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Abstract
In this paper we propose the Stancu type generalization of a kind of q-Gamma
operators. We estimate the moments of these operators and establish two direct and
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1 Introduction
In , Karsli [] introduced a kind of new Gamma type operators defined as

Ln(f ;x) =
(n + )!xn+

n!(n + )!

∫ ∞



tn

(x + t)n+
f (t) dt, x > . ()

He also estimated the rate of convergence of the operators () for functionswith derivatives
of bounded variation on (,∞).
In , Karsli et al. [] gave an estimate of the rate of pointwise convergence of the

operators () on a Lebesgue point of a bounded variation function f defined on the interval
(,∞).
In recent years Kim used q calculus to study several results on number theory and the

related areas [, ]. Now we mention certain definitions based on q-integers, details can
be found in [–]. For any fixed real number q >  and each nonnegative integer n, we
denote q-integers by [n]q, where

[n]q =

{
–qn
–q , if q �= ;
n, if q = .

()

Also q-factorial and q-binomial coefficients are defined as follows:

[n]q! =

{
[]q[]q · · · [n]q, if n = , , . . . ;
, if n = ;[

n
k

]
q

=
[n]q!

[n – k]q![k]q!
, k = , , . . . ,n.
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It is obvious that q-binomial coefficients will reduce to the ordinary case when q = . The
q-improper integrals are defined as (see [, ])

∫ a


f (x) dqx = ( – q)a

∞∑
n=

f
(
aqn

)
qn, a ∈R

and

∫ ∞/A


f (x) dqx = ( – q)

∞∑
–∞

f
(
qn

A

)
qn

A
, A > , ()

provided the sums converge absolutely.
The q-Beta integral is defined as

Bq(t; s) = K(A; t)
∫ ∞/A



xt–

( + x)t+sq
dqx, ()

where K (x; t) = 
x+x

t( + 
x )

t
q( + x)–tq and (a + b)sq =

∏s–
j=(a + qjb), s ∈ Z

+.
In particular, for any positive integers m, n

K (x;n) = q
n(n–)

 , K (x; ) =  and Bq(m;n) =
Γq(m)Γq(n)
Γq(m + n)

, ()

where Γq(t) is the q-Gamma function.
Form > , the q-Gamma function is defined by

Γq(m) =
∫ 

–q


xm–Eq(–qx) dqx, ()

where Eq(x) =
∑∞

n= q
n(n–)

 xn
[n]q ! . Obviously, it satisfies the following functional equations:

Γq(t + ) = [t]qΓq(t), Γq() = .

More details of the q-Gamma function and the q-Beta function can be found in [].
Very recently, Cai and Zeng [] proposed a kind of q-generalization of Gamma opera-

tors and studied their approximation properties. These operators are defined as follows:

Gn,q(f ;x) =
[n + ]q!(qn+


 x)n+q

n(n+)


[n]q![n + ]q!

∫ ∞/A



tn

(qn+ 
 x + t)n+q

f (t) dqt, x > . ()

In approximation theory the Stancu type modification of operators is an interesting re-
search topic. In this paper, we propose a kind of q-Gamma-Stancu operators Gα,β

n,q (f ;x) as
follows.

Definition  For f ∈ C(,∞), q ∈ (, ),  ≤ α ≤ β and n ∈ N, we can define q-Gamma-
Stancu operators Gα,β

n,q (f ;x) as

Gα,β
n,q (f ;x) =

[n + ]q!(qn+

 x)n+q

n(n+)


[n]q![n + ]q!

∫ ∞/A



tn

(qn+ 
 x + t)n+q

f
(
[n]qt + α

[n]q + β

)
dqt. ()
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The rest of the paper is organized as follows. In Section  we present themoments of the
operatorsGα,β

n,q (f ;x). In Section  we present two direct and local approximation results for
the operatorsGα,β

n,q (f ;x) bymeans of the first- and second-ordermodulus of continuity and
the second-order central moment of the operators. In Section  we study the rate of con-
vergence of the operators Gα,β

n,q (f ;x). In Section  we discuss the weighted approximation
theorem and Voronovskaya type asymptotic formula of the operators.

2 Moment estimates
In order to obtain the approximation properties of the operators Gα,β

n,q (f ;x), we need the
following lemmas.

Lemma  ([]) For any k ∈N, k ≤ n +  and q ∈ (, ), we have

Gn,q
(
tk ;x

)
=
[n + k]q![n – k + ]q!

[n]q![n + ]q!
q

k–k
 xk . ()

Lemma  If we define the moments as

Tα,β
n,m(x) = Gα,β

n,q
(
tm;x

)

=
[n + ]!(qn+ 

 x)n+q
n(n+)



[n]q![n + ]q!

∫ ∞/A



tn

(qn+ 
 x + t)n+q

(
[n]qt + α

[n]q + β

)m

dqt, ()

then we have
(i) Tα,β

n, (x) =Gα,β
n,q (;x) = ,

(ii) Tα,β
n, (x) =Gα,β

n,q (t;x) =
√q[n]q[n+]q
([n]q+β)[n+]q x +

α
[n]q+β

, for n > ,

(iii) Tα,β
n, (x) =Gα,β

n,q (t;x) = ( [n]q
[n]q+β

)x + α√q[n]q[n+]q
([n]q+β)[n+]q

x + ( α
[n]q+β

), for n > .

Proof From Lemma , we have Tα,β
n, (x) =Gα,β

n,q (;x) = . Thus

Tα,β
n, (x) :=

[n + ]q!(qn+

 x)n+q

n(n+)


[n]q![n + ]q!

∫ ∞/A



tn

(qn+ 
 x + t)n+q

(
[n]qt + α

[n]q + β

)
dqt

=
[n]q

[n]q + β
Gn,q(t;x) +

α

[n]q + β
Gn,q(;x)

=
√q[n]q[n + ]q
([n]q + β)[n + ]q

x +
α

[n]q + β
.

Finally,

Tα,β
n, (x) :=

[n + ] – q!(qn+ 
 x)n+q

n(n+)


[n]q![n + ]q!

∫ ∞/A



tn

(qn+ 
 x + t)n+q

(
[n]qt + α

[n]q + β

)

dqt

=
(

[n]q
[n]q + β

)

Gn,q
(
t;x

)
+

[n]qα
([n]q + β)

Gn,q(t;x) +
(

α

[n]q + β

)

Gn,q(;x)

=
(

[n]q
[n]q + β

)

x +
α√q[n]q[n + ]q
([n]q + β)[n + ]q

x +
(

α

[n]q + β

)

. �
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Remark  If we put q =  and α = β = , we get the moments of the Gamma operators
(see []):

Ln(t;x) =
n + 
n + 

x, n > ,

Ln
(
t;x

)
= x, n > .

Remark  Let n >  be a given natural number. For every q ∈ (, ) we have

Aα,β
n,q (x) =Gα,β

n,q (t – x;x) =
{ √q[n]q[n + ]q
([n]q + β)[n + ]q

– 
}
x +

α

[n]q + β
, ()

Bα,β
n,q (x) =Gα,β

n,q
(
(t – x);x

)
=

(
[n]q

[n]q + β

)

x +
α√q[n]q[n + ]q
([n]q + β)[n + ]q

x +
(

α

[n]q + β

)

– x
{ √q[n]q[n + ]q
([n]q + β)[n + ]q

x +
α

[n]q + β

}
+ x

=
{(

[n]q
[n]q + β

)

–
√q[n]q[n + ]q
([n]q + β)[n + ]q

+ 
}
x

+ α
{ √q[n]q[n + ]q
([n]q + β)[n + ]q

–


[n]q + β

}
x +

(
α

[n]q + β

)

, ()

Cα,β
n,q (x) =Gα,β

n,q
(
(t – x);x

)
=

{
([n]q)[n + ]q[n + ]q
[n – ]q([n]q + β)q

–
√q([n]q)[n + ]q

q([n]q + β)

+
([n]q)

([n]q + β)
–

√q[n]q[n + ]q
[n + ]q([n]q + β)

+ 
}
x

+
α

[n]q + β

{√q([n]q)[n + ]q
q([n]q + β)

–
([n]q)

([n]q + β)
+
√q[n + ]q[n]q
[n]q([n]q + β)

– 
}
x

+
α

([n]q + β)

{
([n]q)

([n]q + β)
–

√q[n]q[n + ]q
[n + ]q([n]q + β)

+ 
}
x

+
α

([n]q + β)

{ √q[n]q[n + ]q
[n + ]q([n]q + β)

– 
}
x +

α

([n]q + β)
. ()

3 Local approximation
In this section we establish two direct and the local approximation theorems of the oper-
ators Gα,β

n,q (f ;x).
Let CB[, +∞) denote the space of all real valued continuous bounded functions f de-

fined on the interval [, +∞). The norm ‖ · ‖ on the space CB[, +∞) is given by ‖f ‖ =
sup{|f (x)| : x ∈ [, +∞)}.
Further let us consider Peetre’s K-functional:

K(f ; δ) = inf
g∈W

{‖f – g‖ + δ
∥∥g ′′∥∥}

,

where δ >  andW  = {g ∈ CB[, +∞) : g ′, g ′′ ∈ CB[, +∞)}.
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For f ∈ CB[, +∞), the modulus of continuity of second order is defined by

ω(f ; δ) := sup
<h≤δ

sup
x∈[,+∞)

∣∣f (x + h) – f (x + h) + f (x)
∣∣.

From [, ], there exists an absolute constantM >  such that

K(f ; δ) ≤Mω(f ;
√

δ), δ > . ()

Also we set

ω(f ; δ) := sup
<h≤δ

sup
x∈[,+∞)

∣∣f (x + h) – f (x)
∣∣.

In order to prove the theorems of this section, we need the following lemma.

Lemma  Let q ∈ (, ), x ∈ (, +∞), f ∈ CB[, +∞). Then, for all g ∈ C
B[, +∞), we have

∣∣Ĝα,β
n,q (g;x) – g(x)

∣∣ ≤ (
Bα,β
n,q (x) +D

n,q(x)
)∥∥g ′′∥∥,

where

Ĝα,β
n,q (f ;x) =Gα,β

n,q (f ;x) + f (x) – f
(
Tα,β
n, (x)

)
, ()

Dα,β
n,q (x) = Tα,β

n, (x) – x.

Proof From () and Lemma , we have

Ĝα,β
n,q (t – x;x) = .

For x ∈ (, +∞) and g ∈ C
B[, +∞), using Taylor’s formula,

g(t) – g(x) = (t – x)g ′(x) +
∫ t

x
(t – u)g ′′(u) du,

we have

Ĝα,β
n,q (g;x) – g(x) = Ĝα,β

n,q
(
(t – x)g ′(x);x

)
+ Ĝα,β

n,q

(∫ t

x
(t – u)g ′′(u) du;x

)

= g ′(x)Ĝα,β
n,q

(
(t – x);x

)
+Gα,β

n,q

(∫ t

x
(t – u)g ′′(u) du;x

)

–
∫ Tα,β

n, (x)

x

(
Tα,β
n, (x) – u

)
g ′′(u) du

= Gα,β
n,q

(∫ t

x
(t – u)g ′′(u) du;x

)
–

∫ Tα,β
n, (x)

x

(
Tα,β
n, (x) – u

)
g ′′(u) du.

On the other hand, from
∣∣∣∣
∫ t

x
(t – u)g ′′(u) du

∣∣∣∣ ≤
∣∣∣∣
∫ t

x
|t – u|∣∣g ′′(u)

∣∣du∣∣∣∣ ≤ ∥∥g ′′∥∥∣∣∣∣
∫ t

x
|t – u|du

∣∣∣∣ ≤ (t – x)
∥∥g ′′∥∥
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and

∣∣∣∣
∫ Tα,β

n, (x)

x

(
Tα,β
n, (x) – u

)
g ′′(u) du

∣∣∣∣ ≤ (
Tα,β
n, (x) – x

)∥∥g ′′∥∥ =
(
Dα,β

n,q (x)
)∥∥g ′′∥∥,

we conclude that

∣∣Ĝα,β
n,q (g;x) – g(x)

∣∣ = ∣∣∣∣Gα,β
n,q

(∫ t

x
(t – u)g ′′(u) du;x

)
–

∫ Tα,β
n, (x)

x

(
Tα,β
n, (x) – u

)
g ′′(u) du

∣∣∣∣
≤Gα,β

n,q
(
(t – x)

∥∥g ′′∥∥;x) + (
Dα,β

n,q (x)
)∥∥g ′′∥∥

≤ (
Bα,β
n,q (x) +

(
Dα,β

n,q (x)
))∥∥g ′′∥∥.

This completes the proof. �

Theorem  Let q ∈ (, ), f ∈ CB[, +∞). Then, for every x ∈ (, +∞), there exists a con-
stant M >  such that

∣∣Gα,β
n,q (f ;x) – f (x)

∣∣ ≤Mω

(
f ;

√
Bα,β
n,q (x) +

(
Dα,β

n,q (x)
)) +ω

(
f ;

∣∣Dα,β
n,q (x)

∣∣).
Proof By (), we have

∣∣Ĝα,β
n,q (f ;x)

∣∣ ≤ ∣∣Gα,β
n,q (f ;x)

∣∣ + ‖f ‖ ≤ ‖f ‖. ()

Using Lemma , for every g ∈ C
B[, +∞), we obtain

∣∣Gα,β
n,q (f ;x) – f (x)

∣∣ ≤ ∣∣Ĝα,β
n,q (f ;x) – f (x)

∣∣ + ∣∣f (x) – f
(
Tα,β
n, (x)

)∣∣
≤ ∣∣Ĝα,β

n,q (f – g;x) – (f – g)(x)
∣∣ + ∣∣f (x) – f

(
Tα,β
n, (x)

)∣∣
+

∣∣Ĝα,β
n,q (g;x) – g(x)

∣∣
≤ ‖f – g‖ + ∣∣f (x) – f

(
Tα,β
n, (x)

)∣∣ + (
Bα,β
n,q (x) +

(
Dα,β

n,q (x)
))∥∥g ′′∥∥

≤ ‖f – g‖ +ω
(
f ;

∣∣Dα,β
n,q (x)

∣∣) + (
Bα,β
n,q (x) +

(
Dα,β

n,q (x)
))∥∥g ′′∥∥.

Now, by taking infimum on the right-hand side for all g ∈ C
B[,∞) and using (), we get

the following result:

∣∣Gα,β
n,q (f ;x) – f (x)

∣∣ ≤ K
(
f ;Bα,β

n,q (x) +
(
Dα,β

n,q (x)
)) +ω

(
f ;

∣∣Dα,β
n,q (x)

∣∣)
≤ Mω

(
f ;

√
Bα,β
n,q (x) +

(
Dα,β

n,q (x)
)) +ω

(
f ;

∣∣Dα,β
n,q (x)

∣∣)
=Mω

(
f ;

√
Bα,β
n,q (x) +

(
Dα,β

n,q (x)
)) +ω

(
f ;

∣∣Dα,β
n,q (x)

∣∣).
This completes the proof. �

Theorem  Let  < γ ≤  and E be any bounded subset of the interval [, +∞). If f ∈
CB[, +∞)∩ LipM (γ ), then we have

∣∣Gα,β
n,q (f ;x) – f (x)

∣∣ ≤M
{(
Bα,β
n,q (x)

) γ
 + 

(
d(x;E)

)γ }
,

http://www.journalofinequalitiesandapplications.com/content/2014/1/94
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where M is a constant depending only on α, d(x;E) is the distance between x and E defined
as

d(x;E) = inf
{|t – x| : t ∈ E and x ∈ (, +∞)

}
.

Proof From the properties of the infimum, there is at least one point t in the closure of E
such that

d(x;E) = |t – x|.

By the triangle inequality, we have

∣∣f (t) – f (x)
∣∣ ≤ ∣∣f (t) – f (t)

∣∣ + ∣∣f (t) – f (x)
∣∣.

Thus

∣∣Gα,β
n,q (f ;x) – f (x)

∣∣ ≤Gα,β
n,q

(∣∣f (t) – f (x)
∣∣;x)

≤Gα,β
n,q

(∣∣f (t) – f (t)
∣∣;x) +Gα,β

n,q
(∣∣f (t) – f (x)

∣∣;x)
≤M

{
Gα,β

n,q
(|t – t|γ ;x

)
+ |t – x|γ }

≤M
{
Gα,β

n,q
(|t – x|γ ;x) + |t – x|γ }

holds. Now we choose p = 
γ
and p = 

–γ
such that 

p
+ 

p
= , then by Hölder inequality

we have

∣∣Gα,β
n,q (f ;x) – f (x)

∣∣ ≤M
{[
Gα,β

n,q
(|t – x|γ p ;x)] 

p
[
Gα,β

n,q
(
p ;x

)] 
p + |t – x|γ }

=M
{
Gα,β

n,q
(|t – x|;x) γ

 + |t – x|γ }
=M

{(
Bα,β
n,q (x)

) γ
 + 

(
d(x;E)

)γ }
.

This completes the proof. �

4 Rate of convergence
Let Bx [, +∞) be the set of all functions f defined on [,+∞) satisfying the condition
|f (x)| ≤ Mf ( + x), where Mf is a constant depending only on f . Let Cx [, +∞) de-
note the subset of all continuous functions belonging to Bx [, +∞). If f ∈ Cx [, +∞)
and limx→+∞ f (x)

+x exists, we write f ∈ C∗
x [, +∞). The norm on C∗

x [, +∞) is given by
‖f ‖x = supx∈[,+∞)

|f (x)|
+x . The modulus of continuity of f on the closed interval [,a] is de-

fined by

ωa(f ; δ) = sup
|t–x|<δ

sup
x,t∈[,a]

∣∣f (t) – f (x)
∣∣.

We know that for a function f ∈ Cx [, +∞), the modulus of continuity ωa(f ; δ) tends to
zero as δ → .
Now we give a rate of convergence theorem for the operators Gα,β

n,q (f ;x).

http://www.journalofinequalitiesandapplications.com/content/2014/1/94
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Theorem  Let f ∈ Cx [, +∞), q ∈ (, ) and let ωa+(f ; δ) be modulus of the continuity of
f on the finite interval [,a + ]⊂ [, +∞), where a > . Then for n > ,

∣∣Gα,β
n,q (f ;x) – f (x)

∣∣ ≤ Mf
(
 + a

)
Bα,β
n,q (x) +ωa+(f ; δ)

(
 +


δ

[
Bα,β
n,q (x)

] 


)
. ()

Proof For x ∈ (,a] and t > a + , since t – x > , we have

∣∣f (t) – f (x)
∣∣ ≤Mf

(
 + x + t

)
≤Mf

(
 + x + t + (x – t)

)
≤Mf

(
 + x + (x – t)

)
≤ Mf

(
 + a

)
(t – x). ()

For x ∈ (,a] and t ≤ a + , we have

∣∣f (t) – f (x)
∣∣ ≤ ωa+

(
f ; |t – x|) ≤

(
 +

|t – x|
δ

)
ωa+

(
f ; |t – x|) ()

with δ > .
From () and () we get

∣∣f (t) – f (x)
∣∣ ≤ Mf

(
 + a

)
(t – x) +

(
 +

|t – x|
δ

)
ωa+(f ; δ), ()

for x ∈ (,a] and t > . Thus

∣∣Gα,β
n,q (f ;x) – f (x)

∣∣ ≤ Gα,β
n,q

(∣∣f (t) – f (x)
∣∣;x)

≤ Mf
(
 + a

)
Gα,β

n,q
(
(t – x);x

)
+ωa+(f ; δ)

(
 +


δ

[
Gα,β

n,q
(
(t – x);x

)] 


)

≤ Mf
(
 + a

)
Bα,β
n,q (x) +ωa+(f ; δ)

(
 +


δ

[
Bα,β
n,q (x)

] 


)
.

The proof is completed. �

As is well known, if f is not uniformly continuous on the interval [,∞), then the usual
first modulus of continuity ω(f ; δ) does not tend to zero as δ → . For every f ∈ C∗

x [,∞),
we would like to take a weighted modulus of continuity Ω(f ; δ) which tends to zero as
δ → .
Let

Ω(f ; δ) = sup
<h≤δ,x≥

|f (x + h) – f (x)|
 + (x + h)

, for every f ∈ C∗
x [,∞).

The weighted modulus of continuity Ω(f ; δ) was defined by Yuksel and Ispir in []. It is
well known that Ω(f ; δ) has the following properties.

http://www.journalofinequalitiesandapplications.com/content/2014/1/94
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Lemma  ([]) Let f ∈ C∗
x [,∞), then:

(i) Ω(f ; δ) is a monotone increasing function of δ.
(ii) For each f ∈ C∗

x [,∞), limδ→+ Ω(f ; δ) = .
(iii) For each m ∈N \ {}, Ω(f ;mδ) ≤mΩ(f ; δ).
(iv) For each λ ∈R

+, Ω(f ;λδ) ≤ ( + λ)Ω(f ; δ).

Theorem  Let f ∈ C∗
x [,∞) and q = qn ∈ (, ) such that qn →  and [n]qn → ∞ as

n→ ∞, then there exists a positive constant A such that the inequality

sup
x∈(,∞)

|Gα,β
n,qn (f ;x) – f (x)|
( + x) 

≤ AΩ

(
f ;

√
[n + ]qn

)
()

holds.

Proof For t > , x ∈ (,∞) and δ > , by the definition of Ω(f ; δ) and Lemma , we get

∣∣f (t) – f (x)
∣∣ ≤ (

 +
(
x + |x – t|))Ω(

f ; |t – x|)
≤ 

(
 + x

)(
 + (t – x)

)(
 +

|t – x|
δ

)
Ω(f ; δ).

Since Gα,β
n,qn is linear and positive, we have

∣∣Gα,β
n,qn (f ;x) – f (x)

∣∣
≤ 

(
 + x

)
Ω(f ; δ)

{
 +Gα,β

n,qn

[
(t – x);x

]
+Gα,β

n,qn

[(
 + (t – x)

) |t – x|
δ

;x
]}

. ()

From Remark , we have

Gα,β
n,qn

(
(t – x);x

) ≤ A
 + x

[n + ]qn
, ()

for some positive constant A. To estimate the second term of (), applying the Cauchy-
Schwartz inequality, we have

Gα,β
n,qn

((
 + (t – x)

) |t – x|
δ

;x
)

≤ 
(
Gα,β

n,qn

(
 + (t – x);x

)) 


(
Gα,β

n,qn

(
(t – x)

δ
;x

)) 

. ()

By Remark  and (), there exist two positive constants A, A such that

(
Gα,β

n,qn

(
 + (t – x);x

)) 
 ≤ A

(
 + x

)
()

and

(
Gα,β

n,qn

(
(t – x)

δ
;x

)) 
 ≤ A

δ

√
 + x

[n + ]qn
. ()

Now we take A =  + A + AA and δ = √
[n+]qn

, and combining the above estimates,

we obtain the inequality (). �
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5 Weighted approximation and Voronovskaya type asymptotic formula
In this section we will discuss the weighted approximation theorem and Voronovskaya
type asymptotic formula.

Theorem  Let the sequence q = {qn} satisfy  < qn < , qn →  and [n]qn → ∞ as n → ∞.
Then for f ∈ C∗

x [,∞), we have

lim
n→∞

∥∥Gα,β
n,qn (f ) – f

∥∥
x = . ()

Proof Using the Korovkin theorem in [], we know that it is sufficient to verify the fol-
lowing three equations:

lim
n→∞

∥∥Gα,β
n,qn

(
tk ;x

)
– xk

∥∥
x = , k = , , . ()

Since Gα,β
n,qn (;x) = , () holds true for k = .

By Lemma , for n > , we have

∥∥Gα,β
n,qn (t;x) – x

∥∥
x = sup

x∈[,∞)

{∣∣∣∣
{ √qn[n]qn [n + ]qn
([n]qn + β)[n + ]qn

– 
}
x +

α

[n]qn + β

∣∣∣∣ × 
 + x

}

≤
∣∣∣∣

√qn[n]qn [n + ]qn
([n]qn + β)[n + ]qn

– 
∣∣∣∣ sup
x∈[,∞)

x
 + x

+
α

[n]qn + β
sup

x∈[,∞)


 + x

≤
∣∣∣∣

√qn[n]qn [n + ]qn
([n]qn + β)[n + ]qn

– 
∣∣∣∣ + α

[n]qn + β

≤
∣∣∣∣
√qn[n + ]qn
[n + ]qn

– 
∣∣∣∣ + β

√qn[n + ]qn
([n]qn + β)[n + ]qn

+
α

[n]qn + β

≤
∣∣∣∣ √qn

– 
∣∣∣∣ + √qn[n + ]qn

+
α + β

√qn
[n]qn + β

.

Thus

lim
n→∞

∥∥Gα,β
n,qn (t;x) – x

∥∥
x = .

Similarly, for n > , we have

∥∥Gα,β
n,qn

(
t;x

)
– x

∥∥
x = sup

x∈[,∞)

{∣∣∣∣
(

[n]qn
[n]qn + β

)

x +
α√qn[n]qn [n + ]qn
([n]qn + β)[n + ]qn

x

+
(

α

[n]qn + β

)

– x
∣∣∣∣ × 

 + x

}

≤ β

([n]qn + β)
+

β
[n]qn + β

+
α

([n]qn + β)
+
α√qn[n]qn [n + ]qn
([n]qn + β)[n + ]qn

≤ α + β

([n]qn + β)
+
α√qn + β
[n]qn + β

,

which implies that

lim
n→∞

∥∥Gα,β
n,qn

(
t;x

)
– x

∥∥
x = .

The proof is completed. �
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Finally, we give a Voronovskaya type asymptotic formula for Gα,β
n,qn (f ;x) by means of the

second and the fourth central moments.

Theorem  Let f be a bounded and integrable function on the interval (,∞) and {qn}∞n=
be a sequence such that  < qn <  and qn →  as n→ ∞. Suppose that the second derivative
f ′′(x) exists at a point x ∈ (,∞), then we have

lim
n→∞[n + ]qn

(
Gα,β

n,qn (f ;x) – f (x)
)
=

(
α – ( + β)x

)
f ′(x) + xf ′′(x). ()

Proof By the Taylor formula we have

f (t) – f (x) = (t – x)f ′(x) +


f ′′(x)(t – x) + r(t,x)(t – x),

where r(t,x) is bounded and limt→x r(t,x) = . By applying the operator Gα,β
n,q (f ;x) to the

above equation we obtain

Gα,β
n,qn (f ;x) – f (x) = f ′(x)Gα,β

n,qn

(
(t – x);x

)
+


f ′′(x)Gα,β

n,qn

(
(t – x);x

)
+Gα,β

n,qn

(
r(t,x)(t – x);x

)
= f ′(x)Aα,β

n,qn (x) +


f ′′(x)Bα,β

n,qn (x) +Gα,β
n,qn

(
r(t,x)(t – x);x

)
.

By direct calculation, we obtain

[n + ]qnA
α,β
n,qn (x) =

{√qn[n]qn [n + ]qn
([n]qn + β)

– [n + ]qn
}
x +

α[n + ]qn
[n]qn + β

=
{√

qn[n + ]qn – [n + ]qn
}
x –

{√qnβ[n + ]qn
[n]qn + β

}
x +

α[n + ]qn
[n]qn + β

= (
√
qn – qn)[n + ]qnx –

{
 +

√qnβ[n + ]qn
[n]qn + β

}
x +

α[n + ]qn
[n]qn + β

=
√qn( – qn+n )

 +√qn
x –

{
 +

√qnβ[n + ]qn
[n]qn + β

}
x +

α[n + ]qn
[n]qn + β

→ α – ( + β)x (n→ ∞).

Similarly,

[n + ]qn
[(

[n]qn
[n]qn + β

)

–
√qn[n]qn [n]qn

([n]qn + β)([n + ]qn )
+ 

]

= 
{
[n + ]qn –

√qn[n]qn [n + ]qn
[n]qn + β

–
β[n + ]qn
[n]qn + β

}

= 
{
[n + ]qn –

√
qn[n + ]qn +

√qnβ[n + ]qn
[n]qn + β

–
β[n + ]qn
[n]qn + β

}

= 
{
 + (qn –

√
qn)[n + ]qn +

√qnβ[n + ]qn
[n]qn + β

–
β[n + ]qn
[n]qn + β

}

→  (n→ ∞).
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That means

[n + ]qnB
α,β
n,qn (x) → x (n→ ∞). ()

On the other hand, by simple calculation we obtain

[n + ]qn
(
[n + ]qn [n + ]qn
[n]qn [n – ]qn

– 
)

→  (n→ ∞), ()

[n + ]qn
(
[n + ]qn
[n]qn

– 
)

→  (n→ ∞). ()

Thus from Remark , we have

[n + ]qnG
α,β
n,qn

(
(t – x);x

) →  (n→ ∞). ()

Since r(t,x) is bounded and limt→x r(t,x) = , then for any given ε > , there exists a δ > 
such that

∣∣r(t,x)∣∣ ≤ ε +
M
δ

(t – x)
(
t,x ∈ (,∞),M is a positive constant

)
.

Thus

[n + ]qn
∣∣Gα,β

n,qn

(
r(t,x)(t – x);x

)∣∣
≤ ε[n + ]qnG

α,β
n,qn

(
(t – x);x

)
+
M
δ

[n + ]qnG
α,β
n,qn

(
(t – x);x

) →  (n→ ∞).

The proof is completed. �
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