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1 Introduction
The notion of structural stability was introduced be Andronov and Pontrjagin []. This
means that under small perturbations the dynamics are topologically equivalent. The sys-
tem is �-stable; then it is called Axiom A, that is, the non-wandering set is the closure of
the set of periodic points and it is hyperbolic. It turned out to be one of the most prob-
lems in the differentiable dynamical systems to find if a structurally stable system satisfies
the Axiom A property. Let M be a closed C∞ manifold. Mañé defined a set F (M) of dif-
feomorphisms having a C-neighborhood U such that every diffeomorphism inside of U
has all periodic orbits of hyperbolic. In [], Mañé proved that every surface diffeomor-
phism of F (M) satisfies Axiom A. Hayashi has shown in [] that every diffeomorphism
of F (M) satisfies Axiom A. Robinson has proven in [] that a dynamical system is struc-
turally stable when the system has the shadowing property. Also, in [] Sakai showed that
if a dynamical system belongs to the C-interior of the set of all systems having the shad-
owing property then it is a structurally stable diffeomorphism. Lee has shown in [] that if
a dynamical system belongs to the C-interior of the set of all systems having the ergodic
shadowing property then it is a structurally stable diffeomorphism. Carvalho proved in []
that the C-interior of the set of all systems having the two-side limit shadowing property
is equal to the set of transitive Anosov diffeomorphisms, Pilyugin has shown in [] that
the C-interior of the set of all systems having the limit shadowing property is equal to
the set �-stable diffeomorphisms. Recently, in [] Sakai proved that for C-generically if a
diffeomorphism has the s-limit shadowing property on the chain recurrent set then it is a
�-stable diffeomorphism. From that, we know that the shadowing property is very close
to the stability theory (see []). In [], Mañé introduced the family of periodic sequences
of linear isomorphisms ofRdimM , and from that we can define the local star condition (see
[, Proposition II.]).
In this paper, we introduce the notion of the local star condition, and study under the

local star condition the some shadowing property.

©2014 Lee; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-
tion License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

http://www.journalofinequalitiesandapplications.com/content/2014/1/90
mailto:lmsds@mokwon.ac.kr
http://creativecommons.org/licenses/by/2.0


Lee Journal of Inequalities and Applications 2014, 2014:90 Page 2 of 10
http://www.journalofinequalitiesandapplications.com/content/2014/1/90

Let M be a closed C∞ manifold, and denote by d the distance on M induced by a
Riemannian metric ‖ · ‖ on the tangent bundle TM. Denote by Diff(M) the space of
diffeomorphisms of M endowed with the C-topology. Let f ∈ Diff(M). We say that f
has the shadowing property if for every ε >  there is δ >  such that for any δ-pseudo
orbit {xi}bi=a of f (–∞ ≤ a < b ≤ ∞), there is a point y ∈ M such that d(f i(y),xi) < ε

for all a ≤ i ≤ b – . The notion of the ergodic shadowing property was introduced by
Fakhari and Ghane in []. For any δ > , a sequence ξ = {xi}i∈Z is δ-ergodic pseudo or-
bit of f if for Np+n(ξ , f , δ) = {i : d(f (xi),xi+) ≥ δ} ∩ {, , . . . ,n – }, and Np–n(ξ , f , δ) = {–i :
d(f –(x–i),x–i–) ≥ δ} ∩ {–n + , . . . , –, }

lim
n→∞

#Np+n(ξ , f , δ)
n

=  and lim
n→–∞

#Np–n(ξ , f , δ)
n

= .

We say that f has the ergodic shadowing property if for any ε > , there is a δ >  such that
every δ-ergodic pseudo orbit ξ = {xi}i∈Z of f is ε-shadowed in ergodic sense for some point
z ∈ M, that is, for Ns+n(ξ , f , z, ε) = {i : d(f i(z),xi) ≥ ε} ∩ {, , . . . ,n – }, and Ns–n(ξ , f , z, ε) =
{–i : d(f –i(z),x–i)≥ ε} ∩ {–n + , . . . , –, },

lim
n→∞

#Ns+n(ξ , f , z, ε)
N

=  and lim
n→–∞

#Ns–n(ξ , f , z, ε)
N

= .

Let � be a closed f -invariant set. We say that f has the ergodic shadowing property in
� if for any ε there is δ >  such that for any δ-ergodic pseudo orbit {xi}i∈Z ⊂ � of f is
ε-shadowed in ergodic sense for some point z ∈ �.
By the result of [], if a diffeomorphism has the ergodic shadowing property then it

is chain transitive, moreover, it is topologically mixing. Thus the diffeomorphism does
not contain a sink and sources. We know that a Morse-Smale diffeomorphism has the
shadowing property. But the diffeomorphism contains sinks and sources. Thus it does
not have the ergodic shadowing property. We say that f is topologically mixing if for any
nonempty open sets U and V , there is N >  such that f n(U) ∩ V 
= ∅ for n ≥ N . In [,
Theorem A], Fakhari and Ghane proved that f has the ergodic shadowing property if and
only if f has the shadowing property and it is topologically mixing. Let P(f ) be the set of
periodic points of f . Denote by Orb(p) the periodic f -orbit of p ∈ P(f ). Let p ∈ P(f ) be a
hyperbolic saddle with period π (p) > , then there are a local stable manifold Ws

ε (p) and
a local unstable manifold Wu

ε(p)(p) for some ε = ε(p) > . Then we see that if x ∈ Ws
ε (p),

then d(f i(x), f i(p)) ≤ ε, for i ≥  and if x ∈ Wu
ε (p) then d(f –i(x), f –i(p)) ≤ ε for i ≥ .

The stable manifold Ws(p) and the unstable manifold Wu(p) of p are defined as usual.
The dimension of the stable manifold Ws(p) is called the index of p, and we denote it by
index(p).
A point x ∈ Ws(p) ∩Wu(p) is called a transversal homoclinic point of f if the above in-

tersection is transversal at x; i.e., x ∈ Ws(p) �Wu(p). The closure of the set of transversal
homoclinic points of f associated to p is called the transversal homoclinic class of f as-
sociated to p, and it is denoted by Hf (p). It is clear that Hf (p) is compact, invariant, and
transitive.
Let� ⊂M be an f -invariant closed set.We say that� is a hyperbloc if the tangent bundle

T�M has a continuous Df -invariant splitting Es ⊕ Eu and there exist constants C >  and
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 < λ <  such that

∥∥Dxf n|Es(x)
∥∥ ≤ Cλn and

∥∥Dxf –n|Eu(x)
∥∥ ≤ Cλn

for all x ∈ � and n≥ .
For δ > , a sequence {xi}∈Z is called a δ-average pseudo orbit of f if there isN =N(δ) > 

such that for all n≥N and k ∈ Z,


n

n–∑

i=

d
(
f (xi+k),xi+k+

)
< δ.

We say that f has the average shadowing property if for any ε > , there is δ >  such that
for any δ-average pseudo orbit {xi}i∈Z, there is z ∈M such that

lim sup
n→∞


n

n–∑

i=

d
(
f i(z),xi

)
< ε.

In [], Lee showed that if f ∈ F (Hf (p)) and f has the average shadowing property in
Hf (p) then Hf (p) is hyperbolic. For that, we show the following.

Theorem . Let Hf (p) be the homoclinic class associated to the hyperbolic periodic
point p. Assume Hf (p) satisfies the following properties, (i) and (ii):

(i) f satisfies the local star condition, and
(ii) f has the ergodic shadowing property in Hf (p).

Then Hf (p) is hyperbolic.

The average shadowing property is not the ergodic shadowing property. Indeed, the
map f : [, ]→ [, ] is defined by f (x) = x if  ≤ x < /, and f (x) = –x+ if / ≤ x ≤ .
Then the map has two fixed points. In [, Example], the map has the ergodic shadowing
property. However, in [, Theorem .], Park and Zhang proved that if the number of
the fixed points is greater than two, then the map f does not have the average shadowing
property.

2 Proof of Theorem 1.1
Let M be as before, and let f ∈ Diff(M). We say that a compact f -invariant set � ⊂ M
admits a dominated splitting if the tangent bundle T�M has aDf -invariant splitting E⊕F
and there exist constants C >  and  < λ <  such that

∥∥Df n|E(x)
∥∥ · ∥∥Df –n|F(f n(x))

∥∥ ≤ Cλn

for all x ∈ � and n≥ . Note that the above dominated splitting can be rewritten as

‖Df |E(x)‖/m(Df |F(x)) < λ

for every x ∈ �, wherem(A) = inf{‖Av‖ : ‖v‖ = } denotes themininorm of a linear map A.
It always extends to a neighborhood which is called an admissible neighborhood of �. By
Mañé (see []), the family of periodic sequences of linear isomorphisms of RdimM gener-
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ated byDg (g close to f ) along the hyperbolic periodic point q ∈ �g(U)∩P(g) is uniformly
hyperbolic. Thismeans that there is ε >  such that for any g C-nearby f ,q ∈ �g(U)∩P(g)
and any sequence of linear maps Ai : Tgi(q)M → Tgi+(q)M with ‖Ai – Dgi(q)g‖ < ε (i =
, , . . . ,π (q)),

∏π (q)–
i= Ai, is hyperbolic. Thus if f ∈F (Hf (p)) then we have the following.

Proposition . Suppose that f ∈ F (Hf (p)). Let U (f ) and U be given by the definition of
F (Hf (p)). Then there are m > , C >  and λ ∈ (, ) such that
(a) Hf (p) admits a dominated splitting THf (p)M = E ⊕ F with dimE = dimWs(p).
(b) For any q ∈ U (f ) if q ∈ �g(U)∩ P(g) has minimum period π (q) then

k–∏

i=

∥∥Dgim(q)gm|Es(gim(q))
∥∥ < Cλk and

k–∏

i=

∥∥Dg–im(q)g–m|Eu(g–im(q))
∥∥ < Cλk ,

where k = [π (q)/m].

By Proposition ., we get the following, which was found by [, Theorem .].

Proposition . Suppose that f ∈ F (Hf (p)). Let U (f ) and U be given by the definition of
F (Hf (p)). Then there are m > , λ ∈ (, ), and L >  such that we have the following.
(a) Hf (p) admits a dominated splitting THf (p)M = E ⊕ F with dimE = dimWs(p) such

that for every x ∈Hf (p),

∥∥Df m|E(x)
∥∥/m

(
Df m|F(x)

)
< λ.

(b) For any q ∈ U (f ) if q ∈ �g(U)∩ P(g) then index(q) = index(pg), and if π (q) > L then

π (q)–∏

i=

∥∥Dgim(q)gm|Es(gim(q))
∥∥ < λπ (q) and

π (q)–∏

i=

∥∥Dg–im(q)g–m|Eu(g–im(q))
∥∥ < λπ (q).

Theorem . [, Proposition .] Let λ ∈ (, ) and let � be a closed f -invariant set with
a continuous Df -invariant splitting T�M = E ⊕ F such that

‖Df |E(x)‖/m(Df |F(x)) < λ

for any x ∈ �. Assume that there is a point x ∈ � such that

logλ < logλ = lim sup
n→∞


n

n–∑

i=

log
(‖Df |E(f i(x))‖

)
< 

and

lim inf
n→∞


n

n–∑

i=

log
(‖Df |E(f i(x))‖

)
< logλ.

Then for any λ and λ with λ < λ < λ < λ < , and any neighborhood U of �, there
exists a hyperbolic periodic point q if index(q) = dimE such that its orbit Orb(q) is entirely

http://www.journalofinequalitiesandapplications.com/content/2014/1/90
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contained in U and the derivatives along Orb(q) satisfy

k–∏

i=

‖Df |Es(f i(q))‖ < λk
 and

π (q)–∏

i=k–

‖Df |Es(f i(q))‖ > λ
π (q)–k+


for all k = , , . . . ,π (q).Moreover, q can be chosen such that π (q) is arbitrarily large.

Lemma . Let {xi}i∈Z be a δ-ergodic pseudo orbit of f in �. If {xi}i∈Z is ε shadowed in
ergodic by some point z ∈ � then

lim
n→∞


n + 

n∑

i=

d
(
f i(z),xi

)
< ε.

Proof Suppose that f has the ergodic shadowing property in �. Since {xi}i∈Z ⊂ � is a δ-
ergodic pseudo orbit of f , there is z ∈ � such that

lim
n→∞

#{i ∈ {, , . . . ,n} : d(f i(z),xi) ≥ ε}
n + 

= .

Set k = #{i ∈ {, , . . . ,n} : d(f i(z),xi) ≥ ε}, and diam� = l. Then

n∑

i=

d
(
f i(z),xi

)
< kl + (n +  – k)ε.

Thus


n + 

n∑

i=

d
(
f i(z),xi

)
<


n + 

(
kl + (n +  – k)ε

)
=

kl
n + 

+
nε

n + 
–

kε
n + 

.

Therefore, if n→ ∞ then


n + 

n∑

i=

d
(
f i(z),xi

)
<

kl
n + 

+
nε

n + 
–

kε
n + 

→ ε.

Thus

lim
n→∞


n + 

n∑

i=

d
(
f i(z),xi

)
< ε. �

Let � be a closed f -invariant set.

Lemma . [, Lemma .] Let ϕ(x) be a continuous function defined on �. For any ε > 
there is a δ >  such that for any two sequences {xi}i∈Z, {yi}i∈Z if

lim sup
n→∞


n

n–∑

i=

d(xi, yi) < δ,

http://www.journalofinequalitiesandapplications.com/content/2014/1/90
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then

lim sup
n→∞


n

n–∑

i=

∥∥ϕ(xi) – ϕ(yi)
∥∥ < ε.

Proposition . Let p be a hyperbolic periodic point and let λ ∈ (, ) and L ≥  be given.
Assume that the homoclinic class Hf (p) satisfies the following properties:
(a) Hf (p) admits a dominated splitting THf (p)M = E ⊕ F with dimE = dimWs(p) such

that for every x ∈Hf (p),

‖Df |E(x)‖/m(Df |F(x)) < λ.

(b) For any q ∈ Hf (p)∩ P(f ) if q is hyperbolic and π (q) > L, then index(q) = index(p), and

π (q)–∏

i=

‖Df |Es(f i(q))‖ < λπ (q) and
π (q)–∏

i=

‖Df |Eu(f –i(q))‖ < λπ (q).

(c) f has the ergodic shadowing property in Hf (p).
Then Hf (p) is hyperbolic for f .

Let E ⊂ T�M be a subbundle. We say that E ⊂ T�M is contracting if there exist C > 
and  < λ <  such that ‖Df n|E(x)‖ < Cλn for every x ∈ � and every n ∈ N. We will say that
E is expanding if E is contracting respecting f –.

Lemma . Let Hf (p) satisfy (a)-(c) of Proposition .. Suppose that E is not contracting.
Then for any λ < γ < γ < , there is z ∈ Hf (p) such that

lim inf
n→∞


n

n–∑

i=

log
(‖Df |E(f i(z))‖

)
< logγ < lim sup

n→∞

n

n–∑

i=

log
(‖Df |E(f i(z))

)
< logγ.

Proof Suppose that E is not contracting. Then there is y ∈Hf (p) such that

n–∏

i=

‖Df |E(f i(y))‖ ≥ 

for all n ∈ N. For any x ∈Hf (p) and i ∈N, we define ϕ(x) = log‖Df |E(f i(x))‖. By Lemma .,
for any ξ >  there is ε >  such that for any sequences {xi}i∈Z, {yi}i∈Z ⊂Hf (p) if

lim sup
n→∞


n

n–∑

i=

d(xi, yi) < ε,

then

lim sup

n

n–∑

i=

∥∥ϕ(xi) – ϕ(yi)
∥∥ < ξ .

Fix  < ξ < min{(logγ – logγ)/, (logγ – logλ)/}. Since f has the ergodic shadow-
ing property in Hf (p), there is δ >  such that any δ-ergodic pseudo orbit in Hf (p) can

http://www.journalofinequalitiesandapplications.com/content/2014/1/90
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be ergodic shadowed by some point in Hf (p). Since Hf (p) = {q ∈ P(f ) : q ∼ p}, there is
a hyperbolic periodic orbit Orb(q) ⊂ Hf (p) with π (q) > L such that for any y ∈ Hf (p),
there is q ∈ Orb(q) such that d(y,q) < δ. Then we can construct a δ-ergodic pseudo or-
bit {xi}i∈Z ⊂Hf (p) as in the proof of [, Lemma .]. We obtain the sequence

{xi}i∈Z =
{
. . . , f (q),q, y, f (y), . . . , f l (y),q, . . . ,q, f l+(y), . . . , f l+l (y),q, . . .

}
.

It is a δ-pseudo orbit of f . Thus we know #{i ∈ {, , , . . . ,n} : d(f (xi),xi+)≥ δ} =  and so,
it is a δ-ergodic pseudo orbit of f . As in the proof of [, Lemma .], we have

lim sup
n→∞


n

n–∑

i=

log
(‖Df |E(xi)‖

)
=


(logγ + logγ) and

lim inf
n→∞


n

n–∑

i=

log
(‖Df |E(xi)‖

) ≤ 

(logγ + logλ).

Since f has the ergodic shadowing property in Hf (p), we can take z ∈ Hf (p) such that z
is the ergodic shadowing point of {xi}i∈Z. Then we show that

(i)

lim inf
n→∞


n

n–∑

i=

log
(‖Df |E(f (z))‖

)
< logγ,

(ii)

logγ < lim sup
n→∞


n

n–∑

i=

log
(‖Df |E(f i(z))‖

)
, and

(iii)

lim sup
n→∞


n

n–∑

i=

log
(‖Df |E(f i(z))‖

)
< logγ.

Proof of (i) Since ξ < (logγ – logλ)/, by Lemma .

lim inf
n→∞


n

n–∑

i=

ϕ
(
f i(z)

)
< lim inf

n→∞

n

n–∑

i=

ϕ(xi) + lim sup
n→∞


n

n–∑

i=

∥∥ϕ
(
f i(z)

)
– ϕ(xi)

∥∥

<


(logγ + logλ) + ξ < logγ.

Proof of (ii) Since ξ < (logγ – logγ)/, by Lemma .

lim sup
n→∞


n

n–∑

i=

ϕ
(
f i(z)

)
> lim sup

n→∞

n

n–∑

i=

ϕ(xi) – lim sup
n→∞


n

n–∑

i=

∥∥ϕ
(
f i(z)

)
– ϕ(xi)

∥∥

>


(logγ + logγ) – ξ > logγ.

http://www.journalofinequalitiesandapplications.com/content/2014/1/90


Lee Journal of Inequalities and Applications 2014, 2014:90 Page 8 of 10
http://www.journalofinequalitiesandapplications.com/content/2014/1/90

Proof of (iii) Since ξ < (logγ – logγ)/, by Lemma .

lim sup
n→∞


n

n–∑

i=

ϕ
(
f i(z)

)
< lim sup

n→∞

n

n–∑

i=

ϕ(xi) + lim sup
n→∞


n

n–∑

i=

∥∥ϕ
(
f i(z)

)
– ϕ(xi)

∥∥

<


(logγ + logγ) + ξ < logγ. �

Proof of Theorem . Since f ∈ F (Hf (p)), Hf (p) admits a dominated splitting. Then we
have THf (p)M = E⊕F . To derive a contradiction, we may assume that E is not contracting.
Then by Lemma ., for any λ < γ < γ <  there is z ∈Hf (p) such that

lim inf
n→∞


n

n–∑

i=

log
(‖Df |E(f i(z))‖

)
< logγ < lim sup

n→∞

n

n–∑

i=

log
(‖Df |E(f i(z))

)
< logγ.

By Theorem ., for any λ < λ < λ < , there is a periodic point q close toHf (p) such that

k–∏

i=

‖Df |Es(f i(q))‖ < λk
 and

π (q)–∏

i=k

‖Df |Es(f i(q))‖ > λ
π (q)–k+
 .

()

Since Hf (p) is locally maximal, Orb(q) ⊂ Hf (p). Since f ∈ F (Hf (p)), () is a contradiction
by Proposition .(b). This is the proof of Theorem .. �

3 Stably ergodic shadowing property in Hf (p)
LetM be as before, and let f ∈Diff(M). We introduce the notion of the C-stably ergodic
shadowing property.

Definition . We say that f has the C-stably ergodic shadowing property in � if
there are a compact neighborhood U of f and a C-neighborhood U (f ) of f such that
� = �f (U) =

⋂
n∈Z f n(U) (locally maximal), and for any g ∈ U (f ), g has the ergodic shad-

owing property in �g(U), where �g(U) =
⋂

n∈Z gn(U) is the continuation of �.

For given x, y ∈ M, we write x � y if for any δ > , there is a δ-pseudo orbit {xi}bi=a
(–∞ ≤ a < b ≤ ∞) of f such that xa = x and xb = y. We write x� y if x� y and y� x.
The set of points {x ∈ M : x� x} is called the chain recurrent set of f and is denoted by
R(f ). It is well known that R(f ) is a closed and f -invariant set. If we denote the set of
periodic points of f by P(f ), then P(f )⊂ �(f ) ⊂R(f ). Here �(f ) is the non-wandering set
of f . We write x� y if x� y and y� x. The relation � induces an equivalence rela-
tion on R(f ), whose classes are called chain components of f . Denote by Cf (p) = {x ∈ M :
x� p and p� x}. Then we know that Hf (p) ⊂ Cf (p) (see []). In [], Lee et al. proved
that if f has the C-stably shadowing property on Cf (p) then Cf (p) is a hyperbolic homo-
clinic class. They used Mañé’s ergodic closing lemma. In this section we use Theorem ..
We say that � is topologically transitive if for any neighborhoods U , V in � there is n > 
such that f n(U) ∩ V 
= ∅. Note that it can be rewritten as follows: there is x ∈ � such that
ω(x) =�, whereω(x) is the omega limit set. Note that if� is topologicallymixing then� is

http://www.journalofinequalitiesandapplications.com/content/2014/1/90
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topologically transitive. In [], Lee showed that if f has the C-stably ergodic shadowing
property on a transitive set � then it admits a dominated splitting. In this section, we will
show that if f has the C-stably ergodic shadowing property inHf (p) then it is hyperbolic.
The following is the main theorem in this section.

Theorem . Let � be a closed f -invariant set. Suppose that f has the C-stably ergodic
shadowing property in �. Then f ∈F (�).

To prove Theorem ., we need the following lemmas.

Lemma . [, Theorem A] f has the ergodic shadowing property if and only if f has the
shadowing property and it is topologically mixing.

Lemma. Let p,q ∈ � be hyperbolic periodic points. If f has the ergodic shadowing prop-
erty in � then Ws(p)∩Wu(q) 
= ∅ and Wu(p)∩Ws(q) 
= ∅.

Proof Since p,q ∈ � are hyperbolic periodic points, there are ε(p) >  and ε(q) >  such
thatW σ

ε(p)(p) andW
σ
ε(q)(q) are defined, where σ = s,u. Suppose that f has the ergodic shad-

owing property in �. By Lemma ., f has the shadowing property in � and � is topo-
logically mixing. Since f has the shadowing property in �, we can take ε =min{ε(p), ε(q)}.
For that ε > , take δ >  be as in the definition of the shadowing property. Since � is
topologically mixing, � is topologically transitive. Then there is a point x ∈ � such that
ω(x) = �. For simplicity, we may assume that f (p) = p and f (q) = q. Then there exist l > 
and l >  such that d(f l (x),p) < δ and d(f l (x),q) < δ. To construct a δ-pseudo orbit of f ,
we assume that l = l + k for some k > . Put (i) xi = f i(p) for i ≤  (ii) xi = f l+i(x) for
 < i < k and (iii) xk+i = f l+i(x) for all i ≥ . Then as in the proof of [, Lemma .], we get
Wu(p)∩Ws(q) 
= ∅. The other case is similar. �

We say that f is a Kupka Smale diffeomorphism if every periodic points are hyperbolic
and if p,q ∈ P(f ), then Ws(p) is transversal to Wu(q). It is well known that if f is a Kupka
Smale then f is residual in Diff(M). Denote by KS the set of all Kupka Smale diffeomor-
phisms.

Proof of Theorem . Since f has the C-stably ergodic shadowing property in �, there
exist a C-neighborhood U (f ) of f and a neighborhood U of � such that for any g ∈ U (f ),
g has the ergodic shadowing property in �g(U). To derive a contradiction, we may as-
sume that f /∈ F (Hf (p)). Then there are g ∈ U (f ) and q ∈ �g(U) ∩ P(g) such that q is
not hyperbolic. Then there is g ∈ U (f ) close to g such that g has two hyperbolic pe-
riodic points γ,γ ∈ �g (U) ∩ P(g) with different indices. Then we know dimWs(γ) +
dimWu(γ) < dimM or dimWu(γ) + dimWs(γ) < dimM. Without loss of generality, we
assume that dimWs(γ) + dimWu(γ) < dimM. Take h ∈ U (f ) ∩ KS . Since h is Kupka
Smale,Ws(γ,h)∩Wu(γ,h) = ∅, where γ,h and γ,h are continuations of γ and γ, respec-
tively. Since h has the ergodic shadowing property in�h(U), h has the shadowing property
in �h(U) and �h(U) is topologically mixing. Since γ,h,γ,h ∈ �h(U)∩P(h), by Lemma .
we get a contradiction. �

We say that � is a basic set if � is transitive, and locally maximal. If the basic set � is
hyperbolic then we can easily show that there is a periodic point such that the orbit of the
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periodic point is dense in �. We say that � is an elementary set if � is mixing, and locally
maximal. Note that every elementary set is a basic set.

Theorem . Let Hf (p) be the homoclinic class. If f has the C-stably ergodic shadowing
property in Hf (p) then Hf (p) is a hyperbolic elementary set.

Proof of Theorem . Suppose that f has the C-stably ergodic shadowing property
in Hf (p). By Theorem ., f ∈ F (Hf (p)). Since f has the ergodic shadowing property in
Hf (p), by Lemma . Hf (p) is topologically mixing. Thus by Theorem ., Hf (p) is a hy-
perbolic elementary set. �
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