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1 Introduction
Throughout this article, we always assume thatH,H are real Hilbert spaces; ‘→’ and ‘⇀’
denote strong and weak convergence, respectively.
The split feasibility problem (SFP) in finite dimensional spaces was first introduced by

Censor and Elfving [] for modeling inverse problems. The (SFP) can be used in various
disciplines such asmedical image reconstruction [], image restoration, computer tomog-
raphy, and radiation therapy treatment planning [–]. The multiple-set split feasibility
problem (MSSFP) was studied in [–].
Let A : H → H be a bounded linear operator, Si : H → H and Ti : H → H, i =

, , . . . ,N , be two finite families of mappings, C :=
⋂N

i= F(Si) and Q :=
⋂N

i= F(Ti), where
F(Si) and F(Ti) are the sets of fixed points of Si and Ti, respectively.
The so-calledmultiple set split feasibility problem is

to find x∗ ∈ C such that Ax∗ ∈Q. (.)

In the sequel, we use � to denote the set of solutions of the problem (MSSFP) (.), that is,

� = {x ∈ C : Ax ∈Q}. (.)
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LetH be a real Hilbert space and K be a nonempty closed convex subset ofH . Following
Kohsaka and Takahashi [–], a mapping T : K → K is said to be nonspreading if

‖Tx – Ty‖ ≤ ‖Tx – y‖ + ‖Ty – x‖ for all x, y ∈ K .

It is to see that the above inequality is equivalent to

‖Tx – Ty‖ ≤ ‖x – y‖ + 〈x – Tx, y – Ty〉 for all x, y ∈ K .

In , Browder and Petryshyn [] introduced the concept of κ-strictly pseudo-
nonspreading mapping.

Definition . [] Let H be a real Hilbert space. A mapping T : D(T) ⊂ H → H is said
to be κ-strictly pseudo-nonspreading if there exists κ ∈ [, ) such that

‖Tx – Ty‖ ≤ ‖x – y‖ + κ
∥∥x – Tx – (y – Ty)

∥∥ + 〈x – Tx, y – Ty〉, ∀x, y ∈D(T).

Clearly, every nonspreading mapping is κ-strictly pseudo-nonspreading.

The class of asymptotically strict pseudo-contractions was introduced by Qihou []
in . Kim and Xu [], Inchan and Nammanee [], Zhou [] Cho [], and Ge []
proved that the class of asymptotically strict pseudo-contractions is demiclosed at the
origin and also obtained some weak convergence theorems for the class of mappings. In
, Osilike and Isiogugu [] introduced a class of nonspreading type mappings which
is more general than the class studied in [] in Hilbert spaces and proved some weak and
strong convergence theorems in real Hilbert spaces. Recently, Chang et al. [] studied the
multiple-set split feasibility problem for an asymptotically strict pseudo-contraction in the
framework of infinite-dimensional Hilbert spaces.

Definition . [] LetH be a real Hilbert space, we say that themapping T :D(T)⊂ H →
H is a κ-asymptotically strict pseudo-contraction if there exists a constant κ ∈ [, ) and a
sequence {kn} ⊂ [,∞) with kn →  (n→ ∞) such that

∥∥Tnx – Tny
∥∥ ≤ kn‖x – y‖ + κ

∥∥x – Tnx –
(
y – Tny

)∥∥

holds for all x, y ∈D(T).

In this article we introduce the following class of κ-asymptotically strictly pseudo-
nonspreading mappings which is more general than that of κ-strictly pseudo-nonspread-
ing mappings and κ-asymptotically strict pseudo-contractions.

Definition . Let H be a real Hilbert space. A mapping T : D(T) ⊂ H → H is said to
be κ-asymptotically strictly pseudo-nonspreading if there exists a constant κ ∈ [, ) and a
sequence {kn} ⊂ [,∞) with kn →  (n→ ∞) such that

∥∥Tnx – Tny
∥∥ ≤ kn‖x – y‖ + κ

∥∥x – Tnx –
(
y – Tny

)∥∥ + 
〈
x – Tnx, y – Tny

〉
,

∀x, y ∈D(T). (.)
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Example . Now, we give an example of κ-asymptotically strict pseudo-contractive
mapping.
Let C be a unit ball in a real Hilbert l, and let T : C → C be a mapping defined by

T : (x,x, . . .) → (,x ,ax,ax, . . .), (.)

where {ai} is a sequence in (, ) such that
∏∞

i= αi = 
 .

It is proved in Goebel and Kirk [] that
(i) ‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈ C;
(ii) ‖Tnx – Tny‖ ≤ 

∏n
i= aj‖x – y‖, ∀n≥  and x, y ∈ C.

Define k


 = , k



n = 

∏n
i= aj, n≥ , then

lim
n→∞ kn = lim

n→∞

(


n∏
i=

aj

)

= .

Letting κ = , then ∀x, y ∈ C, n ≥ , we have
∥∥Tnx – Tny

∥∥ ≤ kn‖x – y‖ + κ
∥∥x – y –

(
Tnx – Tny

)∥∥.

This implies that T is a κ-asymptotically strict pseudo-contractive mapping.

Example . Now, we give an example of κ-asymptotically strictly pseudo-nonspreading
mapping.
Let X = l with the norm ‖ · ‖ be defined by

‖x‖ =
√√√√ ∞∑

i=

xi , ∀x = (x,x, . . . ,xn, . . .) ∈ X,

and let C = {x = (x,x, . . . ,xn, . . .)|xi ∈ R, i = , , . . .} be an orthogonal subspace of X (i.e.,
∀x, y ∈ C, we have 〈x, y〉 = ). It is obvious that C is a nonempty closed convex subset of X.
For each x = (x,x, . . . ,xn, . . .) ∈ C, we define a mapping T : C → C by

Tx =

⎧⎨
⎩(x,x, . . . ,xn, . . .) if

∏∞
i= xi < ;

(–x, –x, . . . , –xn, . . .) if
∏∞

i= xi ≥ .
(.)

Next we prove that T is a κ-asymptotically strictly pseudo-nonspreading mapping.
In fact, for any x, y ∈ C, we have the following cases.
Case . If

∏∞
i= xi <  and

∏∞
i= yi < , then we have Tnx = x, Tny = y, and so then inequal-

ity (.) holds.
Case . If

∏∞
i= xi <  and

∏∞
i= yi ≥ , then we have that Tnx = x, Tny = (–)ny. This

implies that⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

‖Tnx – Tny‖ = ‖x – (–)ny‖ = ‖x‖ + ‖y‖;
kn‖x – y‖ = kn(‖x‖ + ‖y‖);
‖x – Tnx – (y – Tny)‖ = [ – (–)n]‖y‖;
〈x – Tnx, y – Tny〉 = .

Therefore inequality (.) holds.

http://www.journalofinequalitiesandapplications.com/content/2014/1/69
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Case . If
∏∞

i= xi ≥  and
∏∞

i= yi ≥ , then we have Tnx = (–)nx, Tny = (–)ny. Hence
we have

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

‖Tnx – Tny‖ = ‖(–)nx – (–)ny‖ = ‖x – y‖ = ‖x‖ + ‖y‖;
kn‖x – y‖ = kn(‖x‖ + ‖y‖);
‖x – Tnx – (y – Tny)‖ = [ – (–)n]‖x – y‖ = [ – (–)n](‖x‖ + ‖y‖);
〈x – Tnx, y – Tny〉 = .

Thus inequality (.) still holds. Therefore the mapping defined by (.) is a κ-asymp-
totically strictly pseudo-nonspreading mapping.

The purpose of this article is under suitable conditions to prove some weak and
strong convergence theorems for solving multiple-set split feasibility problem (.) for a
κ-asymptotically strictly pseudo-nonspreading mapping in infinite-dimensional Hilbert
spaces. The results presented in the paper extend and improve the corresponding results
of Xu [], Osilike and Isiogugu [], Chang et al. [], and many others.

2 Preliminaries
In the sequel, we first recall some definitions, notations, and conclusions which will be
needed in proving our main results.
Let E be a real Banach space. A mapping T with domain D(T) and range R(T) in E is

said to be demiclosed at origin if whenever {xn} is a sequence in D(T) converging weakly
to a point x∗ ∈D(T) and ‖(I – T)xn‖ converging strongly to , then Tx∗ = x∗.
A Banach space E is said to have the Opial property if, for any sequence {xn} with

xn ⇀ x∗, we have

lim inf
n→∞

∥∥xn – x∗∥∥ < lim inf
n→∞ ‖xn – y‖

for all y ∈ E with y = x∗.
It is well known that each Hilbert space possesses the Opial property.
A mapping T : K → K is said to be semicompact if for any bounded sequence {xn} ⊂ K

with limn→∞ ‖xn – Txn‖ = , there exists a subsequence {xni} ⊂ {xn} such that {xni} con-
verges strongly to some point x∗ ∈ K .
A mapping T : K → K is said to be uniformly L-Lipschitzian if there exists a constant

L >  such that

∥∥Tnx – Tny
∥∥ ≤ L‖x – y‖, ∀x, y ∈ K .

Let K be a nonempty closed convex subset of a real Hilbert space H . Themetric projec-
tion PK :H → K is a mapping such that for each x ∈ H , PKx is the unique point in K such
that ‖x – PKx‖ ≤ ‖x – y‖, ∀y ∈ K . It is known that for each x ∈H ,

〈x – PKx, y – PKx〉 ≤ , ∀y ∈ K .

Lemma . Let H be a real Hilbert space, then the following results hold:

http://www.journalofinequalitiesandapplications.com/content/2014/1/69
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(i) For all x, y ∈H and for all t ∈ [, ],

∥∥tx + ( – t)y
∥∥ = t‖x‖ + ( – t)‖y‖ – t( – t)‖x – y‖.

(ii) ‖x + y‖ ≤ ‖x‖ + 〈y,x + y〉.
(iii) If {xn}∞n= is a sequence in H which converges weakly to z ∈H , then

lim sup
n→∞

‖xn – y‖ = lim sup
n→∞

‖xn – z‖ + ‖z – y‖, ∀y ∈H .

Lemma . Let K be a nonempty closed convex subset of a real Hilbert space H , and
let T : K → K be a continuous κ-asymptotically strictly pseudo-nonspreading mapping.
If F(T) = ∅, then it is a closed and convex subset.

Proof Let {xn} ⊂ F(T) be a sequence such that limn→∞ xn = x∗ ∈ K . Now we prove that
x∗ ∈ F(T). In fact, since T is κ-asymptotically strictly pseudo-nonspreading, for each
m≥ , we have

∥∥Tmx∗ – xn
∥∥ =

∥∥Tmx∗ – Tmxn
∥∥

≤ km
∥∥xn – x∗∥∥ + 

〈
x∗ – Tmx∗,xn – Tmxn

〉
+ κ

∥∥x∗ – Tmx∗ –
(
xn – Tmxn

)∥∥

= km
∥∥xn – x∗∥∥ + κ

∥∥x∗ – Tmx∗∥∥.

Taking the limit as n→ ∞ in the above inequality, we have

∥∥Tmx∗ – x∗∥∥ ≤ κ
∥∥x∗ – Tmx∗∥∥.

Since κ ∈ (, ), we have ‖Tmx∗ – x∗‖ =  for eachm ≥ . Hence Tx∗ = x∗. This shows that
F(T) is closed.
Now we prove that F(T) is convex. In fact, let p,p ∈ F(T), and z = λp + ( – λ)p,

we prove that z ∈ F(T). Since p – z = ( – λ)(p – p) and p – z = λ(p – p), by using
Lemma .(i), we have

∥∥z – Tmz
∥∥ =

∥∥λ
(
p – Tmz

)
+ ( – λ)

(
p – Tmz

)∥∥

= λ
∥∥p – Tmz

∥∥ + ( – λ)
∥∥p – Tmz

∥∥ – λ( – λ)‖p – p‖

≤ λ
(
km‖p – z‖ + κ

∥∥p – Tmp –
(
z – Tmz

)∥∥ + 
〈
p – Tmp, z – Tmz

〉)
+ ( – λ)

(
km‖p – z‖ + κ

∥∥p – Tmp –
(
z – Tmz

)∥∥

+ 
〈
p – Tmp, z – Tmz

〉)
– λ( – λ)‖p – p‖

= λ
(
km‖p – z‖ + κ

∥∥z – Tmz
∥∥) + ( – λ)

(
km‖p – z‖ + κ

∥∥z – Tmz
∥∥)

– λ( – λ)‖p – p‖.

Taking lim supm→∞ on both sides of the above inequality, we have

lim sup
m→∞

∥∥z – Tmz
∥∥ ≤ lim sup

m→∞
κ
∥∥z – Tmz

∥∥.

http://www.journalofinequalitiesandapplications.com/content/2014/1/69
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Since κ < , we have

lim sup
m→∞

∥∥Tmz – z
∥∥ = ,

and so limm→∞ Tmz = z, i.e., Tz = z. This completes the proof. �

Lemma . Let K be a nonempty closed convex subset of a real Hilbert space H , and let
T : K → K be a continuous κ-asymptotically strictly pseudo-nonspreading mapping. Then
(I –T) is demiclosed at , that is, if xn ⇀ x∗ and lim supm→∞ lim supn→∞ ‖(I –Tm)xn‖ = ,
then ‖(I – T)x∗‖ = .

Proof Since {xn} is weak convergence, {xn} is bounded. For each x ∈ H , define f : H →
[,∞) by

f (x) := lim sup
n→∞

‖xn – x‖, x ∈H .

From Lemma .(iii), we have

f (x) = lim sup
n→∞

∥∥xn – x∗∥∥ +
∥∥x∗ – x

∥∥, x ∈H .

Thus we have

f (x) = f
(
x∗) + ∥∥x – x∗∥∥, x ∈H .

In particular, for eachm≥ ,

f
(
Tmx∗) = f

(
x∗) + ∥∥Tmx∗ – x∗∥∥. (.)

On the other hand, we have

f
(
Tmx∗) = lim sup

n→∞

∥∥xn – Tmx∗∥∥

= lim sup
n→∞

∥∥xn – Tmxn + Tmxn – Tmx∗∥∥

= lim sup
n→∞

(∥∥xn – Tmxn
∥∥ + 

〈
xn – Tmxn,Tmxn – Tmx∗〉 + ∥∥Tmxn – Tmx∗∥∥).

Since lim supm→∞ lim supn→∞ ‖(I – Tm)xn‖ =  and T is a κ-asymptotically strictly
pseudo-nonspreading mapping, taking lim supm→∞ on both sides of the above equality,
we get

lim sup
m→∞

f
(
Tmx∗) ≤ lim sup

m→∞

∥∥Tmxn – Tmx∗∥∥

≤ lim sup
m→∞

lim sup
n→∞

(
km

∥∥xn – x∗∥∥ + κ
∥∥xn – Tmxn –

(
x∗ – Tmx∗)∥∥

+ 
〈
xn – Tmxn,x∗ – Tmx∗〉).

http://www.journalofinequalitiesandapplications.com/content/2014/1/69
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By virtue of lim supm→∞ lim supn→∞ ‖(I – Tm)xn‖ =  and km →  (m → ∞), we have

lim sup
m→∞

f
(
Tmx∗) ≤ f

(
x∗) + lim sup

m→∞
κ
∥∥x∗ – Tmx∗∥∥. (.)

On the other hand, it follows from (.) that

lim sup
m→∞

f
(
Tmx∗) = f

(
x∗) + lim sup

m→∞

∥∥Tmx∗ – x∗∥∥, ∀x ∈H . (.)

Since κ < , it follows from (.) and (.) that lim supm→∞ ‖Tmx∗ – x∗‖ = . So
limm→∞ Tmx∗ = x∗ and Tx∗ = x∗. This completes the proof. �

3 Main results
Theorem . Let H, H, A, {Si}, {Ti}, C, Q be the same as in multiple set split feasi-
bility problem (.). For each i = , , . . . ,N , let Ti be a uniformly L̃i-Lipschitzian and κi-
asymptotically strictly pseudo-nonspreading mapping, Si be a uniformly Li-Lipschitzian
and �i-asymptotically strictly pseudo-nonspreading mapping. Let {xn} be the sequence gen-
erated by

⎧⎪⎪⎨
⎪⎪⎩
x ∈H chosen arbitrarily,

un = xn + γA∗(Tn
n(modN) – I)Axn,

xn+ = ( – αn)un + αnSnn(modN)un,

(.)

where γ is a constant and γ ∈ (, –κ
λ
), λ is the spectral of the operator A∗A, κ =

max{κ,κ, . . . ,κN } and {αn} is a sequence in (,  –�] with � =max{�,�, . . . ,�N }. If � = ∅,
then the sequence {xn} converges weakly to a point x∗ ∈ �.

Proof The proof is divided into five steps.
(I) We first prove the limit limn→∞ ‖xn – p‖ exists for any p ∈ �.
Since p ∈ �, we have p ∈ C :=

⋂N
i= F(Si) and Ap ∈ Q :=

⋂N
i= F(Ti). It follows from (.)

that

‖xn+ – p‖ = ∥∥un – p + αn
(
Snn(modN)un – un

)∥∥

= ‖un – p‖ + αn
〈
un – p,Snn(modN)un – un

〉
+ α

n
∥∥un – Snn(modN)un

∥∥. (.)

Because Si is a �i-asymptotically strictly pseudo-nonspreading mapping, for any v ∈H,
we have

∥∥Snn(modN)un – Snn(modN)v
∥∥

≤ ‖un – v‖ + �
∥∥un – Snn(modN)un –

(
v – Snn(modN)v

)∥∥

+ 
〈
un – Snn(modN)un, v – Snn(modN)v

〉
.

Taking v = p, we have

∥∥Snn(modN)un – p
∥∥ ≤ ‖un – p‖ + �

∥∥un – Snn(modN)un
∥∥.

http://www.journalofinequalitiesandapplications.com/content/2014/1/69
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Therefore we have

∥∥Snn(modN)un – p
∥∥ =

∥∥Snn(modN)un – un + un – p
∥∥

=
∥∥Snn(modN)un – un

∥∥ + 
〈
Snn(modN)un – un,un – p

〉
+ ‖un – p‖

≤ ‖un – p‖ + �
∥∥un – Snn(modN)un

∥∥.

Simplifying the above inequality, we have that

αn
〈
Snn(modN)un – un,un – p

〉 ≤ αn(� – )
∥∥un – Snn(modN)un

∥∥. (.)

It follows from (.) and (.) that

‖xn+ – p‖

≤ ‖un – p‖ + αn(� – )
∥∥un – Snn(modN)un

∥∥ + α
n
∥∥un – Snn(modN)un

∥∥

= ‖un – p‖ – αn( – � – αn)
∥∥un – Snn(modN)un

∥∥. (.)

On the other hand,

‖un – p‖ = ∥∥xn – p + γA∗(Tn
n(modN) – I

)
Axn

∥∥

= ‖xn – p‖ + γ
〈
xn – p,A∗(Tn

n(modN) – I
)
Axn

〉
+ γ ∥∥A∗(Tn

n(modN) – I
)
Axn

∥∥

= ‖xn – p‖ + γ
〈
xn – p,A∗(Tn

n(modN) – I
)
Axn

〉
+ γ 〈A∗(Tn

n(modN) – I
)
Axn,A∗(Tn

n(modN) – I
)
Axn

〉
= ‖xn – p‖ + γ

〈
xn – p,A∗(Tn

n(modN) – I
)
Axn

〉
+ γ 〈AA∗(Tn

n(modN) – I
)
Axn,

(
Tn
n(modN) – I

)
Axn

〉
≤ ‖xn – p‖ + γ

〈
xn – p,A∗(Tn

n(modN) – I
)
Axn

〉
+ γ ‖A‖∥∥(

Tn
n(modN) – I

)
Axn

∥∥. (.)

Since Ti is a κi-asymptotically strictly pseudo-nonspreading mapping and noting Ap ∈⋂N
i– F(Ti), we have

∥∥Tn
n(modN)Axn –Ap

∥∥ =
∥∥Tn

n(modN)Axn – Tn
n(modN)Ap

∥∥

≤ ‖Axn –Ap‖ + κ
∥∥Tn

n(modN)Axn –Axn
∥∥. (.)

Again since

∥∥Tn
n(modN)Axn –Ap

∥∥ =
∥∥Tn

n(modN)Axn –Axn +Axn –Ap
∥∥

=
∥∥Tn

n(modN)Axn –Axn
∥∥ + ‖Axn –Ap‖

+ 
〈
Tn
n(modN)Axn –Axn,Axn –Ap

〉
, (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/69
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hence from (.) and (.) we have that


〈
Tn
n(modN)Axn –Axn,Axn –Ap

〉 ≤ (κ – )
∥∥(
Tn
n(modN) – I

)
Axn

∥∥. (.)

By virtue of (.) we have

〈
Tn
n(modN)Axn –Axn,Tn

n(modN)Axn –Ap
〉

=
〈
Tn
n(modN)Axn –Axn,Tn

n(modN)Axn –Ap +Axn –Axn
〉

=
∥∥(
Tn
n(modN) – I

)
Axn

∥∥ +
〈
Tn
n(modN)Axn –Axn,Axn –Ap

〉
≤ ∥∥(

Tn
n(modN) – I

)
Axn

∥∥ +
κ – 


∥∥(
Tn
n(modN) – I

)
Axn

∥∥

=
κ + 


∥∥(
Tn
n(modN) – I

)
Axn

∥∥. (.)

It follows from (.) that

γ
〈
xn – p,A∗(Tn

n(modN) – I
)
Axn

〉
= γ

〈
A(xn – p),

(
Tn
n(modN) – I

)
Axn

〉
= γ

〈
A(xn – p) +

(
Tn
n(modN) – I

)
Axn –

(
Tn
n(modN) – I

)
Axn,

(
Tn
n(modN) – I

)
Axn

〉
= γ

〈
Tn
n(modN)Axn –Ap,

(
Tn
n(modN) – I

)
Axn

〉
– γ

∥∥(
Tn
n(modN) – I

)
Axn

∥∥

≤ [
γ ( + κ) – γ

]∥∥(
Tn
n(modN) – I

)
Axn

∥∥

= γ (κ – )
∥∥(
Tn
n(modN) – I

)
Axn

∥∥. (.)

Substituting (.) into (.) and then substituting the resulting inequality into (.), we
have

‖xn+ – p‖

≤ ‖xn – p‖ + γ ‖A‖∥∥(
Tn
n(modN) – I

)
Axn

∥∥ +
[
γ (κ – )

]∥∥(
Tn
n(modN) – I

)
Axn

∥∥

– αn( – κ – αn)
∥∥un – Snn(modN)un

∥∥

≤ ‖xn – p‖ – γ
(
 – κ – γ ‖A‖)∥∥(

Tn
n(modN) – I

)
Axn

∥∥

– αn( – κ – αn)
∥∥un – Snn(modN)un

∥∥

≤ ‖xn – p‖. (.)

This shows that the limit limn→∞ ‖xn – p‖ exists.
(II) Now we prove that the limit limn→∞ ‖un – p‖ exists.
By (.) we have

γ
(
 – κ – γ ‖A‖)∥∥(

Tn
n(modN) – I

)
Axn

∥∥ + αn( – κ – αn)
∥∥un – Snn(modN)un

∥∥

≤ ‖xn – p‖ – ‖xn+ – p‖.
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This implies that

lim
n→∞

∥∥(
Tn
n(modN) – I

)
Axn

∥∥ = , (.)

and

lim
n→∞

∥∥un – Snn(modN)un
∥∥ = . (.)

It follows from (.), (.), and (.) that the limit limn→∞ ‖un – p‖ exists and

lim
n→∞‖xn – p‖ = lim

n→∞‖un – p‖.

(III) Now, we prove that limn→∞ ‖xn+ – xn‖ = , limn→∞ ‖un+ – un‖ = .
In fact, it follows from (.) that

‖xn+ – xn‖
=

∥∥( – αn)un + αnSnn(modN)un – xn
∥∥

=
∥∥( – αn)

(
xn + γA∗(Tn

n(modN) – I
)
Axn

)
+ αnSnn(modN)un – xn

∥∥
=

∥∥( – αn)
(
γA∗(Tn

n(modN) – I
)
Axn

)
+ αn

(
Snn(modN)un – xn

)∥∥
=

∥∥( – αn)
(
γA∗(Tn

n(modN) – I
)
Axn

)
+ αn

(
Snn(modN)un – un

)
+ αn(un – xn)

∥∥
=

∥∥( – αn)
(
γA∗(Tn

n(modN) – I
)
Axn

)
+ αn

(
Snn(modN)un – un

)
+ αnγA∗(Tn

n(modN) – I
)
Axn

∥∥
=

∥∥γA∗(Tn
n(modN) – I

)
Axn + αn

(
Snn(modN)un – un

)∥∥. (.)

This together with (.) and (.) shows that

lim
n→∞‖xn+ – xn‖ = . (.)

Similarly, it follows from (.), (.), and (.) that

‖un+ – un‖
=

∥∥xn+ + γA∗(Tn+
n+(modN) – I

)
Axn+ –

[
xn + γA∗(Tn

n(modN) – I
)
Axn

]∥∥
≤ ‖xn+ – xn‖ +

∥∥γA∗(Tn+
n+(modN) – I

)
Axn+

∥∥ +
∥∥γA∗(Tn

n(modN) – I
)
Axn

∥∥
→  (as n→ ∞). (.)

(IV) We prove that, for each j = , , . . . ,N ,

‖uiN+j – SjuiN+j‖ → , ‖AxiN+j – TjAxiN+j‖ →  (i→ ∞). (.)

In fact, it follows from (.) that

∥∥uiN+j – SiN+j
j uiN+j

∥∥ →  (i→ ∞). (.)
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Since Sj is uniformly Lj-Lipschitzian continuous, it follows from (.) and (.) that

‖uiN+j – SjuiN+j‖
≤ ∥∥uiN+j – SiN+j

j uiN+j
∥∥ +

∥∥SiN+j
j uiN+j – SjuiN+j

∥∥
≤ ∥∥uiN+j – SiN+j

j uiN+j
∥∥ + Lj

∥∥SiN+j–
j uiN+j – uiN+j

∥∥
≤ ∥∥uiN+j – SiN+j

j uiN+j
∥∥ + Lj

[∥∥SiN+j–
j uiN+j – SiN+j–

j uiN+j–
∥∥

+
∥∥SiN+j–

j uiN+j– – uiN+j
∥∥]

≤ ∥∥uiN+j – SiN+j
j uiN+j

∥∥ + Lj ‖uiN+j – uiN+j–‖
+ Lj

[∥∥SiN+j–
j uiN+j– – uiN+j–

∥∥ + ‖uiN+j– – uiN+j‖
]

→  (as n→ ∞).

Similarly, we can prove that for each i = , , . . . ,N ,

∥∥AxiN+j – TiN+j
j AxiN+j

∥∥ →  (i→ ∞). (.)

Since Tj is uniformly L̃j-Lipschitzian continuous, in the same way as above, we can also
prove that

‖AxiN+j – TjAxiN+j‖ →  (as i → ∞).

(V) Finally, we prove that xn ⇀ x∗, un ⇀ x∗, and it is a solution of problem (MSSFP)
(.).
In fact, since {un} is bounded, there exists a subsequence {uni} ⊂ {un} such that uni ⇀

x∗ ∈H. Hence, for any positive integer j = , , . . . ,N , there exists a subsequence ni(j) ⊂ ni
with ni(j)modN = j such that uni(j) ⇀ x∗. Again from (.) we have that

‖uni(j) – Sjuni(j)‖ → , ni(j) → ∞. (.)

Since Sj is demiclosed at zero, it follows that x∗ ∈ F(Sj). By the arbitrariness of j = , , . . . ,N ,
we have

x∗ ∈ C :=
N⋂
i=

F(Si).

Moreover, from (.) and (.) we have xni = uni – γA∗(Tni
ni(modN) – I)Axni ⇀ x∗. Since

A is a linear bounded operator, it follows that Axni ⇀ Ax∗. For any positive integer k =
, , . . . ,N , there exists a subsequence xni(k) ⊂ xni with ni(k)(modN) = k such thatAxni(k) ⇀
Ax∗ and ‖Axni(k) – TkAxni(k)‖ → . Since Tk is demiclosed at zero, we have Ax∗ ∈ F(Tk).
By the arbitrariness of k, it follows that Ax∗ ∈ Q :=

⋂N
k= F(Tk). This together with x∗ ∈ C

shows that x∗ ∈ �, that is, x∗ is a solution to the problem (MSSFP) (.).
Next we prove that xn ⇀ x∗ and un ⇀ x∗.
In fact, assume that there exists another subsequence unl ⊂ un such that unl ⇀ y∗ ∈ �

with y∗ = x∗. Consequently, by virtue of the existence of limn→∞ ‖xn – p‖ and the Opial
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property of a Hilbert space, we have

lim inf
ni→∞

∥∥uni – x∗∥∥ < lim inf
ni→∞

∥∥uni – y∗∥∥
= lim inf

n→∞
∥∥un – y∗∥∥ lim inf

nj→∞
∥∥unj – y∗∥∥

< lim inf
nj→∞

∥∥unj – x∗∥∥ = lim inf
n→∞

∥∥un – x∗∥∥
= lim inf

ni→∞
∥∥uni – x∗∥∥.

This is a contradiction. Therefore, un ⇀ x∗. By (.) and (.), we have

xn = un – γA∗(Tn
n(modN) – I

)
Axn ⇀ x∗.

This completes the proof of Theorem .. �

Theorem . Let H, H, A, {Si}, {Ti}, C, Q be the same as in Theorem .. For each
i = , , . . . ,N , let Ti be a uniformly L̃i-Lipschitzian and κi-asymptotically strictly pseudo-
nonspreading mapping, Si be a uniformly Li-Lipschitzian and �i-asymptotically strictly
pseudo-nonspreading mapping. Let {xn} be the sequence generated by

⎧⎪⎨
⎪⎩
x ∈H chosen arbitrarily,
un = xn + γA∗(Tn

n(modN) – I)Axn,
xn+ = ( – αn)un + αnSnn(modN)un,

where γ is a constant and γ ∈ (, –κ
λ
), λ is the spectral of the operator A∗A, κ =

max{κ,κ, . . . ,κN } and {αn} is a sequence in (,  – �] with � =max{�,�, . . . ,�N }. If � = ∅
and if there exists a positive integer j such that Sj is semicompact, then the sequence {xn}
converges strongly to a point x∗ ∈ �.

Proof Without loss of generality, we can assume that S is semicompact. It follows from
(.) that

‖uni() – Suni()‖ → , ni() → ∞.

Therefore, there exists a subsequence of {uni()}, which (for the sake of convenience) we
still denote by {uni()}, such that uni() → u∗ ∈H. Since uni() ⇀ x∗, x∗ = u∗, and so uni() →
x∗ ∈ �. By virtue of limn→∞ ‖xn – p‖ exists, we know that

lim
n→∞

∥∥un – x∗∥∥ = , lim
n→∞

∥∥xn – x∗∥∥ = ,

that is, {un} and {xn} both converge strongly to the point x∗ ∈ �. This completes the proof
of Theorem .. �

4 Applications
In this section we shall utilize the results presented in Section  to study the hierarchical
variational inequality problem.
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Let H be a real Hilbert space, Si, i = , , . . . ,N , be uniformly Li-Lipschitzian and �i-
asymptotically strictly pseudo-nonspreading mappings with F :=

⋂∞
i= F(Si) = ∅. Let T :

H → H be a nonspreading mapping. The so-called hierarchical variational inequality
problem for a finite family of mappings {Si} with respect to the mapping T is to find an
x∗ ∈ F such that

〈
x∗ – Tx∗,x∗ – x

〉 ≤ , ∀x ∈ F . (.)

It is easy to see that (.) is equivalent to the following fixed point problem:

find x∗ ∈ F such that x∗ = PF Tx∗, (.)

where PF is the metric projection from H onto F . Letting C = F and Q = F(PF T) (the
fixed point set of PF T ) and A = I (the identity mapping onH), problem (.) is equivalent
to the followingmulti-set split feasibility problem:

find x∗ ∈ C such that x∗ ∈Q. (.)

Hence from Theorem . we have the following theorem.

Theorem . Let H , {Si}, T , C, Q be the same as above. Let {xn}, {un} be the sequences
defined by

⎧⎪⎪⎨
⎪⎪⎩
x ∈H chosen arbitrarily,

un = xn + γ (T – I)xn, n≥ ,

xn+ = ( – αn)un + αnSnn(modN)un,

(.)

where γ is a constant and γ ∈ (, ), and {αn} is a sequence in (,  – �] with � =
max{�,�, . . . ,�N }. If � = ∅, then {xn} converges weakly to a solution of hierarchical varia-
tional inequality problem (.).

Proof In fact, by the assumption thatT is a nonspreadingmapping,T is κ-strictly pseudo-
nonspreading with κ = . Taking N =  and A = I in Theorem ., by the same method as
that given in Theorem ., we can prove that {xn} converges weakly to a point x∗ ∈ �,
which is a solution of hierarchical variational inequality problem (.) immediately. �
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