )(–

α–β
 )/q

(n – η)(–
α–β
 )/p

f (x)
][

(n – γ )(–
α–β
 )/p

(x – γ )(–
α–β
 )/q

]
dx

}p

http://www.journalofinequalitiesandapplications.com/content/2014/1/96
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≥
∫ ∞

γ

k(x,n)
(x – γ )(–

α–β
 )(p–)

(n – η)–
α–β


f p(x)dx

×
{∫ ∞

γ

k(x,n)
(n – η)(–

α–β
 )(q–)

(x – γ )–
α–β


dx
}p–

=
{
ω(n)(n – η)q(–

α–β
 )–}p– ∫ ∞

γ

k(x,n)
(x – γ )(–

α–β
 )(p–)

(n – η)–
α–β


f p(x)dx

=
(


α + β

)p–

(n – η)–
p(α–β)



∫ ∞

γ

k(x,n)
(x – γ )(–

α–β
 )(p–)

(n – η)–
α–β


f p(x)dx.

Then by the Lebesgue term by term integration theorem (cf. []), we have

J ≥
(


α + β

) 
q
{ ∞∑

n=

∫ ∞

γ

k(x,n)
(x – γ )(–

α–β
 )(p–)

(n – η)–
α–β


f p(x)dx

} 
p

=
(


α + β

) 
q
{∫ ∞

γ

∞∑
n=

k(x,n)
(x – γ )(–

α–β
 )(p–)

(n – η)–
α–β


f p(x)dx

} 
p

=
(


α + β

) 
q
{∫ ∞

γ

� (x)(x – γ )p(–
α–β
 )–f p(x)dx

} 
p
,

and then () follows. By the reverse Hölder inequality, for q < , we have[ ∞∑
n=

k(x,n)an

]q

=

{ ∞∑
n=

k(x,n)
[
(x – γ )(–

α–β
 )/q

(n – η)(–
α–β
 )/p

][
(n – η)(–

α–β
 )/pan

(x – γ )(–
α–β
 )/q

]}q

≤
{ ∞∑

n=

k(x,n)
(x – γ )(–

α–β
 )(p–)

(n – η)–
α–β


}q– ∞∑
n=

k(x,n)
(n – η)(–

α–β
 )(q–)

(x – γ )–
α–β


aqn

=
[� (x)]q–

(x – γ )
q(α–β)

 –

∞∑
n=

k(x,n)
(n – η)(–

α–β
 )(q–)

(x – γ )–
α–β


aqn.

By the Lebesgue term by term integration theorem, we have

L ≥
{∫ ∞

γ

∞∑
n=

k(x,n)
(n – η)(–

α–β
 )(q–)

(x – γ )–
α–β


aqn dx

} 
q

=

{ ∞∑
n=

∫ ∞

γ

k(x,n)
(n – η)(–

α–β
 )(q–)

(x – γ )–
α–β


aqn dx

} 
q

=

{ ∞∑
n=

ω(n)(n – η)q(–
α–β
 )–aqn

} 
q

,

and in view of (), inequality () follows. For p < , by the same way we still have ()
and (). �

Lemma  Let the assumptions of Lemma  be fulfilled and additionally, let  < p < , 
p +


q = ,  < ε < p

 (α + β). Setting f̃ (x) = (x – γ )
α–β
 + ε

p–, x ∈ (γ ,γ + ); f̃ (x) = , x ∈ [γ + ,∞),

http://www.journalofinequalitiesandapplications.com/content/2014/1/96
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and ãn = (n – η)
α–β
 – ε

q–, n ∈N, then we have

Ĩ :=
∞∑
n=

ãn
∫ ∞

γ

(min{, (x – γ )(n – η)})β
(max{, (x – γ )(n – η)})α f̃ (x)dx

<

ε

(α + β)
( α+β

 ) – ( ε
p )

[
ε

( – η)ε+
+


( – η)ε

]
, ()

H̃ :=
{∫ ∞

γ

(x – γ )p(–
α–β
 )–̃f p(x)dx

} 
p
{ ∞∑

n=

(n – η)q(–
α–β
 )–̃aqn

} 
q

>

ε

(
 – εO()

) 
p

{
ε

( – η)ε+
+


( – η)ε

} 
q
. ()

Proof We find

Ĩ =
∞∑
n=

(n – η)
α–β
 – ε

q–
∫ γ+

γ

(min{, (x – γ )(n – η)})β
(max{, (x – γ )(n – η)})α (x – γ )

α–β
 + ε

p– dx

<
∞∑
n=

(n – η)
α–β
 – ε

q–
∫ ∞

γ

(min{, (x – γ )(n – η)})β
(max{, (x – γ )(n – η)})α (x – γ )

α–β
 + ε

p– dx

=
α + β

( α+β

 ) – ( ε
p )

[


( – η)ε+
+

∞∑
n=


(n – η)ε+

]

<
α + β

( α+β

 ) – ( ε
p )

[


( – η)ε+
+

∫ ∞



dy
(y – η)ε+

]

=

ε

(α + β)
( α+β

 ) – ( ε
p )

[
ε

( – η)ε+
+


( – η)ε

]
,

and then () is valid. We obtain

H̃ =
{∫ γ+

γ

[
 –



( – η)

α+β
 (x – γ )

α+β


]
(x – γ )ε– dx

} 
p

×
{


( – η)ε+

+
∞∑
n=


(n – η)ε+

} 
q

>
(

ε
–O()

) 
p
{


( – η)ε+

+
∫ ∞



dy
(y – η)ε+

} 
q

=

ε

(
 – εO()

) 
p

{
ε

( – η)ε+
+


( – η)ε

} 
q
,

and so () is valid. �

3 Main results
We introduce the functions

�(x) := (x – γ )p(–
α–β
 )–, �̃(x) =

(
 – θ (x)

)
�(x)

(
x ∈ (γ ,∞)

)
,

�(n) := (n – η)q(–
α–β
 )– (n ∈N),
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wherefrom [�(x)]–q = (x – γ )q
α–β
 –, [�̃(x)]–q = ( – θ (x))–q(x – γ )q

α–β
 – and [�(n)]–p =

(n – η)p
α–β
 –.

Theorem  If  < α+β ≤ , γ ∈ R, η ≤ – α+β

 (+
√
 + 

α+β
),  < p < , 

p +

q = , f (x),an ≥

, f ∈ Lp,�̃(γ ,∞), a = {an}∞n= ∈ lq,� , ‖f ‖p,�̃ >  and ‖a‖q,� > , then we have the following
equivalent inequalities:

I :=
∞∑
n=

an
∫ ∞

γ

(min{, (x – γ )(n – η)})β
(max{, (x – γ )(n – η)})α f (x)dx

=
∫ ∞

γ

f (x)
∞∑
n=

(min{, (x – γ )(n – η)})βan
(max{, (x – γ )(n – η)})α dx >


α + β

‖f ‖p,�̃‖a‖q,� , ()

J =

{ ∞∑
n=

[
�(n)

]–p[∫ ∞

γ

(min{, (x – γ )(n – η)})β f (x)
(max{, (x – γ )(n – η)})α dx

]p
} 

p

>


α + β
‖f ‖p,�̃, ()

L :=

{∫ ∞

γ

[
�̃(x)

]–q[ ∞∑
n=

(min{, (x – γ )(n – η)})βan
(max{, (x – γ )(n – η)})α

]q

dx

} 
q

>


α + β
‖a‖q,� , ()

where the constant 
α+β

is the best possible in the above inequalities.

Proof The two expressions for I in () follow from Lebesgue’s term by term integration
theorem. By () and (), we have (). By the reverse Hölder inequality, we have

I =
∞∑
n=

[
�

–
q (n)

∫ ∞

γ

(min{, (x – γ )(n – η)})β f (x)
(max{, (x – γ )(n – η)})α dx

][
�


q (n)an

] ≥ J‖a‖q,� .

Then by (), we have (). On the other-hand, assume that () is valid. Setting

an :=
[
�(n)

]–p[∫ ∞

γ

(min{, (x – γ )(n – η)})β f (x)
(max{, (x – γ )(n – η)})α dx

]p–

, n ∈N,

it follows that Jp– = ‖a‖q,� . By (), we find J > . If J = ∞, then () is trivially valid; if
J < ∞, then by (), we have

‖a‖qq,� = Jq(p–) = Jp = I >


α + β
‖f ‖p,�̃‖a‖q,� ,

therefore ‖a‖q–q,� = J > 
α+β

‖f ‖p,�̃, that is, () is equivalent to (). On the other-hand, by
() we have [� (x)]–q > ( – θ (x))–q( 

α+β
)–q. Then in view of (), we have (). By the

Hölder inequality, we find

I =
∫ ∞

γ

[
�̃


p (x)f (x)

][
�̃

–
p (x)

∞∑
n=

(min{, (x – γ )(n – η)})βan
(max{, (x – γ )(n – η)})α

]
dx ≥ ‖f ‖p,�̃L.

Then by (), we have (). On the other-hand, assume that () is valid. Setting

f (x) :=
[
�̃(x)

]–q[ ∞∑
n=

(min{, (x – γ )(n – η)})βan
(max{, (x – γ )(n – η)})α

]q–

, x ∈ (γ ,∞),
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then Lq– = ‖f ‖p,�̃. By (), we find L > . If L =∞, then () is trivially valid; if L < ∞, then
by (), we have

‖f ‖pp,�̃ = Lp(q–) = I >


α + β
‖f ‖p,�̃‖a‖q,� ,

therefore ‖f ‖p–p,�̃ = L > 
α+β

‖a‖q,� , that is, () is equivalent to (). Hence, (), (), and
() are equivalent.
If there exists a positive number k (≥ 

α+β
), such that () is valid as we replace 

α+β
with

k, then in particular, it follows that Ĩ > kH̃ . In view of () and (), we have

(α + β)
( α+β

 ) – ( ε
p )

[
ε

( – η)ε+
+


( – η)ε

]
> k

(
 – εO()

) 
p

{
ε

( – η)ε+
+


( – η)ε

} 
q
,

and 
α+β

≥ k (ε → +). Hence k = 
α+β

is the best value of ().
By the equivalence of the inequalities, the constant factor 

α+β
in () and () is the best

possible. �

For p < , we have the dual forms of (), (), and () as follows:

Theorem  If  < α +β ≤ , γ ∈ R, η ≤ – α+β

 (+
√
 + 

α+β
), p < , 

p +

q = , f (x),an ≥ ,

f ∈ Lp,�(γ ,∞), a = {an}∞n= ∈ lq,� , ‖f ‖p,� >  and ‖a‖q,� > , then we have the following
equivalent inequalities:

∞∑
n=

an
∫ ∞

γ

(min{, (x – γ )(n – η)})β
(max{, (x – γ )(n – η)})α f (x)dx >


α + β

‖f ‖p,�‖a‖q,� , ()

{ ∞∑
n=

[
�(n)

]–p[∫ ∞

γ

(min{, (x – γ )(n – η)})β f (x)
(max{, (x – γ )(n – η)})α dx

]p
} 

p

>


α + β
‖f ‖p,�, ()

{∫ ∞

γ

[
�(x)

]–q[ ∞∑
n=

(min{, (x – γ )(n – η)})βan
(max{, (x – γ )(n – η)})α

]q

dx

} 
q

>


α + β
‖a‖q,� , ()

where the constant 
α+β

is the best possible in the above inequalities.

Proof By means of Lemma  and the same way, we can prove that (), (), and () are
valid and equivalent. For  < ε

|p|
 (α + β), setting f̃ (x) and ãn as Lemma , if there exists a

positive number k (≥ 
α+β

), such that () is valid as we replace 
α+β

with k, then in partic-
ular, by (), it follows that

α + β

( α+β

 ) – ( ε
p )

[
ε

( – η)ε+
+


( – η)ε

]

> ε̃I > εk
{∫ γ+

γ

(x – γ )ε– dx
} 

p
{ ∞∑

n=


(n – η)ε+

} 
q

> εk
(

ε

) 
p
{∫ ∞



dy
(y – η)ε+

} 
q
= k

{


( – η)ε

} 
q
,
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and 
α+β

≥ k (ε → +). Hence k = 
α+β

is the best value of (). By the equivalence of the
inequalities, the constant factor 

α+β
in () and () is the best possible. �

Remark (i) Since we find

min
<α+β≤

{
 –

α + β



(
 +

√
 +


α + β

)}
=
 –

√



= .+ > ,

then for η = γ =  in (), we have

θ(x) =

{

x

α+β
 ,  < x ≤ ,

 – 
x

– α+β
 , x > ,

and the following inequality:

∞∑
n=

an
∫ ∞



(min{,xn})β
(max{,xn})α f (x)dx

>


α + β

{∫ ∞



(
 – θ(x)

)
xp(–

α–β
 )–f p(x)dx

} 
p
{ ∞∑

n=

nq(–
α–β
 )–aqn

} 
q

. ()

Hence () is a more accurate inequality of ().
(ii) For β =  in (), we have  < α ≤ , γ ∈ R, η ≤  – α

 ( +
√
 + 

α
),

θ(x) =

{

 (x – γ ) α

 ,  < x – γ ≤ 
–η

,
 – 

 (x – γ )– α
 , x – γ > 

–η

and the following inequality:

∞∑
n=

an
∫ ∞

γ

f (x)dx
(max{, (x – γ )(n – η)})α

>

α

{∫ ∞

γ

(
 – θ(x)

)
(x – γ )p(–

α
 )–f p(x)dx

} 
p
{ ∞∑

n=

(n – η)q(–
α
 )–aqn

} 
q

; ()

for α =  in (), we have  < β ≤ , γ ∈ R, η ≤  – β

 ( +
√
 + 

β
),

θ(x) =

{

 (x – γ )

β
 ,  < x – γ ≤ 

–η
,

 – 
 (x – γ )–

β
 , x – γ > 

–η

and the following inequality:

∞∑
n=

an
∫ ∞

γ

(
min

{
, (x – γ )(n – η)

})β f (x)dx

>

β

{∫ ∞

γ

(
 – θ(x)

)
(x – γ )p(+

β
 )–f p(x)dx

} 
p
{ ∞∑

n=

(n – η)q(+
β
 )–aqn

} 
q

; ()
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for β = α = λ in (), we have  < λ ≤ , γ ∈ R, η ≤  – λ
 ( +

√
 + 

λ
),

θ(x) =

{

 (x – γ )λ,  < x – γ ≤ 

–η
,

 – 
 (x – γ )–λ, x – γ > 

–η

and the following inequality:

∞∑
n=

an
∫ ∞

γ

[
min{, (x – γ )(n – η)}
max{, (x – γ )(n – η)}

]λ

f (x)dx

>

λ

{∫ ∞

γ

(
 – θ(x)

)
(x – γ )p–f p(x)dx

} 
p
{ ∞∑

n=

(n – η)q–aqn

} 
q

. ()

(iii) Setting y = 
x–γ

+ γ , g(y) = (y – γ )α–β–f ( 
y–γ

+ γ ), ϕ(y) = (y – γ )p(–
α–β
 )– and ϕ̃(y) =

( – θ ( 
y–γ

+ γ ))ϕ(y) in (), by simplification, we obtain the following inequality with the
homogeneous kernel:

∞∑
n=

an
∫ ∞

γ

(min{y – γ ,n – η})β
(max{y – γ ,n – η})α g(y)dy >


α + β

‖g‖p,ϕ̃‖a‖q,� . ()

It is evident that () is equivalent to (), and then the same constant factor 
α+β

in ()
is still the best possible. In the same way, we can find the following inequalities equivalent
to () with the same best possible constant factor 

α+β
:

{ ∞∑
n=

[
�(n)

]–p[∫ ∞

γ

(min{y – γ ,n – η})βg(y)
(max{y – γ ,n – η})α dy

]p
} 

p

>


α + β
‖f ‖p,ϕ̃ , ()

{∫ ∞

γ

[
ϕ̃(y)

]–q[ ∞∑
n=

(min{y – γ ,n – η})βan
(max{y – γ ,n – η})α

]q

dy

} 
q

>


α + β
‖a‖q,� . ()

(iv) Applying the same way in Theorem , we still can obtain some particular dual forms
as (i) and (ii) and some equivalent inequalities similar to (), (), and ().
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