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Abstract
In this paper we establish atomic decompositions of some weak Orlicz-Lorentz
martingale spaces which are generalization of Orlicz martingale spaces and of Lorentz
martingale spaces. With the help of atomic decompositions, the boundedness of
sublinear operators is obtained.
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1 Introduction and preliminaries
The idea of atomic decomposition in martingale theory is derived from harmonic anal-
ysis []. Just as it does in harmonic analysis, the method is a key ingredient in dealing
with many problems including martingale inequalities, duality, interpolation, and so on,
especially for small-index martingale and multi-parameter martingales. As is well known,
Weisz [] gave some atomic decompositions onmartingaleHardy spaces and provedmany
important theorems by atomic decompositions; Weisz [] made a further study of atomic
decompositions forweakHardy spaces consisting of Vilenkinmartingales, and he proved a
weak version of the Hardy-Littlewood inequality; Liu and Hou [] investigated the atomic
decompositions for vector-valued martingales and some geometry properties of Banach
spaces were characterized; Hou and Ren [] considered the vector-valuedweak atomic de-
compositions and weak martingale inequalities. Orlicz Hardy martingale spaces are also
studied by some authors such as Miyamoto, Nakai, Sadasue and Jiao [–]. At the same
time, the Lorentz spaces are discussed (see [–]). For example, the atomic decomposi-
tions of Lorentz martingales are first studied by Jiao et al. in [], and in  Ho investi-
gated the atomic decomposition of Lorentz-Karamata martingale spaces similarly to the
idea of []. As the generalization of Orlicz and Lorentz spaces, the Orlicz-Lorentz spaces
attract more attention.Montgomery-Smith [] discuss the comparison of Orlicz-Lorentz
spaces. Rajeev and Romesh [] studied composition operators on Orlicz-Lorentz spaces.
Echandia [] discussed the interpolation of Orlicz-Lorentz spaces.
Let (�,�,μ) be a measure space, L(μ) be a space of all �-measurable functions. Let

there be given an Orlicz function ϕ : [,∞) → [,∞) (i.e., it is a convex function and
takes value zero only at zero) and a weight function ω : (,∞) → (,∞) (i.e., it is a non-
increasing function and locally integrable and

∫ ∞
 ω(x)dx =∞). The Orlicz-Lorentz space
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�ϕ,ω on (�,�,μ) is the set of all functions f (x) ∈ L(μ) such that

∫ ∞


ϕ
(
λf ∗(x)

)
ω(x)dx < ∞ (.)

for some λ > , where f ∗ is the non-increasing rearrangement of f defined by

f ∗(t) = inf
{
s >  : df (s) ≤ t

}
.

We shall not work with this definition of the Orlicz-Lorentz space, however, but with
a different, equivalent definition. A Young function F is an even continuous and non-
negative function in R, increasing on (,∞), such that limt→+ F(t) = , limt→∞ F(t) = ∞,
F(t) =  iff t = . A Young function F is said to satisfy the global �-condition if there is
c >  such that F(t) ≤ cF(t) for all t ∈ R. We define F̃(t) to be /F(/t) if t >  and  if
t = .
We define the Orlicz-Lorentz space LF ,G as the set of all measurable f ’s on � for which

the Orlicz-Lorentz functional

‖f ‖F ,G =
∥∥f ∗ ◦ F̃ ◦ G̃–∥∥

G = inf

{
λ :

∫ ∞


G

(
f ∗(F̃(G̃–(t)))

λ

)
dt ≤ 

}

is finite.
Similarly, by means of the weak Orlicz-Lorentz functional

‖f ‖F ,∞ = sup
t≥

F̃–(t)f ∗(t),

we define the Orlicz-Lorentz space LF ,∞.

Remark . By the fact supt> tsf ∗(t) = supt> t(df (t))s, we have ‖f ‖F ,∞ = supt≥ tF̃–(df (t)).
We see that LF ,F = LF , where LF is Orlicz space, and that if F(t) = tp and G(t) = tq, then
LF ,G = Lp,q. If A is any measurable set, then ‖χA‖F ,G = ‖χA‖F ,∞ = ‖χA‖F = F̃–(μ(A)).

Let (�,�,P) be a complete probability space, and (�n)n≥ a non-decreasing sequence
of sub-σ -algebras of � with � = σ (

⋃
n≥ �n). We denote by E and En the expectation and

conditional expectationwith respect to� and�n, respectively. For amartingale f = (fn)n≥

with martingale differences dfn = fn – fn–, n≥ , f– ≡ , denote

Mnf = sup
n

|fn|, Sn(f ) =

( n∑
k=

|dfk|
)/

, σn(f ) =

( n∑
k=

Ek–|dfk|
)/

,

Mf = lim
n→∞Mnf , S(f ) = lim

n→∞Sn(f ), σ (f ) = lim
n→∞σn(f ).

Denote by � the collection of all sequences (λn)n≥ of non-decreasing, non-negative and
adapted functions and set λ∞ = limn→∞ λn. Thus we can define someweakOrlicz-Lorentz
martingale spaces as follows:

Hσ
F ,∞ =

{
f = (fn) :

∥∥σ (f )
∥∥
F ,∞ < ∞}

,

QF ,∞ =
{
f = (fn) : ∃(λn)n≥ ∈ �, s.t. Sn(f ) ≤ λn–,λ∞ ∈ LF ,∞

}
,
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‖f ‖QF ,∞ = inf
(λn)∈�

‖λ∞‖LF ,∞ ,

DF ,∞ =
{
f = (fn) : ∃(λn)n≥ ∈ �, s.t. |fn| ≤ λn–,λ∞ ∈ LF ,∞

}
,

‖f ‖DF ,∞ = inf
(λn)∈�

‖λ∞‖LF ,∞ .

Definition . A measurable function a is called a weak atom of the first category (or of
the second category, of the third category, respectively) if there exists a stopping time ν

(ν is called the stopping time associated with a) such that
(i) an = Ena =  if ν ≥ n;
(ii) ‖σ (a)‖∞ < ∞ (or (ii) ‖S(a)‖∞ < ∞, (ii) ‖Ma‖∞ < ∞, respectively).

These three category weak atoms are briefly called w--atom, w--atom, and w--atom,
respectively.

Throughout this article, we denote the set of integers and the set of non-negative integers
by Z andN, respectively.We use c to denote constants andmay denote different constants
at different occurrences.

2 Weak atomic decompositions
Weak atomic decompositions of some weak martingale Hardy spaces were studied in
[, ]. In this section, we will consider weak atomic decompositions of some weak Orlicz-
Lorentz martingale spaces.

Theorem. Let F– ∈ �.Then f = (fn) ∈Hσ
F ,∞ if and only if there exist a sequence (ak)k∈Z

of w--atoms and the corresponding stopping times (τk)k∈Z such that
() fn =

∑
k∈Z Enak ;

() σ (ak)≤ A · k , ∀k ∈ Z for some constant A > , and supk∈Z kF̃–(P(τk < ∞)) < ∞.
Moreover the following equivalence of norms holds:

‖f ‖Hσ
F ,∞ ∼ inf sup

k∈Z
kF̃–(P(τk < ∞)

)
, (.)

where the infimum is taken over all the preceding decompositions of f .

Proof Assume f = (fn,n ∈ N) ∈ Hσ
F ,∞. Let us consider the following stopping time for all

k ∈ Z:

τk = inf
{
n ∈N,σn+(f ) > k

}
, inf(∅) = ∞.

Then the sequence of these stopping times is non-decreasing and τk ↑ ∞. Let f (τk ) =
(f(τk∧n),n ∈ N) be the stopping martingale. It is easy to see that

fn =
∑
k∈Z

(
f (τk+)n – f (τk )n

)
. (.)

Now let akn = f (τk+)n – f (τk )n . Then for a fixed k ∈N (akn, n ∈N) is a martingale and

σ
(
ak

)
=

( ∞∑
i=

Ei–
∣∣daki ∣∣

)/

≤ (
σ
(
f τk+

)
+ σ

(
f τk

)) ≤  · k , ∀n. (.)
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Thus ‖M(ak)‖ ≤ c‖σ (ak)‖ < ∞ and (akn)n≥ is L bounded. So there exists an integrable
function ak such that akn = Enak . If n ≤ τk , then Enak = , so we get ak is really a w--atom.
Moreover, we have

fn =
∑
k∈Z

(
f (τk+)n – f (τk )n

)
=

∑
k∈Z

akn =
∑
k∈Z

Enak . (.)

Hence we get (). As {τk < ∞} = {σ (f ) > k} for any k ∈ Z, we have

kF̃–(P(τk < ∞)
)
= kF̃–(P(

σ (f ) > k
))

≤ sup
t>

tF̃–(P(
σ (f ) > t

))
= ‖f ‖Hσ

F ,∞ , (.)

which implies supk∈Z kF̃–(P(τk < ∞))≤ ‖f ‖Hσ
F ,∞ < ∞.

Conversely, assume that f = (fn)n≥ has a decomposition of the form (). Let M =
supk∈Z kF̃–(P(τk < ∞)). For any fixed y >  choose j ∈ Z such that j ≤ y < j+.
Let

fn =
∑
k∈Z

Enak =
j–∑
k=∞

Enak +
∞∑
k=j

Enak =: gn + hn, ∀n ∈N.

Thus by the fact that σ (f ) ≤ σ (g) + σ (h), we have

P
(
σ (f ) > Ay

) ≤ P
(
σ (g) > Ay

)
+ P

(
σ (h) > Ay

)
.

Since σ (ak)≤ A · k , ∀k ∈ Z, we have

σ (g)≤
j–∑
k=∞

σ
(
ak

) ≤ A
j–∑
k=∞

k ≤ Aj. (.)

Then P(σ (g) > Ay) ≤ P(σ (g) > Aj) = .
On the other hand, since akn = En(ak) =  if n ≤ τk , thus σ (ak) =  on the set {τk = ∞}.

Moreover σ (h) ≤ ∑∞
k=j σ (ak) and {σ (h) > } ⊂ ⋃∞

k=j{τk < ∞}. Since F– ∈ �, then F̃– =
˜F– ∈ �. Moreover F̃– is c-subadditive, i.e.,

F̃–(t + t) ≤ c
(
F̃–(t) + F̃–(t)

)
, ∀t, t > . (.)

Consequently,

F̃–(P(
σ (f ) > Ay

)) ≤ F̃–(P(
σ (h) > Ay

)) ≤ F̃–(P(
σ (h) > 

))
≤

∞∑
k=j

cF̃–(P(τk < ∞)
) ≤

∞∑
k=j

cM–k ≤ cM–j– ≤ cMy–, (.)

which implies

‖f ‖Hσ
F ,∞ = sup

y>
AyF̃–(P(

σ (f ) > Ay
)) ≤ c sup

k∈Z
kF̃–(P(τk <∞)

)
. (.)

We combine (.) and (.) to obtain (.). Thus we prove Theorem .. �
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Theorems similar to Theorem . hold for the spacesQF ,∞ and DF ,∞.

Theorem . Let F– ∈ �. Then f = (fn) ∈ QF ,∞ if and only if there exist a sequence
(ak)k∈Z of w--atoms and the corresponding stopping times (τk)k∈Z such that
() fn =

∑
k∈Z Enak ;

() S(ak) ≤ A · k , ∀k ∈ Z for some constant A > , and supk∈Z kF̃–(P(τk < ∞)) <∞.
Moreover the following equivalence of norms holds:

‖f ‖QF ,∞ ∼ inf sup
k∈Z

kF̃–(P(τk < ∞)
)
, (.)

where the infimum is taken over all the preceding decompositions of f .

Theorem . Let F– ∈ �. Then f = (fn) ∈ DF ,∞ if and only if there exist a sequence
(ak)k∈Z of w--atoms and the corresponding stopping times (τk)k∈Z such that
() fn =

∑
k∈Z Enak ;

() M(ak) ≤ A · k , ∀k ∈ Z for some constant A > , and supk∈Z kF̃–(P(τk <∞)) <∞.
Moreover the following equivalence of norms holds:

‖f ‖DF ,∞ ∼ inf sup
k∈Z

kF̃–(P(τk < ∞)
)
, (.)

where the infimum is taken over all the preceding decompositions of f .

We sketch the proofs of Theorem . and Theorem . and omit the details since they
are similar to that of Theorem .. Let τk = inf{n ∈N : λn > k} in these cases where (λn)n≥

is the sequence in the definitions of QF ,∞ and DF ,∞, respectively. Let ak be defined as in
the proof of Theorem .. Equation () and the analogs of (.) can be proved in the same
way as in Theorem .. For the converse parts of the proof of Theorem . assume that
f = (fn)n≥ has a decomposition of the form () and let λn =

∑
k∈Z χ{τk≤n}‖S(ak)‖∞. Then

(λn)n≥ is a non-negative, non-decreasing and adapted sequence with Sn+(f )≤ λn. For any
fixed y >  choose j ∈ Z such that j ≤ y < j+, then λ∞ = λ

()∞ + λ
()∞ with

λ()
∞ =

j–∑
k=–∞

χ{τk<∞}
∥∥S(ak)∥∥∞, λ()

∞ =
∞∑
k=j

χ{τk<∞}
∥∥S(ak)∥∥∞.

Similarly to the argument of (.) (replacing σ (g) and σ (h) by λ
()∞ and λ

()∞ , respectively)
we have

F̃–(P(λ∞ > Ay)
) ≤ F̃–(P(

λ()
∞ > Ay

)) ≤ F̃–(P(
λ()

∞ > 
))

≤
∞∑
k=j

cF̃–(P(τk <∞)
) ≤

∞∑
k=j

cM–k ≤ cM–j– ≤ cMy–. (.)

It follows that ‖f ‖QF ,∞ ≤ c supk∈Z kF̃–(P(τk < ∞)), which shows that f ∈QF ,∞ and (.)
holds. As for the converse parts of the proof of Theorem . we let

λn =
∑
k∈Z

χ{τk≤n}
∥∥M(

ak
)∥∥∞.
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3 Sublinear operators on weak Orlicz-Lorentz martingale spaces
As one of the applications of the atomic decompositions, we shall obtain a sufficient con-
dition for a sublinear operator to be bounded fromweakOrlicz-Lorentzmartingale spaces
to weak Orlicz-Lorentz function spaces.
An operator T : X → Y is called a sublinear operator if it satisfies |T(f + g)| ≤ |Tf |+ |Tg|,

|T(αf )| ≤ |α||Tf |, where X is a martingale space, Y is a measurable function space. In this
paper, we will add some restrictions to the function F .

Definition . A strict concave function F is said to obey the �-condition written often
as F ∈ �, if there exists a positive constant b such that F(xy)≤ bF(x)F(y) for arbitrary x, y ∈
R+; and it obeys the �-condition denoted symbolically as f ∈ �, if there exists a positive
constant B such that F(x)F(y)≤ F(Bxy) for arbitrary x, y ∈ R+, where B ≥  (see []).
Here we should notice that:
() Any strict concave function F ∈ � since F(x)≤ F(x), ∀x > ;
() Not only the power function F ∈ �, for example F(x) = x/ ln( + ex+).

Proof By the definition of F(x), we have F ′(x) =
ln(+ex+)–x ex+

+ex+
(ln(+ex+)) . Thus we have

 < sup
x>

xF ′(x)
F(x)

= sup
x>

 –
x

ln( + ex+)
ex+

 + ex+
< ,

which means F(x) is a strict concave function. Now we will prove that F(xy) ≥ F(x)F(y),
∀x, y > . Since

 + exy+ ≤ (
 + ex+

)y+ < (
 + ex+

)ln(+ey+),
we have ln( + exy+) < ln( + ex+) ln( + ey+). Then F(xy) ≥ F(x)F(y), ∀x, y > . Thus we
complete the proof of (). �

Theorem . Let concave function F– ∈ � ∩ � and T : L(X) → L(Y ) be a bounded
sublinear operator. If

P
(|Ta| > 

) ≤ cP(τ < ∞) (.)

for all w--atom a, where τ is the stopping time associated with a, then

‖Tf ‖LF ,∞ ≤ c‖f ‖Hσ
F ,∞ .

Proof By Theorem ., f can be decomposed into the sum of a sequence of w--atoms
and σ (ak) ≤ Ak , ∀k ∈ Z for some constant A. For any fixed y >  choose j ∈ Z such that
j– ≤ y < j and let

fn =
∑
k∈Z

Enak =
j–∑

k=–∞
Enak +

∞∑
k=j

Enak := gn + hn.

http://www.journalofinequalitiesandapplications.com/content/2014/1/66
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Recall that σ (ak) =  on the set {τk =∞}, we have

‖g‖ ≤
j–∑

k=–∞

∥∥ak∥∥ ≤ c
j–∑

k=–∞

∥∥σ (a)
∥∥


= c
j–∑

k=–∞

(∫
{τk<∞}

σ
(
ak

) dP)/

≤ c
j–∑

k=–∞

∥∥σ
(
ak

)∥∥∞P(τk < ∞)/

≤ c
j–∑

k=–∞
kP(τk < ∞)/.

Since F– ∈ � ∩ �, we have for any x, y > 

F̃–(xy) = ˜F–(xy) =


F–( 
xy )

≥ 
bF–( x )F–( y )

≥ 
b
F̃–(x)F̃–(y), (.)

F̃–(xy) = ˜F–(xy) =


F–( 
xy )

≤ 
F–( 

Bx )F–( y )
≤ F̃–(Bx)F̃–(y) ≤ BF̃–(x)F̃–(y). (.)

It follows from the boundedness of T and that

F̃–(P(|Tg| > y
)) ≤ F̃–(y–‖Tg‖) ≤ F̃–(y–c‖g‖)

≤ cB
(
F̃–(y–‖g‖)) ≤ cB

(
F̃–

(
y–

j–∑
k=∞

kP(τk <∞)/
))

≤ cB

( j–∑
k=∞

y–kF̃–(P(τk < ∞)/
))

≤ cB

( j–∑
k=∞

y–k/k/F̃–(P(τk <∞)/
))

≤ cB
(
y–/‖f ‖/Hσ

F ,∞

)
≤ cy–‖f ‖Hσ

F ,∞ ,

which implies

‖Tg‖LF ,∞ ≤ c‖f ‖Hσ
F ,∞ . (.)

On the other hand, by the assumption (.) we have

yF̃–(P(|Th| > y
)) ≤ yF̃–(P(|Th| > 

))
≤ yF̃–

( ∞∑
k=j

P
(∣∣Tak∣∣ > 

)) ≤ cy
∞∑
k=j

–kkF̃–(P(τ < ∞)
)

≤ cy–j‖f ‖Hσ
F ,∞ ≤ c‖f ‖Hσ

F ,∞ ,

http://www.journalofinequalitiesandapplications.com/content/2014/1/66
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which implies

‖Th‖LF ,∞ ≤ c‖f ‖Hσ
F ,∞ . (.)

By (.) and (.),

‖Tf ‖LF ,∞ ≤ c
(‖Tg‖LF ,∞ + ‖Th‖LF ,∞

) ≤ c‖f ‖Hσ
F ,∞ .

Thus we complete the proof. �

Similarly to the proof of Theorem ., we can prove the following two theorems. In the
proof we need Theorem . and Theorem . instead of Theorem ., respectively. Here
we only give the two theorems and omit the proofs

Theorem . Let the concave function F– ∈ � ∩ � and T : L(X) → L(Y ) be a bounded
sublinear operator. If

P
(|Ta| > 

) ≤ cP(τ < ∞) (.)

for all w--atom a, where τ is the stopping time associated with a, then

‖Tf ‖LF ,∞ ≤ c‖f ‖QF ,∞ .

Theorem . Let concave function F– ∈ � ∩ � and T : L(X) → L(Y ) be a bounded
sublinear operator. If

P
(|Ta| > 

) ≤ cP(τ < ∞) (.)

for all w--atom a, where τ is the stopping time associated with a, then

‖Tf ‖LF ,∞ ≤ c‖f ‖DF ,∞ .
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