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Abstract
In this paper, we introduce some new spaces of almost convergent sequences
derived by Riesz mean and the lacunary sequence in a real n-normed space. By
combining the definitions of lacunary sequence and Riesz mean, we obtain a new
concept of statistical convergence which will be called weighted almost lacunary
statistical convergence in a real n-normed space. We examine some connections
between this notion with the concept of almost lacunary statistical convergence and
weighted almost statistical convergence, where the base space is a real n-normed
space.
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1 Introduction
The concept of -normed space has been initially introduced by Gähler []. Later, this
concept was generalized to the concept of n-normed spaces by Misiak []. Since then,
many others have studied these concepts and obtained various results [–].
The idea of statistical convergence was given by Zygmund [] in , in order to ex-

tend the convergence of sequences. The concept was formally introduced by Fast []
and Steinhaus [] and later on by Schoenberg [], and also independently by Buck [].
Many years later, it has been discussed in the theory of Fourier analysis, ergodic theory,
and number theory under different names. In , Fridy and Orhan [] introduced the
concept of lacunary statistical convergence. Statistical convergence has been generalized
to the concept of a -normed space by Gürdal and Pehlivan [] and to the concept of an
n-normed space by Reddy [].
Moricz and Orhan [] have defined the concept of statistical summability (R,pr). Later

on, Karakaya and Chishti [] have used (R,pr)-summability to generalize the concept of
statistical convergence and have called this newmethod weighted statistical convergence.
Mursaleen et al. [] have altered the definition of weighted statistical convergence and
have found its relation with the concept of statistical (R,pr)-summability. In general, the
statistical convergence of weighted mean is studied as a regular matrix transformation. In
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[] and [], the concept of statistical convergence is generalized by using a Riesz summa-
bility method and it is called weighted statistical convergence. For more details related to
this topic, we may refer to [, –].
In this paper, we introduce some new spaces of almost convergent sequences derived by

Rieszmean and lacunary sequence in a real n-normed space. By combining the definitions
of lacunary sequence and Riesz mean, we obtain a new concept of statistical convergence,
which will be called weighted almost lacunary statistical convergence in a real n-normed
space. We examine some connections between this notion with the concept of almost
lacunary statistical convergence and weighted almost statistical convergence, where the
base space is a real n-normed space.

2 Definitions and preliminaries
Let K be a subset of natural numbers N and we denote the set Kn = {j ∈ K : j ≤ n}. The
cardinality of Kn is denoted by |Kn|. The natural density of K is given by δ(K ) := limr


r |Kr|,

if it exists. The sequence x = (xj) is statistically convergent to ξ provided that, for every
ε > , the set K = K (ε) := {j ∈N : |xj – ξ | ≥ ε} has natural density zero.
Let (pk) be a sequence of non-negative real numbers and Pr = p + p + · · ·+ pr for r ∈N.

Then the Riesz transformation of x = (xk) is defined as

tr :=

Pr

r∑
k=

pkxk . (.)

If the sequence tr has a finite limit ξ , then the sequence x is said to be (R,pr)-convergent
to ξ . Let us note that if Pr → ∞ as r → ∞ then the Riesz transformation is a regular
summability method, that is, it transforms every convergent sequence to convergent se-
quence and preserves the limit.
If pk =  for all k ∈ N in (.), then the Riesz mean reduces to the Cesaro mean C of

order one.
By a lacunary sequence θ = (kr), where k = , we will mean an increasing sequence of

non-negative integers with kr – kr– → ∞ as r → ∞. The intervals determined by θ will
be denoted by Ir = (kr–,kr]. We write hr = kr – kr–. The ratio kr

kr–
will be denoted by qr .

Throughout the paper, we will use the following notations, which have been defined in
[].
Let θ = (kr) be a lacunary sequence, (pk) be a sequence of positive real numbers such that

Hr :=
∑

k∈Ir pk , Pkr :=
∑

k∈(,kr] pk , Pkr– :=
∑

k∈(,kr–] pk ,Qr :=
Pkr
Pkr–

, P =  and the intervals
determined by θ and (pk) are denoted by I ′r = (Pkr– ,Pkr ], Hr = Pkr – Pkr– . If pk =  for all
k ∈N, then Hr , Pkr , Pkr– , Qr and I ′r reduce to hr , kr , kr–, qr and Ir , respectively.
If θ = (kr) is a lacunary sequence and Pr → ∞ as r → ∞, then θ ′ = (Pkr ) is a lacunary

sequence, that is, P = ,  < Pkr– < Pkr and Hr = Pkr – Pkr– → ∞ as r → ∞.
Throughout the paper, we will take Pr → ∞ as r → ∞, unless otherwise stated.
Lorentz [] has proved that a sequence x is almost convergent to a number ξ if and

only if tkm(x)→ ξ as k → ∞, uniformly inm, where

tkm(x) =
xm + xm+ + · · · + xm+k–

k
, k ∈ N,m≥ . (.)
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We write f – limx = ξ if x is almost convergent to ξ . Maddox [] has defined x = (xj) to
be strongly almost convergent to a number ξ if and only if tkm(|x – ξe|) →  as k → ∞,
uniformly in m, where x – ξe = (xj – ξ ) for all j and e = (, , . . .).
Let n ∈ N and X be a real vector space of dimension d ≥ n ≥ . A real-valued function

‖·, . . . , ·‖ : Xn → R satisfying the following conditions is called an n-norm on X and the
pair (X,‖·, . . . , ·‖) is called a linear n-normed space:
() ‖x, . . . ,xn‖ =  if and only if x, . . . ,xn are linearly dependent,
() ‖x, . . . ,xn‖ is invariant under permutation,
() ‖αx, . . . ,xn–,xn‖ = |α|‖x, . . . ,xn–,xn‖ for any α ∈R,
() ‖x, . . . ,xn–, y + z‖ ≤ ‖x, . . . ,xn–, y‖ + ‖x, . . . ,xn–, z‖, for all y, z,x, . . . ,xn– ∈ X .
A sequence x = (xj) in an n-normed space (X,‖·, . . . , ·‖) is said to be convergent to some

ξ ∈ X in the n-norm if for each ε >  there exists a positive integer j = j(ε) such that
‖xj – ξ , z, . . . , zn–‖ < ε for all j ≥ j and for every nonzero z, . . . , zn– ∈ X.
A sequence x = (xj) is said to be statistically convergent to ξ if for every ε >  the set K :=

{j ∈N : ‖xj – ξ , z, . . . , zn–‖ ≥ ε} has natural density zero for every nonzero z, . . . , zn– ∈ X,
in other words, x = (xj) is statistically convergent to ξ in n-normed space (X,‖·, . . . , ·‖) if
limj→∞ 

j |{j ∈ N : ‖xj – ξ , z, . . . , zn–‖ ≥ ε}| = , for every nonzero z, . . . , zn– ∈ X. For ξ = ,
we say this is statistically null.

3 Main results
Throughout the paper w(X), l∞ (X) denote the spaces of all and bounded X valued se-
quence spaces, respectively, where (X,‖·, . . . , ·‖) is a real n-normed space.
The set of all almost convergent sequences and strongly almost convergent sequences

with respect to the n-norm ‖·, ·‖ are denoted by F and [F], respectively, as follows:

F =

{
x ∈ l∞(X) : limk→∞ ‖tkm(x – ξe), z, . . . , zn–‖ = , uniformly inm,
for every nonzero z, . . . , zn– ∈ X

}
,

and

[F] =

{
x ∈ l∞(X) : limk→∞ tkm(‖x – ξe, z, . . . , zn–‖) = , uniformly inm,
for every nonzero z, . . . , zn– ∈ X

}
,

where tkm(x) is defined as in (.). We write F – limx = ξ if x is almost convergent to ξ

with respect to the n-norm and [F] – limx = ξ if x is strongly almost convergent to ξ with
respect to the n-norm. It is easy to see that the inclusions [F] ⊂ F ⊂ l∞ (X) hold.
Now, we define some new sequence spaces in a real n-normed space as follows:

[R̃,pr , θ ]n =

{
x : limr→∞ ‖ 

Hr

∑
k∈Ir pktkm(x – ξe), z, . . . , zn–‖ = , uniformly inm,

for some ξ and for every nonzero z, . . . , zn– ∈ X

}
,

(R̃,pr , θ )n =

{
x : limr→∞ 

Hr

∑
k∈Ir pk‖tkm(x – ξe), z, . . . , zn–‖ = , uniformly inm,

for some ξ and for every nonzero z, . . . , zn– ∈ X

}
,

|R̃,pr , θ |n =
{
x : limr→∞ 

Hr

∑
k∈Ir pktkm(‖x – ξe, z, . . . , zn–‖) = , uniformly inm,

for some ξ and for every nonzero z, . . . , zn– ∈ X

}
.

The following results are obtained for some special cases:
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() If we take m =  then the sequence spaces above are reduced to the sequence spaces
[C, θ ]n, (C, θ )n, |C, θ |n, respectively as follows:

[C, θ ]n =

{
x : limr→∞ ‖ 

Hr

∑
k∈Ir pktk(x – ξe), z, . . . , zn–‖ = ,

for some ξ and for every nonzero z, . . . , zn– ∈ X

}
,

(C, θ )n =

{
x : limr→∞ 

Hr

∑
k∈Ir pk‖tk(x – ξe), z, . . . , zn–‖ = 

for some ξ and for every nonzero z, . . . , zn– ∈ X

}
,

|C, θ |n =
{
x : limr→∞ 

Hr

∑
k∈Ir pktk‖x – ξe, z, . . . , zn–‖ = ,

for some ξ and for every nonzero z, . . . , zn– ∈ X

}
.

() If we take pk =  for all k ∈N, then the sequence spaces above are reduced to the
following spaces:

[wθ ]n =

{
x : limr→∞ ‖ 

hr

∑
k∈Ir tkm(x – ξe), z, . . . , zn–‖ = , uniformly inm,

for some ξ and for every nonzero z, . . . , zn– ∈ X

}
,

(wθ )n =

{
x : limr→∞ 

hr

∑
k∈Ir ‖tkm(x – ξe), z, . . . , zn–‖ = , uniformly inm,

for some ξ and for every nonzero z, . . . , zn– ∈ X

}
,

|wθ |n =
{
x : limr→∞ 

hr

∑
k∈Ir tkm(‖x – ξe, z, . . . , zn–‖) = , uniformly inm,

for some ξ and for every nonzero z, . . . , zn– ∈ X

}
.

() Let us choose θ = (kr) = r for r > , then these sequence spaces above are reduced
to the following spaces:

[R̃,pr]n =

{
x : limr→∞ ‖ 

Pr

∑r
k= pktkm(x – ξe),z, . . . , zn–‖ = , uniformly

inm, for some ξ and for every nonzero z, . . . , zn– ∈ X

}
,

(R̃,pr)n =

{
x : limr→∞ 

Pr

∑r
k= pk‖tkm(x – ξe), z, . . . , zn–‖ = , uniformly

inm, for some ξ and for every nonzero z, . . . , zn– ∈ X

}
,

|R̃,pr|n =
{
x : limr→∞ 

Pr

∑r
k= pktkm(‖x – ξe, z, . . . , zn–‖) = , uniformly

inm, for some ξ and for every nonzero z, . . . , zn– ∈ X

}
.

() If we select θ = (kr) = r for r >  and the base space as (X,‖·, ·‖) then these
sequence spaces above are reduced to the sequence spaces which can be seen in [].

() If we choose pk =  for all k ∈N and θ = (kr) = r for r > , then these sequence
spaces above are reduced to the sequence spaces [C]n, (C)n, |C|n, respectively.

Now, we give the following theorem to demonstrate some inclusion relations among the
sequence spaces |R̃,pr , θ |n, (R̃,pr , θ )n, [R̃,pr , θ ]n, |C, θ |n, (C, θ )n, [C, θ ]n with the spaces
F and [F].

Theorem . The following statements are true:
() [F] ⊂ F ⊂ (R̃,pr , θ )n ⊂ [R̃,pr , θ ]n ⊂ [C, θ ]n.
() [F] ⊂ |R̃,pr , θ |n ⊂ (R̃,pr , θ )n ⊂ [R̃,pr , θ ]n ⊂ [C, θ ]n.
() [F] ⊂ |R̃,pr , θ |n ⊂ |C, θ | ⊂ (C, θ )n ⊂ [C, θ ]n.

http://www.journalofinequalitiesandapplications.com/content/2014/1/81
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Proof We give the proof only for (). The proofs of () and () can be done, similarly.
So we omit them. Let x ∈ [F] and [F] – limx = ξ . Then tkm(‖x – ξe, z, . . . , zn–‖) →  as
k → ∞, uniformly inm, for every nonzero z, . . . , zn– ∈ X. Since Hr → ∞ as r → ∞, then
its weighted lacunarymean also converges to ξ as r → ∞ uniformly inm. This proves that
x ∈ |R̃,pr , θ |n and [F] – limx = |R̃,pr , θ |n – limx = ξ . Also since

∥∥∥∥ 
Hr

∑
k∈Ir

pktkm(x – ξe), z, . . . , zn–
∥∥∥∥ ≤ 

Hr

∑
k∈Ir

pk
∥∥tkm(x – ξe), z, . . . , zn–

∥∥
≤ 

Hr

∑
k∈Ir

pktkm
(‖x – ξe, z, . . . , zn–‖

)
,

then it follows that [F] ⊂ |R̃,pr , θ |n ⊂ (R̃,pr , θ )n ⊂ [R̃,pr , θ ]n and [F] – limx = |R̃,pr , θ |n –
limx = (R̃,pr , θ )n – limx = [R̃,pr , θ ]n – limx = ξ . Since uniform convergence of ‖ 

Hr
×∑

k∈Ir pktkm(x – ξe), z, . . . , zn–‖ with respect to m, as r → ∞, implies convergence for
m =  and for every nonzero z, . . . , zn– ∈ X. It follows that [R̃,pr , θ ]n ⊂ [C, θ ]n and
[R̃,pr , θ ]n – limx = [C, θ ]n – limx = ξ . This completes the proof. �

Theorem . Let θ = (kr) be a lacunary sequence and lim infr Qr > . Then (R̃,pr)n ⊆
(R̃,pr , θ )n with (R̃,pr)n – limx = (R̃,pr , θ )n – limx = ξ .

Proof Suppose that lim infr Qr > , then there exists a δ >  such that Qr ≥  + δ for suffi-
ciently large values of r, which implies that Hr

Pkr
≥ δ

+δ
. If x ∈ (R̃,pr)n with (R̃,pr)n – limx = ξ ,

then for sufficiently large values of r, we have


Pkr

kr∑
k=

pk
∥∥tkm(x – ξe), z, . . . , zn–

∥∥

=

Pkr

(kr–∑
k=

pk
∥∥tkm(x – ξe), z, . . . , zn–

∥∥ +
kr∑

k=kr–+

pk
∥∥tkm(x – ξe), z, . . . , zn–

∥∥)

≥ Hr

Pkr

(

Hr

∑
k∈Ir

pk
∥∥tkm(x – ξe), z, . . . , zn–

∥∥)

≥ δ

 + δ
.

Hr

∑
k∈Ir

pk
∥∥tkm(x – ξe), z, . . . , zn–

∥∥,

for each m ≥  and for every nonzero z, . . . , zn– ∈ X. Then, it follows that x ∈ (R̃,pr , θ )n
with (R̃,pr , θ )n – limx = ξ by taking the limit as r → ∞. This completes the proof. �

Theorem . Let θ = (kr) be a lacunary sequence with lim supr Qr <∞. Then (R̃,pr , θ )n ⊆
(R̃,pr)n with (R̃,pr , θ )n – limx = (R̃,pr)n – limx = ξ .

Proof Let x ∈ (R̃,pr , θ )n with (R̃,pr , θ )n – limx = ξ . Then for ε > , there exists q such that
for every q > q

Lq =

Hq

∑
k∈Iq

pk
∥∥tkm(x – ξe), z, . . . , zn–

∥∥ < ε, (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/81
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for each m ≥  and for every nonzero z, . . . , zn– ∈ X, that is, we can find some positive
constantM such that

Lq ≤M for all q. (.)

lim supr Qr < ∞ implies that there exists some positive number K such that

Qr ≤ K for all r ≥ . (.)

Therefore for kr– < r ≤ kr , we have by (.), (.), and (.)


Pr

r∑
k=

pk
∥∥tkm(x – ξe), z, . . . , zn–

∥∥

≤ 
Pkr–

kr∑
k=

pk
∥∥tkm(x – ξe), z, . . . , zn–

∥∥

=


Pkr–

(∑
k∈I

pk
∥∥tkm(x – ξe), z, . . . , zn–

∥∥ +
∑
k∈I

pk
∥∥tkm(x – ξe), z, . . . , zn–

∥∥ + · · ·

+
∑
k∈Iq

pk
∥∥tkm(x – ξe), z, . . . , zn–

∥∥ + · · ·+
∑
k∈Ir

pk
∥∥tkm(x – ξe), z, . . . , zn–

∥∥)

=


Pkr–
(LH + LH + · · · + LqHq + Lq+Hq+ + · · · + LrHr)

≤ M
Pkr–

(H +H + · · · +Hq ) +
ε

Pkr–
(Hq+ + · · · +Hr)

=
M
Pkr–

(Pk – Pk + · · · + Pkq – Pkq– ) +
ε

Pkr–
(Pkq – Pkq– + · · · + Pkr – Pkr– )

=M
Pkq
Pkr–

+ ε
Pkr – Pkq

Pkr–

≤M
Pkq
Pkr–

+ εK ,

for each m ≥  and for every nonzero z, . . . , zn– ∈ X. Since Pkr– → ∞ as r → ∞, we get
x ∈ (R̃,pr)n with (R̃,pr)n – limx = ξ . This completes the proof. �

Corollary . Let  < lim infr Qr ≤ lim supr Qr < ∞. Then (R̃,pr , θ )n = (R̃,pr)n and
(R̃,pr , θ )n – limx = (R̃,pr)n – limx = ξ .

Proof It follows from Theorem . and Theorem .. �

In the following theorem, we give the relations between the sequence spaces (wθ )n and
(R̃,pr)n.

Theorem .
() If pk <  for all k ∈ N, then (wθ )n ⊆ (R̃,pr)n and (wθ )n – limx = (R̃,pr)n – limx = ξ .
() If pk >  for all k ∈ N and (Hr

hr ) is upper-bounded, then (R̃,pr)n ⊆ (wθ )n and
(R̃,pr)n – limx = (wθ )n – limx = ξ .

http://www.journalofinequalitiesandapplications.com/content/2014/1/81


Konca and Başarır Journal of Inequalities and Applications 2014, 2014:81 Page 7 of 11
http://www.journalofinequalitiesandapplications.com/content/2014/1/81

Proof
() If pk <  for all k ∈N, then Hr < hr for all r ∈N. So, there exists anM, a constant,

such that  <M ≤ Hr
hr <  for all r ∈N. Let x ∈ (wθ )n with (wθ )n – limx = ξ , then for

an arbitrary ε >  we have


Hr

∑
k∈Ir

pk
∥∥tkm(x – ξe), z, . . . , zn–

∥∥ ≤ 
M


hr

∑
k∈Ir

∥∥tkm(x – ξe), z, . . . , zn–
∥∥,

for eachm≥  and for every nonzero z, . . . , zn– ∈ X . Therefore, we get the result by
taking the limit as r → ∞.

() Let pk >  for all k ∈N, then Hr > hr for all r ∈N. Suppose that (Hr
hr ) is

upper-bounded, then there exists anM, a constant, such that  < Hr
hr ≤M < ∞ for

all r ∈N. Let x ∈ (R̃,pr)n and (R̃,pr)n – limx = ξ . So the result is obtained by taking
the limit as r → ∞ for each m≥  and for every nonzero z, . . . , zn– ∈ X , from the
following inequality:


hr

∑
k∈Ir

∥∥tkm(x – ξe), z, . . . , zn–
∥∥ ≤M


Hr

∑
k∈Ir

pk
∥∥tkm(x – ξe), z, . . . , zn–

∥∥.
�

Now, we define a new concept of statistical convergence in n-normed space, which will
be called weighted almost lacunary statistical convergence:

Definition . The weighted almost lacunary density of K ⊆ N is denoted by δ(R̃,θ)(K ) =
limr→∞ 

Hr
|Kr(ε)| if the limit exists. We say that the sequence x = (xj) is weighted al-

most lacunary statistically convergent to ξ if for every ε > , the set Kr(ε) = {k ∈ I ′r :
pk‖tkm(x – ξe), z, . . . , zn–‖ ≥ ε} has weighted lacunary density zero, i.e.

lim
r→∞


Hr

∣∣{k ∈ I ′r : pk
∥∥tkm(x – ξe), z, . . . , zn–

∥∥ ≥ ε
}∣∣ =  (.)

uniformly inm, for every nonzero z, . . . , zn– ∈ X. In this case, wewrite (S(R̃,θ ),n)– limk xk =
ξ . By (S(R̃,θ),n) we denote the set of all weighted almost lacunary statistically convergent
sequences in n-normed space.
() If we take pk =  for all k ∈N in (.) then we obtain the definition of almost

lacunary statistical convergence in n–normed space, that is, x is called almost
lacunary statistically convergent to ξ if for every ε > , the set
Kθ (ε) = {k ∈ Ir : ‖tkm(x – ξe), z, . . . , zn–‖ ≥ ε} has lacunary density zero, i.e.

lim
r→∞


hr

∣∣{k ∈ Ir :
∥∥tkm(x – ξe), z, . . . , zn–

∥∥ ≥ ε
}∣∣ =  (.)

uniformly in m, for every nonzero z, . . . , zn– ∈ X . In this case, we write
(Sθ ,n) – limj xj = ξ . By (Sθ ,n) we denote the set of all weighted almost lacunary
statistically convergent sequences in n-normed space.

() Let us choose θ = (kr) for r >  then the definition of weighted almost lacunary
statistical convergence which is given in (.) is reduced to the definition of
weighted almost statistically convergence, that is, x is called weighted almost

http://www.journalofinequalitiesandapplications.com/content/2014/1/81
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statistically convergent to ξ if for every ε > , the set
KPr (ε) = {k ≤ Pr : pk‖tkm(x – ξe), z, . . . , zn–‖ ≥ ε} has weighted density zero, i.e.

lim
r→∞


Pr

∣∣{k ≤ Pr :
∥∥tkm(x – ξe), z, . . . , zn–

∥∥ ≥ ε
}∣∣ =  (.)

uniformly in m, for every nonzero z, . . . , zn– ∈ X . In this case, we write
(SR̃,n) – limj xj = ξ . By (SR̃,n) we denote the set of all weighted almost lacunary
statistically convergent sequences in n-normed space.

() Let us choose θ = (kr) for r >  and pk =  for all k ∈N, then the definition of
weighted almost lacunary statistical convergence, which is given in (.), is reduced
to the definition of almost statistical convergence.

Theorem . If the sequence x is (R̃,pr , θ )n-convergent to ξ then the sequence x is weighted
almost lacunary statistically convergent to ξ .

Proof Let the sequence x be (R̃,pr , θ )n-convergent to ξ and Krm(ε) = {k ∈ I ′r : pk‖tkm(x –
ξe), z, . . . , zn–‖ ≥ ε}. Then for a given ε > , we have


Hr

∑
k∈Ir

pk
∥∥tkm(x – ξe), z, . . . , zn–

∥∥ ≥ 
Hr

∑
k∈Ir

k∈Krm(ε)

pk
∥∥tkm(x – ξe), z, . . . , zn–

∥∥

≥ ε

Hr

∣∣Krm(ε)
∣∣

for eachm ≥  and for every nonzero z ∈ X. Hence, we see that the sequence x is weighted
almost statistically convergent to ξ by taking the limit as r → ∞. �

Theorem . Let pk‖tkm(x – ξe), z, . . . , zn–‖ ≤M for all k ∈N, for each m ≥  and for ev-
ery nonzero z, . . . , zn– ∈ X. Then (S(R̃,θ ),n)⊂ (R̃,pr , θ )n with (S(R̃,θ ),n) – limx = (R̃,pr , θ )n –
limx = ξ .

Proof Let x be convergent to ξ in (S(R̃,θ),n) and let us take

Krm(ε) =
{
k ∈ I ′r : pk

∥∥tkm(x – ξe), z, . . . , zn–
∥∥ ≥ ε

}
.

Since pk‖tkm(x – ξe), z, . . . , zn–‖ ≤ M for all k ∈ N for each m ≥ , for every nonzero
z, . . . , zn– ∈ X and Hr → ∞ as r → ∞, then for a given ε >  we have


Hr

∑
k∈Ir

pk
∥∥tkm(x – ξe), z, . . . , zn–

∥∥ =

Hr

∑
k∈Ir

k∈Krm(ε)

pk
∥∥tkm(x – ξe), z, . . . , zn–

∥∥

+

Hr

∑
k∈Ir

k /∈Krm(ε)

pk
∥∥tkm(x – ξe), z, . . . , zn–

∥∥

≤M

Hr

|Krm(ε)| + hr
Hr

ε

≤M

Hr

|Krm(ε)| + ε,
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for each m ≥  and for every nonzero z, . . . , zn– ∈ X. Since ε is arbitrary, we have x ∈
(R̃,pr , θ )n by taking the limit as r → ∞. �

Theorem . The following statements are true.
() If pk ≤  for all k ∈N, then (Sθ ,n)⊆ (S(R̃,θ ),n).
() Let pk ≥  for all k ∈N and (Hr

hr ) be upper-bounded, then (S(R̃,θ),n)⊆ (Sθ ,n).

Proof
() If pk ≤  for all k ∈N, then Hr ≤ hr for all r ∈N. So, there existM andM,

constants, such that  <M ≤ Hr
hr ≤M ≤  for all r ∈N. Let x ∈ (Sθ ,n) with

(Sθ ,n) – limx = ξ , then for an arbitrary ε >  we have


Hr

∣∣{k ∈ I ′r : pk
∥∥tkm(x – ξe), z, . . . , zn–

∥∥ ≥ ε
}∣∣

=

Hr

∣∣{Pkr– < k ≤ Pkr : pk
∥∥tkm(x – ξe), z, . . . , zn–

∥∥ ≥ ε
}∣∣

≤ 
M


hr

∣∣{Pkr– ≤ kr– < k ≤ Pkr ≤ kr :
∥∥tkm(x – ξe), z, . . . , zn–

∥∥ ≥ ε
}∣∣

=

M


hr

∣∣{kr– < k ≤ kr :
∥∥tkm(x – ξe), z, . . . , zn–

∥∥ ≥ ε
}∣∣

=

M


hr

∣∣{k ∈ Ir :
∥∥tkm(x – ξe), z, . . . , zn–

∥∥ ≥ ε
}∣∣,

for eachm ≥  and for every nonzero z, . . . , zn– ∈ X . Hence, we obtain the result by
taking the limit as r → ∞.

() Let (Hr
hr ) be upper-bounded, then there existM andM, constants, such that

≤M ≤ Hr
hr ≤M < ∞ for all r ∈N. Suppose that pk ≥  for all k ∈N, then Hr ≥ hr

for all r ∈N. Let x ∈ (R̃,pr)n and (R̃,pr)n – limx = ξ , then for an arbitrary ε >  we
have


hr

∣∣{k ∈ Ir :
∥∥tkm(x – ξe), z, . . . , zn–

∥∥ ≥ ε
}∣∣

=

hr

∣∣{kr– < k ≤ kr :
∥∥tkm(x – ξe), z, . . . , zn–

∥∥ ≥ ε
}∣∣

≤M

Hr

∣∣{kr– ≤ Pkr– < k ≤ kr ≤ Pkr : pk
∥∥tkm(x – ξe), z, . . . , zn–

∥∥ ≥ ε
}∣∣

=M

Hr

∣∣{Pkr– < k ≤ Pkr : pk
∥∥tkm(x – ξe), z, . . . , zn–

∥∥ ≥ ε
}∣∣

=M

Hr

∣∣{k ∈ I ′r : pk
∥∥tkm(x – ξe), z, . . . , zn–

∥∥ ≥ ε
}∣∣,

for each m ≥  and for every nonzero z, . . . , zn– ∈ X. Hence, the result is obtained by
taking the limit as r → ∞. �

Theorem . For any lacunary sequence θ , if lim infrQr >  then (SR̃,n) ⊆ (S(R̃,θ),n) and
(SR̃,n) – limx = (S(R̃,θ ),n) – limx = ξ .

Proof Suppose that lim infrQr > , then there exists a δ >  such that Qr ≥  + δ for suffi-
ciently large values of r, which implies that Hr

Pkr
≥ δ

+δ
. If x ∈ (SR̃,n) with (SR̃,n) – limx = ξ ,

http://www.journalofinequalitiesandapplications.com/content/2014/1/81
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then for every ε >  and for sufficiently large values of r, we have


Pkr

∣∣{k ≤ Pkr : pk
∥∥tkm(x – ξe), z, . . . , zn–

∥∥ ≥ ε
}∣∣

≥ 
Pkr

∣∣{Pkr– < k ≤ Pkr : pk
∥∥tkm(x – ξe), z, . . . , zn–

∥∥ ≥ ε
}∣∣

=
Hr

Pkr

(

Hr

∣∣{Pkr– < k ≤ Pkr : pk
∥∥tkm(x – ξe), z, . . . , zn–

∥∥ ≥ ε
}∣∣)

≥ δ

 + δ

(

Hr

∣∣{k ∈ I ′r : pk
∥∥tkm(x – ξe), z, . . . , zn–

∥∥ ≥ ε
}∣∣),

for each m ≥  and for every nonzero z, . . . , zn– ∈ X. Hence, we get the result by taking
the limit as r → ∞. �

Theorem . Let θ = (kr) be a lacunary sequence with lim suprQr < ∞, then (S(R̃,θ ),n) ⊆
(SR̃,n) and (SR̃,n) – limx = (S(R̃,θ),n) – limx = ξ .

Proof If lim suprQr < ∞, then there is a K >  such that Qr ≤ K for all r ∈ N. Suppose that
x ∈ (S(R̃,θ),n) with (S(R̃,θ ),n) – limx = ξ and let

Nr :=
∣∣{k ∈ I ′r : pk

∥∥tkm(x – ξe), z, . . . , zn–
∥∥ ≥ ε

}∣∣. (.)

By (.), given ε > , there is a r ∈ N such that Nr
Hr

< ε for all r > r. Now, let M :=
max{Nr : ≤ r ≤ r} and let r be any integer satisfying kr– < r ≤ kr , then for each m ≥ 
and for every nonzero z, . . . , zn– ∈ X we can write


Pr

∣∣{k ≤ Pr : pk
∥∥tkm(x – ξe), z, . . . , zn–

∥∥ ≥ ε
}∣∣

≤ 
Pkr–

∣∣{Pkr– < k ≤ Pkr : pk
∥∥tkm(x – ξe), z, . . . , zn–

∥∥ ≥ ε
}∣∣

=


Pkr–
(N +N + · · · +Nr +Nr+ + · · · +Nr)

≤ M.r
Pkr–

+


Pkr–
ε(Hr+ + · · · +Hr)

=
M.r
Pkr–

+ ε
(Pkr – Pkr )

Pkr–

≤ M.r
Pkr–

+ εQr ≤ M.r
Pkr–

+ εK ,

which completes the proof by taking the limit as r → ∞. �

Corollary . Let  < lim infrQr ≤ lim suprQr < ∞. Then (S(R̃,θ ),n) = (SR̃,n) and (SR̃,n) –
limx = (S(R̃,θ ),n) – limx = ξ .

Proof It follows from Theorem . and Theorem .. �
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