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Abstract
We consider the boundary value problem (BVP) for the discrete Dirac equations

{
y(2)n+1 – y

(2)
n + pny(1)n = λy(1)n ,

y(1)n–1 – y
(1)
n + qny(2)n = λy(2)n ,

n ∈ Z = {0,±1,±2, . . .}; y(1)0 = 0,

where (pn) and (qn), n ∈ Z are real sequences, and λ is an eigenparameter. We find a
polynomial type Jost solution of this BVP. Then we investigate the analytical
properties and asymptotic behavior of the Jost solution. Using the Weyl compact
perturbation theorem, we prove that a self-adjoint discrete Dirac system has a
continuous spectrum filling the segment [–2, 2]. We also prove that the Dirac system
has a finite number of real eigenvalues.

1 Introduction
Let us consider the BVP generated by the Sturm-Liouville equation,

–y′′ + q(x)y = λy, x ∈R+ = [,∞), ()

and the boundary condition

y() = , ()

where q is a real valued function and λ is a spectral parameter. The bounded solution of
() satisfying the condition

lim
x→∞ y(x,λ)e–iλx = , λ ∈ C+ := {λ ∈C : Imλ ≥ } ()

will be denoted by e(x,λ). The solution e(x,λ) satisfies the integral equation

e(x,λ) = eiλx +
∫ ∞

x

sinλ(t – x)
λ

q(t)e(t,λ)dt. ()
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It has been shown that, under the condition

∫ ∞


x
∣∣q(x)∣∣dx < ∞, ()

the solution e(x,λ) has the integral representation

e(x,λ) = eiλx +
∫ ∞

x
K (x, t)eiλt dt, λ ∈ C+, ()

where the function K (x, t) is defined by q. The function e(x,λ) is analytic with respect to
λ in C+ := {λ ∈C : Imλ > }, continuous in C+, and

e(x,λ) = eiλx
[
 + o()

]
, λ ∈C+,x→ ∞ ()

holds [].
The functions e(x,λ) and e(λ) := e(,λ) are called the Jost solution and Jost function of

the BVP () and (), respectively. These functions play an important role in the solution
of inverse problems of the quantum scattering theory [–]. In particular, the scattering
data of the BVP () and () is defined in terms of Jost solution and Jost function.
Let us consider the system

any()n+ + bny()n + pny()n = λy()n ,

an–y()n– + bny()n + qny()n = λy()n ,
n ∈ Z, ()

where {(y()n
y()n

)} are vector sequences, {an}n∈Z, {bn}n∈Z, {pn}n∈Z, and {qn}n∈Z are real se-
quences, an �= , bn �=  for all n ∈ Z, and λ is a spectral parameter.
If for all n ∈ Z, an ≡  and bn ≡ –, then the system () reduces to

⎧⎨
⎩�y()n+ + pny()n = λy()n ,

–�y()n– + qny()n = λy()n ,
n ∈ Z, ()

where � is the forward difference operator, i.e.,

�un = un+ – un.

The system () is the discrete analogue of the well-known Dirac system

(
 
– 

)(
y′


y′


)
+

(
p(x) 
 q(x)

)(
y
y

)
= λ

(
y
y

)

([], Chapter ). Therefore the system () is called a discrete Dirac system.
Various problems of spectral analysis of self-adjoint difference equations have been in-

vestigated in detail [, ]. But all of them give an exponential type Jost solution of the
difference equations. In this paper, we find a polynomial type Jost solution of () with the
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boundary condition

y() = , ()

which is analytic in D := {z : |z| < }\{}.

2 Jost solutions of (9)
We will assume that the real sequences {pn}n∈Z, {qn}n∈Z satisfy

∑
n∈Z

|n|(|pn| + |qn|
)
<∞. ()

If pn = qn =  for all n ∈ Z and

λ = –iz – (iz)–,

from (), we get

y()n+ – y()n =
[
–iz – (iz)–

]
y()n ,

y()n– – y()n =
[
–iz – (iz)–

]
y()n .

()

It is clear that

en(z) =
(e()n (z)
e()n (z)

)
=

(
z
–i

)
zn, n ∈ Z, ()

and

hn(z) =
(h()n (z)
h()n (z)

)
=

(
–i
z

)
z–n, n ∈ Z, ()

are the solutions of ().

Now we find the solutions fn(z) =
(f ()n
f ()n

)
, n ∈ Z, and gn(z) =

(g()n
g()n

)
, n ∈ Z, of () for λ =

–iz – (iz)–, satisfying the condition

fn(z) =
[
I + o()

]
en(z), |z| = ,n→ ∞, ()

and

gn(z) =
[
I + o()

]
hn(z), |z| = ,n→ –∞, ()

respectively, where I =
(  
 

)
.

Theorem  Under the condition () for λ = –iz – (iz)– and |z| = , () has the solutions

fn(z) =
{(f ()n

f ()n

)}
n∈Z and gn(z) =

{(g()n
g()n

)}
n∈Z having the representations

fn(z) =
(f ()n

f ()n

)
=

[
I +

∞∑
m=

Knmzm
](

z
–i

)
zn, n ∈ Z, ()
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gn(z) =
(g()n

g()n

)
=

[
I +

–∞∑
m=–

Bnmz–m
](

–i
z

)
z–n, n ∈ Z, ()

f () (z) = z +
∞∑
m=

(
K 
mz

m+ – iK 
mz

m)
, ()

where

Knm =

(
K 
nm K 

nm

K
nm K

nm

)
,

and

Bnm =

(
B
nm B

nm

B
nm B

nm

)
.

Proof Substituting the vector-valued functions f and g defined by () and () in (),
taking λ = –iz – (iz)–, |z| = , we get

K 
n = –

∞∑
k=n+

(pk + qk),

K 
n =

∞∑
k=n+

pkK 
k ,

K
n = K 

n–, =
∞∑
k=n

pkK 
k ,

K
n = K 

n + pnK 
n +

∞∑
k=n+

[
qkK

k + pkK 
k

]
,

K 
n = –

∞∑
k=n+

[
pkK 

k + qkK
k

]
,

K 
n = –K

n+, +
∞∑

k=n+

[
pkK 

k – qkK
k

]
,

K
n = –K 

n +
∞∑
k=n

[
pkK 

k – qk+K
k+,

]
,

K
n = K 

n +
∞∑
k=n

[
pkK 

k + qk+K
k+,

]
,

and

B
n,– = –

–∞∑
k=n–

(pk + qk),

B
n,– =

–∞∑
k=n–

qkB
k,–,
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B
n,– =

–∞∑
k=n

qkB
k,–,

B
n,– = –

–∞∑
k=n–

(pk + qk) +
–∞∑
k=n

[
pk–B

k–,– + qkB
k,–

]
,

B
n,– = –

–∞∑
k=n–

(
pkB

k,– + qkB
k,–

)
,

B
n,– = –B

n–,– –
–∞∑

k=n–

[
qkB

k,– – pkB
k,–

]
,

B
n,– = –B

n,– +
–∞∑
k=n

[
qkB

k,– – pk–B
k–,–

]
,

B
n,– = B

n,– +
–∞∑

k=n–

[
pkB

k,– + qk+B
k+,–

]
,

where n ∈ Z. Form ≥  and n ∈ Z, we obtain

K 
nm = K

n+,m– –
∞∑

k=n+

[
qkK

k,m– + pkK 
k,m–

]
,

K 
nm = –K

n+,m– +
∞∑

k=n+

[
pkK 

km – qkK
k,m–

]
,

K
nm = –K 

n,m– +
∞∑
k=n

[
pkK 

km – qk+K
k+,m–

]
,

K
nm = K 

nm + pnK 
nm +

∞∑
k=n+

[
qkK

km + pkK 
km

]
.

Also form ≤ – and n ∈ Z, we get

B
nm = –

–∞∑
k=n–

[
qkB

k,m+ + pkB
k,m+

]
+ B

n–,m+,

B
nm = –B

n–,m+ +
–∞∑
k=n

[
qkB

km – pkB
k,m+

]
,

B
nm = –B

n,m+ +
–∞∑
k=n

[
qkB

km – pk–B
k–,m+

]
,

B
nm = B

n+,m– +
–∞∑
k=n

[
pkB

k,m– + qkB
k,m–

]
.

Due to the condition (), the series in the definition of Kij
nm and Bij

nm (i, j = , ) are abso-
lutely convergent. Therefore, Kij

nm and Bij
nm (i, j = , ) can uniquely be defined by pn and qn

(n ∈ Z), i.e., the system () for λ = –iz – (iz)–, |z| = , have the solutions fn(z) given by ()
and gn(z) given by (). �

http://www.journalofinequalitiesandapplications.com/content/2014/1/73


Aygar and Olgun Journal of Inequalities and Applications 2014, 2014:73 Page 6 of 9
http://www.journalofinequalitiesandapplications.com/content/2014/1/73

The solutions f and g are called Jost solutions of (). Using the equalities for Kij
nm and

Bij
nm (i, j = , ) given in Theorem , we find

∣∣Kij
nm

∣∣ ≤ C
∞∑

k=n+
m �

(|pk| + |qk|
)
, i, j = , , ()

and

∣∣Bij
nm

∣∣ ≤ C
–∞∑

k=n+
m �+

(|pk| + |qk|
)
, i, j = , , ()

by induction, where 
m
 � is the integer part of m

 and C >  is a constant.
Using (), (), and the definitions of f and g , we obtain () and (). Also the Jost

solutions have an analytic continuation from {z : |z| = } to D := {z : |z| < }\{}. Because
of () and (), we see that the series

∑∞
m=Knmzm and

∑∞
m=mKnmzm– are uniformly

convergent in D. Similarly from () and (), we see that the series
∑–∞

m=– Bnmzm and∑–∞
m=–mBnmz–m– are uniformly convergent in D.

Theorem  The following asymptotics hold:

(f ()n

f ()n

)
=

[
I + o()

]( z
–i

)
zn, z ∈ D :=

{
z : |z| ≤ 

}\{},n→ ∞, ()

(g()n

g()n

)
=

[
I + o()

](–i
z

)
z–n, z ∈ D,n→ –∞. ()

Proof From (), we obtain

f ()n (z)z–n– =  +
∞∑
m=

K 
nmz

m – i
∞∑
m=

K 
nmz

m–, z ∈D. ()

Using () and (), we get

∣∣f ()n (z)z–n–
∣∣ ≤  +

∞∑
m=

∣∣K 
nm

∣∣ + ∞∑
m=

∣∣K 
nm

∣∣

≤  + C
∞∑
m=

∞∑
k=n+
m �

(|pk| + |qk|
)

≤  + C
∞∑

k=n+

(k – n)
(|pk| + |qk|

)

≤  + C
∞∑

k=n+

k
(|pk| + |qk|

)
, ()

where C is constant. So we have by ()

f ()n (z) = zn+
(
 + o()

)
, z ∈D,n→ ∞. ()
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In a manner similar to (), we obtain

f ()n (z) = –izn
(
 + o()

)
, z ∈D,n → ∞. ()

From () and (), we get (). Also from (), we obtain

ig()n (z)zn =  +
–∞∑
m=–

B
nmz

–m + i
–∞∑
m=–

B
nmz

–m+, z ∈D. ()

Using () and (), we have

∣∣ig()n (z)zn
∣∣ ≤  +

–∞∑
m=–

∣∣B
nm

∣∣ + –∞∑
m=–

∣∣B
nm

∣∣

≤  + C
–∞∑
m=–

–∞∑
k=n+
m �+

(|pk| + |qk|
)

≤  + C
–∞∑
k=n

–k
(|pk| + |qk|

)
, ()

where C is constant. So, we get by ()

g()n (z) = –iz–n
(
 + o()

)
, z ∈ D,n→ –∞. ()

Similarly, we can obtain

g()n (z) = z–n+
(
 + o()

)
, z ∈D,n → –∞. ()

From () and (), we obtain (). �

3 Continuous and discrete spectrum of the BVP (9)
Let l(Z,C) denote the Hilbert space of all complex vector sequences

y =

{
y()n

y()n

}
n∈Z

with the norm

‖y‖ :=
∑
n∈Z

∣∣y()n
∣∣ + ∣∣y()n

∣∣.

We also define the operator L generated in �(Z,C) by (). The operator L is self-adjoint.

Theorem  If the condition () holds, then σc(L) = [–, ], where σc(L) denotes the con-
tinuous spectrum of L.

http://www.journalofinequalitiesandapplications.com/content/2014/1/73
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Proof Let L denote the operator generated in �(Z,C) by the BVP

⎧⎨
⎩�y()n = λy()n ,

–∇y()n = λy()n ,

y() = .

We also define the operator L in �(Z,C) by the following:

L

(
y()n

y()n

)
:=

(
pn 
 qn

)(
y()n

y()n

)
=

(
pny()n

qny()n

)
.

It is clear that L = L∗
, L = L + L and we can easily prove that

σ (L) = σc(L) = [–, ].

It follows from () that the operator L is compact in �(Z,C) [].
By the Weyl Theorem [] of a compact perturbation, we get

σc(L) = σc(L) = [–, ]. �

The Wronskian of the solutions

Un :=

{(
U ()

n

U ()
n

)}
n∈Z

, Vn :=

{(
V ()
n

V ()
n

)}
n∈Z

of () is defined by

W [Un,Vn] = an
[
U ()

n V ()
n+ –U ()

n+V
()
n

]
.

If we define F(z) = W [fn(z), gn(z)], then F is analytic in D. Since the operator L is self-
adjoint, the eigenvalues of L is real. From the definition of the eigenvalues we obtain

σd(L) =
{
λ : λ = –iz – (iz)–, iz ∈ (–, )∪ (, ),F(z) = 

}
, ()

where σd(L) denotes the set of all eigenvalues of L.

Definition  Themultiplicity of a zero of the function F(z) is called themultiplicity of the
corresponding eigenvalue of L.

Theorem Under the condition () the operator L has a finite number of real eigenvalues
in D.

Proof To prove the theorem, we have to show that the function F(z) has a finite number
of real zeros in D. The cluster points of the zeros of the analytic function F could be –i, 
and i. Since L is a self-adjoint bounded operator its eigenvalues should be different from
infinity and as z is ‘’, the eigenvalue λ is infinity, we cannot consider ‘’ as a zero of the

http://www.journalofinequalitiesandapplications.com/content/2014/1/73
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function F . Also, for z is ±i, the eigenvalue λ is ± andD is bounded. But, as we know, ±
are elements of the continuous spectrum of the operator L. On the other hand from the
operator theory, the eigenvalues of the self-adjoint operator are not the elements of the
continuous spectrum of that operator. Therefore, from the BolzanoWeierstrass Theorem
the set of zeros of the function F in D are finite i.e., the operator L has a finite number of
eigenvalues. �
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