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1 Introduction
The problem we are concerned with in this paper is for the following variational inequal-
ities: find u ∈ � such that

(
u′ – u

)TF(u) ≥ , ∀u′ ∈ �, (.)

with

u =

(
x
y

)
, F(u) =

(
f (x)
g(y)

)
and

� =
{
(x, y) | x ∈Rn

++, y ∈Rm
++,Ax + By = b

}
,

(.)

where A ∈Rl×n, B ∈Rl×m are given matrices, b ∈Rl is a given vector, and f :Rn
++ →Rn,

g :Rm
++ → Rm are given monotone operators. Studies and applications of such problems

can be found in [–]. By attaching a Lagrange multiplier vector λ ∈ Rl to the linear
constraintsAx+By = b, the problem (.)-(.) can be explained in terms of finding w ∈W
such that

(
w′ –w

)TQ(w) ≥ , ∀w′ ∈W , (.)
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where

w =

⎛
⎜⎝
x
y
λ

⎞
⎟⎠ , Q(w) =

⎛
⎜⎝
f (x) –ATλ

g(y) – BTλ

Ax + By – b

⎞
⎟⎠ , W =Rn

++ ×Rm
++ ×Rl. (.)

The problem (.)-(.) is referred to as SVI (structured variational inequalities).
The alternating direction method (ADM) is a powerful method for solving the struc-

tured problem (.)-(.), since it decomposes the original problems into a series subprob-
lems with lower scale, originally proposed by Gabay and Mercier [] and Gabay []. The
classical proximal alternating direction method (PADM) [–] is an effective numeri-
cal approach for solving variational inequalities with a separable structure. To make the
PADMmore efficient and practical, He et al. [] proposed a modified PADM as follows.
For given (xk , yk ,λk) ∈ Rn

++ × Rm
++ × Rl , the new iterative (xk+, yk+,λk+) is obtained via

the following steps.
Step . Solve the following system of nonlinear equations to obtain xk+:

(
x′ – xk+

)T{
f
(
xk+

)
–AT[

λk –Hk
(
Axk+ + Byk – b

)]
+ Rk

(
xk+ – xk

)}
≥ , ∀x′ ∈Rn

++. (.)

Step . Solve the following system of nonlinear equations to obtain yk+:

(
y′ – yk+

)T{
g
(
yk+

)
– BT[

λk –Hk
(
Axk+ + Byk+ – b

)]
+ Sk

(
yk+ – yk

)}
≥ , ∀y′ ∈Rm

++. (.)

Step . Update λk via

λk+ = λk –Hk
(
Axk+ + Byk+ – b

)
. (.)

Yuan and Li [] have developed a logarithmic-quadratic proximal (LQP)-based de-
composition method by applying the LQP terms to regularize the ADM subproblems,
by substituting in the alternating directions method (.)-(.) the term R(x – xk) and
S(y – yk) by R[(x – xk) + μ(xk – X

k x–)] and S[(y – yk) + μ(yk – Y 
k y–)], respectively. The

new iterative (xk+, yk+,λk+) in [] is obtained via the following procedure: From a given
wk = (xk , yk ,λk) ∈ Rn

++ × Rm
++ × Rl and μ ∈ (, ), (xk+, yk+,λk+) is obtained via solving

the following system:

f (x) –AT[
λk –H

(
Ax + Byk – b

)]
+ R

[(
x – xk

)
+μ

(
xk –X

k x
–)] = ,

g(y) – BT[
λk –H

(
Axk+ + By – b

)]
+ S

[(
y – yk

)
+μ

(
yk – Y 

k y
–)] = ,

λk+ = λk –H
(
Axk + Byk – b

)
.

Note that the LQP method was presented originally in []. Later, Bnouhachem et al. [,
] have proposed a new inexact LQP alternating direction method by solving a series
of related systems of nonlinear equations. Very recently, Li [] presented an LQP-based
prediction-correction method, the new iterate is obtained by a convex combination of
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the previous point and the one generated by a projection-type method along this descent
direction.
In the present paper, inspired by the above cited works and by the recent works going

in this direction, we proposed a new LQP-based prediction-correction method; the new
iterate is obtained by a convex combination of the previous point and the one generated
by a projection-type method along another descent direction. Under the same conditions
as those in [], we prove the global convergence of the proposed algorithm. It is proved
theoretically that the lower bound of the progress obtained by the proposed method is
greater than that by Li’s method []. The effectiveness and superiority of the proposed
method is verified by our preliminary numerical experiments.

2 The proposedmethod
In this section, we recall some basic definitions and properties, which will be frequently
used in our later analysis. Some useful results proved already in the literature are also
summarized. The first lemma provides some basic properties of projection onto �.

Lemma . Let G be a symmetry positive definite matrix and � be a nonempty closed
convex subset of Rl , we denote P�,G(·) as the projection under the G-norm, i.e.,

P�,G(v) = argmin
{‖v – u‖G | u ∈ �

}
.

Then we have the following inequalities:

(
z – P�,G[z]

)TG(
P�,G[z] – v

) ≥ , ∀z ∈ Rl, v ∈ �; (.)∥∥P�,G[u] – P�,G[v]
∥∥
G ≤ ‖u – v‖G, ∀u, v ∈ Rl; (.)∥∥u – P�,G[z]

∥∥
G ≤ ‖z – u‖G –

∥∥z – P�,G[z]
∥∥
G, ∀z ∈ Rl,u ∈ �. (.)

In course we always make the following standard assumptions.

Assumption A f (x) is monotone with respect toRn
++ and g(y) is monotone with respect

toRm
++.

Assumption B The solution set of SVI, denoted byW∗, is nonempty.

Now, we suggest and consider the new LQP alternating direction method (LQP-ADM)
for solving SVI as follows.
Prediction step: For a given wk = (xk , yk ,λk) ∈ Rn

++ × Rm
++ × Rl , and μ ∈ (, ), the pre-

dictor w̃k = (x̃k , ỹk , λ̃k) ∈Rn
++ ×Rm

++ ×Rl is obtained via solving the following system:

f (x) –AT[
λk –H

(
Ax + Byk – b

)]
+ R

[(
x – xk

)
+μ

(
xk –X

k x
–)] = , (.a)

g(y) – BT[
λk –H(Ax + By – b)

]
+ S

[(
y – yk

)
+μ

(
yk – Y 

k y
–)] = , (.b)

λ̃k = λk –H
(
Ax̃k + Bỹk – b

)
. (.c)

Correction step: The new iterate wk+(αk) = (xk+, yk+,λk+) is given by

wk+(αk) = ( – σ )wk + σPW
[
wk – αkG–d

(
wk , w̃k)], σ ∈ (, ), (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/80
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where

αk =
ϕk

‖wk – w̃k‖G
, (.)

ϕk :=
∥∥wk – w̃k∥∥

M +
(
λk – λ̃k)T(

Byk – Bỹk
)
, (.)

d
(
wk , w̃k) =

⎛
⎜⎝
f (x̃k) –AT λ̃k +ATHB(yk – ỹk)
g(ỹk) – BT λ̃k + BTHB(yk – ỹk)

Ax̃k + Bỹk – b

⎞
⎟⎠

and

G =

⎛
⎜⎝
( +μ)R  

 ( +μ)S + BTHB 
  H–

⎞
⎟⎠ , M =

⎛
⎜⎝
R  
 S + BTHB 
  H–

⎞
⎟⎠ .

Remark . If xk+ = x̃k , yk+ = ỹk and λk+ = λ̃k in (.a), (.b), and (.c), respectively,
we obtain the method proposed in [].

We need the following result in the convergence analysis of the proposed method.

Lemma . [] Let q(u) ∈ Rn be a monotone mapping of u with respect to Rn
+ and R ∈

Rn×n be positive definite diagonalmatrix.For given uk > , if we let Uk := diag(uk ,uk, . . . ,ukn)
and u– be an n-vector whose jth element is /uj, then the equation

q(u) + R
[(
u – uk

)
+μ

(
uk –U

k u
–)] =  (.)

has a unique positive solution u.Moreover, for any v≥ , we have

(v – u)Tq(u) ≥  +μ


(‖u – v‖R –

∥∥uk – v
∥∥
R

)
+
 –μ


∥∥uk – u

∥∥
R. (.)

In the next theorem we show that αk is lower bounded away from zero and it is one of
the keys to prove the global convergence results.

Theorem . For given wk ∈ Rn
++ × Rm

++ × Rl , let w̃k be generated by (.a)-(.c), then
we have the following:

ϕk ≥ 

(∥∥Ax̃k + Byk – b

∥∥
H +

∥∥wk – w̃k∥∥
G

)
(.)

and

αk ≥ 

. (.)

Proof It follows from (.) that

ϕk =
∥∥wk – w̃k∥∥

M +
(
λk – λ̃k)T(

Byk – Bỹk
)

=
∥∥xk – x̃k

∥∥
R +

∥∥yk – ỹk
∥∥
S +

∥∥Byk – Bỹk
∥∥
H +

∥∥λk – λ̃k∥∥
H–

+
(
λk – λ̃k)T(

Byk – Bỹk
)
. (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/80
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Using (.c), we have

(
λk – λ̃k)T(

Byk – Bỹk
)
+


(∥∥Byk – Bỹk

∥∥
H +

∥∥λk – λ̃k∥∥
H–

)
=

(
Ax̃k + Bỹk – b

)TH(
Byk – Bỹk

)
+


(∥∥Byk – Bỹk

∥∥
H +

∥∥Ax̃k + Bỹk – b
∥∥
H

)
=


∥∥Ax̃k + Byk – b

∥∥
H . (.)

Substituting (.) into (.), we get

ϕk =


(∥∥Ax̃k + Byk – b

∥∥
H +

∥∥Byk – Bỹk
∥∥
H +

∥∥λk – λ̃k∥∥
H–

)
+

∥∥xk – x̃k
∥∥
R +

∥∥yk – ỹk
∥∥
S

=


(∥∥Ax̃k + Byk – b

∥∥
H +

∥∥wk – w̃k∥∥
G + ( –μ)

∥∥xk – x̃k
∥∥
R + ( –μ)

∥∥yk – ỹk
∥∥
S

)
≥ 


(∥∥Ax̃k + Byk – b

∥∥
H +

∥∥wk – w̃k∥∥
G

)
.

Therefore, it follows from (.) and (.) that

αk ≥ 


and this completes the proof. �

3 Basic results
In this section, we prove some basic properties, which will be used to establish the suffi-
cient and necessary conditions for the convergence of the proposed method. The follow-
ing results are due to applying Lemma . to the LQP systems in prediction step of the
proposed method.

Lemma . For given wk = (xk , yk ,λk) ∈ Rn
++ × Rm

++ × Rl , let w̃k be generated by (.a)-
(.c). Then for any w∗ = (x∗, y∗,λ∗) ∈W∗, we have

(
wk –w∗)TG(

wk – w̃k) ≥ ϕk . (.)

Proof Applying Lemma . to (.a) (by setting uk = xk , u = x̃k , v = x∗ in (.)) and

q(u) = f
(
x̃k

)
–AT[

λk –H
(
Ax̃k + Byk – b

)]
,

we get

(
x∗ – x̃k

)T{
f
(
x̃k

)
–AT[

λk –H
(
Ax̃k + Byk – b

)]}
≥  +μ


(∥∥x̃k – x∗∥∥

R –
∥∥xk – x∗∥∥

R

)
+
 –μ


∥∥xk – x̃k

∥∥
R. (.)

Recall

(
x∗ – x̃k

)TR(
xk – x̃k

)
=


(∥∥x̃k – x∗∥∥

R –
∥∥xk – x∗∣∣

R

)
+


∥∥xk – x̃k

∥∥
R. (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/80
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Adding (.) and (.), we obtain

(
x∗ – x̃k

)T{
( +μ)R

(
xk – x̃k

)
– f

(
x̃k

)
+AT λ̃k –ATHB

(
yk – ỹk

)} ≤ μ
∥∥xk – x̃k

∥∥
R. (.)

Similarly, applying Lemma . to (.b), substituting uk = yk , u = ỹk , v = y∗, and replacing
R, n with S,m, respectively, in (.) and

q(u) = g
(
ỹk

)
– BT[

λk –H
(
Ax̃k + Bỹk – b

)]
,

we get

(
y∗ – ỹk

)T{
g
(
ỹk

)
– BT[

λk –H
(
Ax̃k + Bỹk – b

)]}
≥  +μ


(∥∥ỹk – y∗∥∥

S –
∥∥yk – y∗∥∥

S

)
+
 –μ


∥∥yk – ỹk

∥∥
S. (.)

Recall

(
y∗ – ỹk

)TS(yk – ỹk
)
=


(∥∥ỹk – y∗∥∥

S –
∥∥yk – y∗∥∥

S

)
+


∥∥yk – ỹk

∥∥
S. (.)

Adding (.) and (.), we have

(
y∗ – ỹk

)T{
( +μ)S

(
yk – ỹk

)
– g

(
ỹk

)
+ BT λ̃k} ≤ μ

∥∥yk – ỹk
∥∥
S. (.)

Since (x∗, y∗,λ∗) is a solution of SVI, x̃k ∈Rn
++ and ỹk ∈Rm

++, we have

(
x̃k – x∗)T(

f
(
x∗) –ATλ∗) ≥ ,(

ỹk – y∗)T(
g
(
y∗) – BTλ∗) ≥ 

and

Ax∗ + By∗ – b = .

Using the monotonicity of f and g , we obtain

⎛
⎜⎝
x̃k – x∗

ỹk – y∗

λ̃k – λ∗

⎞
⎟⎠

T ⎛
⎜⎝
f (x̃k) –AT λ̃k

g(ỹk) – BT λ̃k

Ax̃k + Bỹk – b

⎞
⎟⎠ ≥

⎛
⎜⎝
x̃k – x∗

ỹk – y∗

λ̃k – λ∗

⎞
⎟⎠

T ⎛
⎜⎝
f (x∗) –ATλ∗

g(y∗) – BTλ∗

Ax∗ + By∗ – b

⎞
⎟⎠ ≥ . (.)

Adding (.), (.), and (.), we get

(
w∗ – w̃k)TG(

wk – w̃k) =
(
x∗ – x̃k

)T(
( +μ)R

(
xk – x̃k

))
+

(
y∗ – ỹk

)T(
( +μ)S

(
yk – ỹk

)
+ BTHB

(
yk – ỹk

))
+

(
λ∗ – λ̃k)T(

Ax̃k + Bỹk – b
)

≤ μ
∥∥xk – x̃k

∥∥
R +

(
x∗ – x̃k

)TATHB
(
yk – ỹk

)

http://www.journalofinequalitiesandapplications.com/content/2014/1/80
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+
(
y∗ – ỹk

)TBTHB
(
yk – ỹk

)
+μ

∥∥yk – ỹk
∥∥
S

= μ
∥∥xk – x̃k

∥∥
R –

(
Ax̃k + Bỹk – b

)THB(
yk – ỹk

)
+μ

∥∥yk – ỹk
∥∥
S

= μ
∥∥xk – x̃k

∥∥
R –

(
λk – λ̃k)T(

Byk – Bỹk
)
+μ

∥∥yk – ỹk
∥∥
S, (.)

where the last equality follows from (.c). It follows from (.) that

(
wk –w∗)TG(

wk – w̃k) ≥ ∥∥wk – w̃k∥∥
G –μ

∥∥xk – x̃k
∥∥
R –μ

∥∥yk – ỹk
∥∥
S

+
(
λk – λ̃k)T(

Byk – Bỹk
)

=
∥∥xk – x̃k

∥∥
R +

∥∥yk – ỹk
∥∥
S +

∥∥Byk – Bỹk
∥∥
H +

∥∥λk – λ̃k∥∥
H–

+
(
λk – λ̃k)T(

Byk – Bỹk
)
.

Using the definition of ϕk the assertion of this lemma is proved. �

Theorem . Let w∗ ∈W∗, wk+(αk) be defined by (.) and

�(αk) :=
∥∥wk –w∗∥∥

G –
∥∥wk+(αk) –w∗∥∥

G, (.)

then we have

�(αk)≥ σ
(∥∥wk –wk

∗ – αk
(
wk – w̃k)∥∥

G + αkϕk – α
k
∥∥wk – w̃k∥∥

G

)
, (.)

where

wk
∗ =

(
xk∗, y

k
∗,λ

k
∗
)
:= PW

[
wk – αkG–d

(
wk , w̃k)]. (.)

Proof Similarly as in (.) and (.), we have

(
xk∗ – x̃k

)T{
( +μ)R

(
xk – x̃k

)
– f

(
x̃k

)
+AT λ̃k –ATHB

(
yk – ỹk

)} ≤ μ
∥∥xk – x̃k

∥∥
R (.)

and

(
yk∗ – ỹk

)T{
( +μ)S

(
yk – ỹk

)
– g

(
ỹk

)
+ BT λ̃k – BTHB

(
yk – ỹk

)
+ BTHB

(
yk – ỹk

)}
≤ μ

∥∥yk – ỹk
∥∥
S. (.)

It follows from (.) and (.) that

⎛
⎜⎝
xk∗ – x̃k

yk∗ – ỹk

λk∗ – λ̃k

⎞
⎟⎠

T ⎛
⎜⎝

( +μ)R(xk – x̃k) – f (x̃k) +AT λ̃k –ATHB(yk – ỹk)
(( +μ)S + BTHB)(yk – ỹk) – g(ỹk) + BT λ̃k – BTHB(yk – ỹk)

H–(λk – λ̃k) – (Ax̃k + Bỹk – b)

⎞
⎟⎠

≤ μ
∥∥xk – x̃k

∥∥
R +μ

∥∥yk – ỹk
∥∥
S,

which implies

αk
(
wk

∗– w̃
k)T(

G
(
wk – w̃k)–d(

wk , w̃k))–αkμ
∥∥xk – x̃k∥∥

R–αkμ
∥∥yk – ỹk∥∥

S ≤ . (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/80
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Since w∗ ∈W∗ and wk∗ = PW [wk – αkG–d(wk , w̃k)], it follows from (.) that

∥∥wk
∗ –w∗∥∥

G ≤ ∥∥wk – αkG–d
(
wk , w̃k) –w∗∥∥

G –
∥∥wk – αkG–d

(
wk , w̃k) –wk

∗
∥∥
G. (.)

From (.), we get

∥∥wk+(αk) –w∗∥∥
G =

∥∥( – σ )
(
wk –w∗) + σ

(
wk

∗ –w∗)∥∥
G

= ( – σ )
∥∥wk –w∗∥∥

G + σ ∥∥wk
∗ –w∗∥∥

G

+ σ ( – σ )
(
wk –w∗)TG(

wk
∗ –w∗).

Using the following identity:

(a + b)TGb = ‖a + b‖G – ‖a‖G + ‖b‖G

for a = wk –wk∗, b = wk∗ –w∗ and (.), we obtain

∥∥wk+(αk) –w∗∥∥
G = ( – σ )

∥∥wk –w∗∥∥
G + σ ∥∥wk

∗ –w∗∥∥
G + σ ( – σ )

{∥∥wk –w∗∥∥
G

–
∥∥wk –wk

∗
∥∥
G +

∥∥wk
∗ –w∗∥∥

G

}
= ( – σ )

∥∥wk –w∗∥∥
G + σ

∥∥wk
∗ –w∗∥∥

G – σ ( – σ )
∥∥wk –wk

∗
∥∥
G

≤ ( – σ )
∥∥wk –w∗∥∥

G + σ
∥∥wk – αkG–d

(
wk , w̃k) –w∗∥∥

G

– σ
∥∥wk – αkG–d

(
wk , w̃k) –wk

∗
∥∥
G – σ ( – σ )

∥∥wk –wk
∗
∥∥
G. (.)

Using the definition of �(αk) and (.), we get

�(αk) ≥ σ
∥∥wk –wk

∗
∥∥
G + σαk

(
wk

∗ –wk)Td(
wk , w̃k)

+ σαk
(
wk –w∗)Td(

wk , w̃k). (.)

Using the monotonicity of f and g , we obtain

⎛
⎜⎝
x̃k – x∗

ỹk – y∗

λ̃k – λ∗

⎞
⎟⎠

T ⎛
⎜⎝
f (x̃k) –AT λ̃k

g(ỹk) – BT λ̃k

Ax̃k + Bỹk – b

⎞
⎟⎠ ≥

⎛
⎜⎝
x̃k – x∗

ỹk – y∗

λ̃k – λ∗

⎞
⎟⎠

T ⎛
⎜⎝
f (x∗) –ATλ∗

g(y∗) – BTλ∗

Ax∗ + By∗ – b

⎞
⎟⎠ ≥ 

and consequently

(
w̃k –w∗)Td(

wk , w̃k) ≥ (
w̃k –w∗)T

⎛
⎜⎝
ATHB(yk – ỹk)
BTHB(yk – ỹk)



⎞
⎟⎠

=
(
Ax̃k + Bx̃k – b

)THB(
yk – ỹk

)
=

(
λk – λ̃k)TB(

yk – ỹk
)

and it follows that

(
wk –w∗)Td(

wk , w̃k) ≥ (
wk – w̃k)Td(

wk , w̃k) + (
λk – λ̃k)TB(

yk – ỹk
)
. (.)
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Applying (.) to the last term in the right side of (.), we obtain

�(αk) ≥ σ
∥∥wk –wk

∗
∥∥
G + σαk

(
wk

∗ –wk)Td(
wk , w̃k)

+ σαk
{(
wk – w̃k)Td(

wk , w̃k) + (
λk – λ̃k)TB(

yk – ỹk
)}

= σ
{∥∥wk –wk

∗
∥∥
G + αk

(
wk

∗ – w̃k)Td(
wk , w̃k)

+ αk
(
λk – λ̃k)TB(

yk – ỹk
)}
. (.)

Adding (.) (multiplied by σ ) to (.), we get

�(αk) ≥ σ
{∥∥wk –wk

∗
∥∥
G + αk

(
wk

∗ – w̃k)TG(
wk – w̃k) – αkμ

∥∥xk – x̃k
∥∥
R

– αkμ
∥∥yk – ỹk

∥∥
S + αk

(
λk – λ̃k)TB(

yk – ỹk
)}

= σ
{∥∥wk –wk

∗ – αk
(
wk – w̃k)∥∥

G – α
k
∥∥wk – w̃k∥∥

G + αk
∥∥wk – w̃k∥∥

G

– αkμ
∥∥xk – x̃k

∥∥
R – αkμ

∥∥yk – ỹk
∥∥
S + αk

(
λk – λ̃k)TB(

yk – ỹk
)}

and using the notation of ϕk in (.), the theorem is proved. �

From the computational point of view, a relaxation factor γ ∈ (, ) is preferable in the
correction. We are now at the position to prove the contractive property of the iterative
sequence.

Theorem . Let w∗ ∈ W∗ be a solution of SVI and let wk+(γαk) be generated by (.).
Then wk and w̃k are bounded, and

∥∥wk+(γαk) –w∗∥∥
G ≤ ∥∥wk –w∗∥∥

G – c
∥∥wk – w̃k∥∥

G, (.)

where

c :=
σγ ( – γ )


> .

Proof It follows from (.), (.), and (.) that

∥∥wk+(γαk) –w∗∥∥
G ≤ ∥∥wk –w∗∥∥

G – σ
(
γαkϕk – γ α

k
∥∥wk – w̃k∥∥

G

)
=

∥∥wk –w∗∥∥
G – γ ( – γ )αkσϕk

≤ ∥∥wk –w∗∥∥
G –

σγ ( – γ )


(∥∥Ax̃k + Byk – b
∥∥
H +

∥∥wk – w̃k∥∥
G

)
.

Since γ ∈ (, ) we have

∥∥wk+ –w∗∥∥ ≤ ∥∥wk –w∗∥∥ ≤ · · · ≤ ∥∥w –w∗∥∥
and thus {wk} is a bounded sequence.
It follows from (.) that

∞∑
k=

c
∥∥wk – w̃k∥∥

G < +∞,
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which means that

lim
k→∞

∥∥wk – w̃k∥∥
G = . (.)

Since {wk} is a bounded sequence, we conclude that {w̃k} is also bounded. �

4 Convergence of the proposedmethod
In this section, we prove the global convergence of the proposed method. The following
results can be proved by using the technique of Lemma . and Theorem . in [].

Lemma . For given wk = (xk , yk ,λk) ∈Rn
++ ×Rm

++ ×Rl , let w̃k = (x̃k , ỹk , λ̃k) be generated
by (.a)-(.c). Then for any w = (x, y,λ) ∈W , we have

(
x – x̃k

)T(
f
(
x̃k

)
–AT λ̃k +ATHB

(
yk – ỹk

)) ≥ (
xk – x̃k

)TR{
( +μ)x –

(
μxk + x̃k

)}
(.)

and

(
y – ỹk

)T(
g
(
ỹk

)
– BT λ̃k) ≥ (

yk – ỹk
)TS{( +μ)y –

(
μyk + ỹk

)}
. (.)

Proof Applying Lemma . to prediction step of LQP-ADM (by setting uk = xk , u = x̃k ,
q(u) = f (x̃k) –AT λ̃k +ATHB(yk – ỹk) and v = x in (.)), it follows that

(
x – x̃k

)T(
f
(
x̃k

)
–AT λ̃k +ATHB

(
yk – ỹk

))
≥  +μ


(∥∥x̃k – x

∥∥
R –

∥∥xk – x
∥∥
R

)
+
 –μ


∥∥xk – x̃k

∥∥
R.

By a simple manipulation, we have

 +μ


(∥∥x̃k – x

∥∥
R –

∥∥xk – x
∥∥
R

)
+
 –μ


∥∥xk – x̃k

∥∥
R

= ( +μ)xTRxk – ( +μ)xTRx̃k – ( –μ)
(
x̃k

)TRxk –μ
∥∥xk∥∥

R +
∥∥x̃k∥∥

R

= ( +μ)xTR
(
xk – x̃k

)
–

(
xk – x̃k

)TR(
μxk + x̃k

)
=

(
xk – x̃k

)TR{
( +μ)x –

(
μxk + x̃k

)}
,

and the assertion (.) is proved. Similarly we can prove the assertion (.). �

Now, we are ready to prove the convergence of the proposed method.

Theorem . The sequence {wk} generated by the proposed method converges to some w∞

which is a solution of SVI.

Proof It follows from (.) that

lim
k→∞

∥∥xk – x̃k
∥∥
R = , lim

k→∞
∥∥yk – ỹk

∥∥
S =  (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/80
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and

lim
k→∞

∥∥λk – λ̃k∥∥
H– = lim

k→∞
∥∥Ax̃k + Bỹk – b

∥∥
H = . (.)

Moreover, (.) and (.) imply that

(
x– x̃k

)T(
f
(
x̃k

)
–AT λ̃k) ≥ (

xk – x̃k
)TR{

(+μ)x–
(
μxk + x̃k

)}
–

(
x– x̃k

)TATHB
(
yk – ỹk

)

and

(
y – ỹk

)T(
g
(
ỹk

)
– BT λ̃k) ≥ (

yk – ỹk
)TS{( +μ)y –

(
μyk + ỹk

)}
.

We deduce from (.) that

{
limk→∞(x – x̃k)T {f (x̃k) –AT λ̃k} ≥ , ∀x ∈Rn

++,
limk→∞(y – ỹk)T {g(ỹk) – BT λ̃k} ≥ , ∀y ∈Rm

++.
(.)

Since {wk} is bounded, so it has at least one cluster point. Let w∞ be a cluster point of {wk}
and the subsequence {wkj} converges to w∞. It follows from (.) and (.) that

⎧⎪⎨
⎪⎩
limj→∞(x – xkj )T {f (xkj ) –ATλkj} ≥ , ∀x ∈Rn

++,
limj→∞(y – ykj )T {g(ykj ) – BTλkj} ≥ , ∀y ∈Rm

++,
limj→∞(Axkj + Bykj – b) = .

Consequently

⎧⎪⎨
⎪⎩
(x – x∞)T {f (x∞) –ATλ∞} ≥ , ∀x ∈Rn

++,
(y – y∞)T {g(y∞) – BTλ∞} ≥ , ∀y ∈Rm

++,
Ax∞ + By∞ – b = ,

which means that w∞ is a solution of SVI.
Now we prove that the sequence {wk} converges to w∞. Since

lim
k→∞

∥∥wk – w̃k∥∥
G =  and

{
w̃kj

} → w∞

for any ε > , there exists an l >  such that

∥∥w̃kl –w∞∥∥ <
ε


and

∥∥wkl – w̃kl
∥∥ <

ε


. (.)

Therefore, for any k ≥ kl , it follows from (.) and (.) that

∥∥wk –w∞∥∥ ≤ ∥∥wkl –w∞∥∥ ≤ ∥∥wkl – w̃kl
∥∥ +

∥∥w̃kl –w∞∥∥ < ε.

This implies that the sequence {wk} converges to w∞, which is a solution of SVI. �
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5 Comparison
Let

wk+
I (αk) := PW

[
wk – αkG–d

(
wk , w̃k)] (.)

and

wk+
II (αk) := PW

[
wk – αk

(
wk – w̃k)] (.)

represent the new iterates generated by the algorithm presented in this paper and Li’s
algorithm in [], respectively, where σ = . Let

�I(αk) :=
∥∥wk –w∗∥∥

G –
∥∥wk+

I (αk) –w∗∥∥
G

and

�II(αk) :=
∥∥wk –w∗∥∥

G –
∥∥wk+

II (αk) –w∗∥∥
G

measure the progresses made by the new iterates, respectively. From (.), we have

�I(αk)≥ qI(αk) :=
∥∥wk –wk+

I (αk) – αk
(
wk – w̃k)∥∥

G + αkϕk – α
k
∥∥wk – w̃k∥∥

G.

Theorem . of [] indicates that

�II(αk) ≥ qII(αk) := αkϕk – α
k
∥∥wk – w̃k∥∥

G.

Note that the optimal step sizes used in both methods are identical. It is easy to prove that

qI(αk) ≥ qII(αk). (.)

Inequality (.) shows theoretically that the proposed method is expected to make more
progress than that in [] at each iteration, and so it explains theoretically that the pro-
posed method outperforms the method in [].

6 Preliminary computational results
In this section, we report some numerical results of the proposed method, we consider
the following optimization problem with matrix variables:

min

{


‖X –C‖F

∣∣∣ X ∈ Sn+

}
, (.)

where ‖ · ‖F is the matrix Fröbenius norm, i.e., ‖C‖F = (
∑n

i=
∑n

j= |Cij|)/,

Sn+ =
{
H ∈Rn×n |HT =H ,H � 

}
.

Note that the matrix Fröbenius norm is induced by the inner product

〈A,B〉 = Trace
(
ATB

)
.
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Note that the problem (.) is equivalent to the following:

min


‖X –C‖ + 


‖Y –C‖

s.t. X – Y = , (.)

X,Y ∈ Sn+,

which is equivalent to the following variational inequality: to find u∗ = (X∗,Y ∗,Z∗) ∈ � =
Sn+ × Sn+ ×Rn×n such that

⎧⎪⎨
⎪⎩

〈X –X∗, (X∗ –C) – Z∗〉 ≥ ,
〈Y – Y ∗, (Y ∗ –C) + Z∗〉 ≥ , ∀u = (X,Y ,Z) ∈ �,
X∗ – Y ∗ = .

(.)

The problem (.) is a special case of (.)-(.) with matrix variables where A = In×n,
B = –In×n, b = , f (X) = X –C, g(Y ) = Y –C andW = Sn+ × Sn+ ×Rn×n.
For simplification, we take R = rIn×n, S = sIn×n and H = In×n where r >  and s >  are

scalars. In all tests we take μ = ., C = rand(n) and (X,Y ,Z) = (In×n, In×n, n×n) as the
initial point in the test. The iteration is stopped as soon as

max
{∥∥Xk – X̃k∥∥,∥∥Yk – Ỹ k∥∥,∥∥Zk – Z̃k∥∥} ≤ –.

All codes were written inMatlab; we compare the proposed method with that in []. The
iteration numbers denoted by k, and the computational time for the problem (.) with
different dimensions are given in Tables -.
Tables - show that the proposed method is more flexible and efficient. Moreover, it

demonstrates computationally that the new method is more effective than the method
presented in [] in the sense that the new method needs fewer iterations and less com-
putational time, which clearly illustrates its efficiency and thus justifies the theoretical
assertions.

Table 1 Numerical results for the problem (6.1) with r = s = 0.8

Dimension of
the problem

The proposedmethod Themethod in [19]

k CPU (sec.) k CPU (sec.)

100 29 1.17 46 1.31
300 31 5.07 50 7.43
500 32 17.92 52 27.67
700 32 42.65 54 71.13

Table 2 Numerical results for the problem (6.1) with r = s = 1

Dimension of
the problem

The proposedmethod Themethod in [19]

k CPU (sec.) k CPU (sec.)

100 27 1.06 53 1.33
300 29 4.76 59 8.62
500 29 16.05 61 33.23
700 30 44.06 63 82.32
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Table 3 Numerical results for the problem (6.1) with r = s = 5

Dimension of
the problem

The proposedmethod Themethod in [19]

k CPU (sec.) k CPU (sec.)

100 21 1.12 178 2.71
300 23 3.76 198 26.45
500 23 12.71 207 108.42
700 24 32.23 213 276.17

Remark . For the example used in numerical results in [], we found the same results
as in [], so we do not include the results.

7 Conclusions
In this paper, we propose a new logarithmic-quadratic proximal alternating direction
method (LQP-ADM) for solving structured variational inequalities. Each iteration of the
new LQP-ADM includes a prediction step where a prediction point is obtained as that
in [], and a correction step where the new iterate is generated by a convex combina-
tion of the previous iterate and the one generated by a projection-type method along a
new descent direction. Global convergence of the proposed method is proved under mild
assumptions. Further, it is proved theoretically that the lower bound of the progress ob-
tained by the proposed method is greater than that by []. Some preliminary numerical
results are reported to verify the efficiency of the proposed LQP-ADM and thus justified
the theoretical assertions.
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