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Abstract
Given α ∈ [0, 1], let gα (z) := z/(1 – αz)2, z ∈D := {z ∈C : |z| < 1}. An analytic standardly
normalized function f in D is called close-to-convex with respect to gα if there exists
δ ∈ (–π /2,π /2) such that

Re
{
eiδ

zf ′(z)
gα (z)

}
> 0, z ∈ D.

For the class C(gα ) of all close-to-convex functions with respect to gα , the
Fekete-Szegö problem is studied.
MSC: Primary 30C45
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functions with respect to the Koebe function; close-to-convex functions with
argument δ; functions convex in the positive direction of the imaginary axis

1 Introduction
The classical problem settled by Fekete and Szegö [] is to find for each λ ∈ [, ] the max-
imum value of the coefficient functional

�λ(f ) :=
∣∣a – λa

∣∣
over the class S of univalent functions f in the unit disk D := {z ∈C : |z| < } of the form

f (z) = z +
∞∑
n=

anzn, z ∈ D. (.)

By applying the Loewner method they proved that

max
f∈S

�λ(f ) =

⎧⎨
⎩ +  exp(–λ/( – λ)), λ ∈ [, ),

, λ = .
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The problem of calculating maxf∈F �λ(f ) for various compact subclasses F of the class
A of all analytic functions f in D of the form (.), as well as for λ being an arbitrary real
or complex number, was considered by many authors (see, e.g., [–]).
Let S∗ denote the class of starlike functions, i.e., the class of all functions f ∈ A such

that

Re
zf ′(z)
f (z)

> , z ∈D. (.)

Given δ ∈ (–π/,π/) and g ∈ S∗, let Cδ(g) denote the class of functions called close-to-
convex with argument δ with respect to g , i.e., the class of all functions f ∈A such that

Re

{
eiδ

zf ′(z)
g(z)

}
> , z ∈D. (.)

Let

C(g) :=
⋃

δ∈(–π/,π/)

Cδ(g), Cδ :=
⋃
g∈S∗

Cδ(g)

denote the classes of functions called close-to-convex with respect to g and close-to-convex
with argument δ, respectively, and let

C :=
⋃

δ∈(–π/,π/)

Cδ =
⋃

δ∈(–π/,π/)

⋃
g∈S∗

Cδ(g)

denote the class of close-to-convex functions (see [, pp.-], [, ]). It is well known
that S∗ and C are the subclasses of S .
By using a specific starlike function g , inequality (.) defines the related class Cδ(g).

Given α ∈ [, ], let

gα(z) :=
z

( – αz)
=

∞∑
n=

nαn–zn, z ∈D. (.)

It is easy to check that each gα satisfies (.), i.e., gα ∈ S∗ for every α ∈ [, ]. Then (.) is
of the form

Re
{
eiδ( – αz)f ′(z)

}
> , z ∈D, (.)

and defines the class Cδ(gα), and further the class C(gα). Such classes of functions were
studied in [, ] and [], where some generalization of the Robertson condition for
convexity in one direction [] was discussed.
Note that for α :=  we get the Koebe function g =: k. Then condition (.) defines the

class Cδ(k) and further the class C(k) of functions close-to-convex with respect to the Koebe
function. Such functions have a well-known geometrical meaning, namely condition (.)
geometrically says that the function h := eiδf has the boundary normalization

lim
t→∞h–

(
h(z) + t

)
= 

http://www.journalofinequalitiesandapplications.com/content/2014/1/65


Kowalczyk and Lecko Journal of Inequalities and Applications 2014, 2014:65 Page 3 of 16
http://www.journalofinequalitiesandapplications.com/content/2014/1/65

and h(D) is a domain such that {w + t : t ≥ } ⊂ h(D) for every w ∈ h(D). Such functions
h, clearly univalent as close-to-convex, and domains h(D) are called convex in the positive
(negative) direction of the real axis and are related to functions convex in the direction of
the imaginary axis (see, e.g., [–], [, Chapter VI], []).
For α :=  we have the identity function g(z) = z, z ∈ D, and then condition (.) is of

the form

Re
{
eiδf ′(z)

}
> , z ∈D. (.)

Functions f having such a property are called of bounded turning with argument δ and
form the class Cδ(g) denoted usually asP ′(δ). Functions in the classP ′ := C(g) are usually
called of bounded turning (cf. [, Vol. I, p.]). On the other hand, condition (.) is
known as the famous criterium of univalence due to Noshiro [] and Warschawski []
(cf. [, Vol. I, p.]). In this way condition (.) creates a simple parametric passage from
the class P ′(δ) to the class Cδ(k).
The main goal of this paper is to study the Fekete-Szegö problem for the classes C(gα),

α ∈ [, ]. For the class C(k), i.e., for α = , the Fekete-Szegö problemwas examined in [],
where it was shown that

max
f∈C(k)

�λ(f ) ≤
⎧⎨
⎩| – λ|, λ ∈ (–∞, /]∪ [, +∞),


 · (–λ)

–|–λ| + | – λ| + 
 , λ ∈ [/, ],

with sharpness of the result for λ ∈ R \ (/, ). Recall here that in [] Keogh and Merkes
proved that

max
f∈C

�λ(f ) =

⎧⎪⎪⎨
⎪⎪⎩

| – λ|, λ ∈ (–∞, /]∪ [, +∞),

/ + /(λ), λ ∈ [/, /],

, λ ∈ [/, ].

For λ ∈ [, ] Koepf in [] extended the above result for the class of close-to-convex func-
tions showing that

max
f∈C

�λ(f ) =max
f∈C

�λ(f ).

For other results on the Fekete-Szegö problem for various subclasses of close-to-convex
functions, particularly for strongly close-to-convex functions, see [–] and [].
For the class P ′ and λ ∈ [, ], we get the following sharp result published, among other

results, in [, Theorem .], namely

max
f∈P ′ �λ(f ) =



.

2 Main result
By P we denote the class of all analytic functions p in D of the form

p(z) =  +
∞∑
n=

cnzn, z ∈D, (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/65


Kowalczyk and Lecko Journal of Inequalities and Applications 2014, 2014:65 Page 4 of 16
http://www.journalofinequalitiesandapplications.com/content/2014/1/65

having a positive real part in D. For each ε ∈ T := {z ∈ C : |z| = }, let

Lε(z) :=
 + εz
 – εz

, z ∈D,L := L.

Inequalities (.) and (.) below are well known (see, e.g., [, pp., ]).

Lemma . If p ∈P is of the form (.), then

|cn| ≤ , n ∈N, (.)

and

∣∣∣∣c – c


∣∣∣∣ ≤  –
|c|


. (.)

Both inequalities are sharp. The equality in (.) holds for every function Lε , ε ∈ T. The
equality in (.) holds for every function

pt,θ (z) := tL
(
eiθz

)
+ ( – t)L

(
eiθz

)
=  + teiθz + eiθz + · · · , z ∈ D, (.)

where t ∈ [, ] and θ ∈ R.

Now we prove the main theorem of this paper. The source of the method of proof is
in Koepf ’s paper [], where the upper bound of �λ for close-to-convex functions with λ

restricted to the interval (/, /) was calculated. However, wemodify this technique and
use it homogeneously for the class C(gα) for all real λ, partially analogously as in [] for
the class C(k), and in []. We apply also the powerful Laguerre’s rule of counting zeros of
polynomials in an interval. We propose Laguerre’s algorithm for such a computation by
its simplicity, usefulness and efficiency.
We shortly recall Laguerre’s rule of counting zeros of polynomials in an interval (see [,

], [, pp.-]). Given a real polynomial

Q(u) = aun + aun– + · · · + an–u + an, (.)

consider a finite sequence (qk), k = , , . . . ,n, of polynomials of the form

qk(u) =
k∑
j=

ajuk–j. (.)

For each u ∈R, let N(Q;u) denote the number of sign changes in the sequence (qk(u)),
k = , , . . . ,n. Given an interval I ⊂ R, denote by Z(Q; I) the number of zeros of Q in I
counted with their orders. Then the following theorem due to Laguerre holds.

Theorem . If a < b, Q(a) �=  and Q(b) �= , then Z(Q; (a,b)) = N(Q;a) – N(Q;b) or
N(Q;a) –N(Q;b) – Z(Q; (a,b)) is an even positive integer.

http://www.journalofinequalitiesandapplications.com/content/2014/1/65
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Note that qk() = ak and qk() =
∑k

j= aj. Thus, when (a,b) := (, ), Theorem . reduces
to the following useful corollary.

Corollary . If Q() �=  and Q() �= , then Z(Q; (, )) = N(Q; ) –N(Q; ) or N(Q; ) –
N(Q; ) –Z(Q; (, )) is an even positive integer,where N(Q; ) and N(Q; ) are the numbers
of sign changes in the sequence of polynomial coefficients (ak) and in the sequence of sums
(
∑k

j= aj), with k = , , . . . ,n, respectively.

The main theorem of the paper is as follows.

Theorem . Let α ∈ [, ]. Then

max
f∈C(gα )

�λ(f )

≤
⎧⎨
⎩|  + 

α + α – ( + α)λ|, λ ∈R \ (τ(α), τ(α)),

 + α(  · (–λ)

–|–λ| + | – λ|), λ ∈ [τ(α), τ(α)],
(.)

where

τ(α) :=
α

( + α)
, τ(α) :=

( + α)
( + α)

.

For each α ∈ (, ] and each λ ∈R \ (/, τ(α)), as well as for α :=  and each λ ∈R, the
inequality is sharp and the equality is attained by a function in C(gα). In particular,
(i) when α ∈ (, ], for each λ ∈ [τ(α), /] the second equality in (.) is attained by the

function fα,tα,λ given by the differential equation

f ′
α,tα,λ (z) =

ptα,λ ,(z)
( – αz)

, fα,tα,λ () := , z ∈ D, (.)

where tα,λ := α(/(λ) – );
(ii) when α ∈ (, ], for each λ ∈ R \ (τ(α), τ(α)) the first equality in (.) is attained by

the function fα,, given by (.) with tα,λ ≡ , i.e., when α ∈ (, ), by the function

fα,(z) =


( – α)
log

 – αz
 – z

–
 + α

 – α
· z
 – αz

, z ∈ D, log  := , (.)

and when α = , by the Koebe function f, := k;
(iii)whenα = , for each λ ∈ [, /] the second equality in (.) is attained by the function

f,(z) := –z + log
 + z
 – z

, z ∈D, log  := ; (.)

and for each λ ∈ R \ (, /) the first equality in (.) is attained by the function

f,(z) := –z –  log( – z), z ∈D, log  := . (.)

Proof Fix α ∈ [, ]. Observe from (.) that f ∈ C(gα) if and only if

eiδ( – αz)f ′(z) = p(z) cos δ + i sin δ, z ∈D (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/65
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for some δ ∈ (–π/,π/) and p ∈P . Thus

zf ′(z) = e–iδgα(z)
(
p(z) cos δ + i sin δ

)
, z ∈D. (.)

Setting the series (.), (.) and (.) into (.), by comparing coefficients, we get

a =


(
ce–iδ cos δ + α

)
(.)

and

a =


(
ce–iδ cos δ + αce–iδ cos δ + α). (.)

Let λ ∈R. Using (.), from (.) and (.), we have

�λ(f ) =
∣∣a – λa

∣∣
=

∣∣∣∣ ce–iδ cos δ + 

αce–iδ cos δ + α

–



λ
(
ce

–iδ cos δ + αce–iδ cos δ + α)∣∣∣∣
=

∣∣∣∣α( – λ) +



(
c –

c


)
e–iδ cos δ

+
c


(
 –



λe–iδ cos δ

)
e–iδ cos δ + α

(


– λ

)
ce–iδ cos δ

∣∣∣∣
≤ α| – λ| + 



(
 –

|c|


)
cos δ

+
|c|


∣∣∣∣ – 

λe–iδ cos δ

∣∣∣∣ cos δ + α

∣∣∣∣ – λ

∣∣∣∣|c| cos δ
= α| – λ|

+
(


+

|c|


(√
 –

(
λ –




λ
)
cos δ – 

)
+ α

∣∣∣∣ – λ

∣∣∣∣|c|
)
cos δ. (.)

Set x := |c| and y := cos δ. Clearly, y ∈ (, ] and, in view of (.), x ∈ [, ]. It is convenient
to use γ :=  – λ instead of λ in further computation. For γ ∈R, let

sγ (y) :=

√
 –

(
 –




γ 
)
y, y ∈ [, ].

Set R := [, ]× [, ]. For α ∈ [, ] and γ ∈R, define

Fα,γ (x, y) :=


α| + γ | + 



(
 +

x


(
sγ (y) – 

)
+ α|γ |x

)
y, (x, y) ∈ R.

Consequently, in view of (.) we have

max
f∈C(gα )

�λ(f ) ≤ max
(x,y)∈R

Fα,γ (x, y).

http://www.journalofinequalitiesandapplications.com/content/2014/1/65
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Now, for each α ∈ [, ] and γ ∈R, we find themaximumvalue of Fα,γ on the rectangleR.
. In the corners of R we have

Fα,γ (, ) = Fα,γ (, ) =


α| + γ |, (.)

Fα,γ (, ) =


α| + γ | + 


, (.)

Fα,γ (, ) =


α| + γ | + 


( + α)|γ |. (.)

. For x =  and y ∈ (, ) we have a linear function and for x ∈ (, ) and y =  we have a
constant function.
. For x ∈ (, ) and y = , let

Gα,γ (x) := Fα,γ (x, ) =



(



(|γ | – 
)
x + α|γ |x + α| + γ | + 

)
.

For |γ | =  we get the linear functions, so let |γ | �= . Then G′
α,γ (x) =  if and only if

x =
α|γ |
 – |γ | =: xα,γ .

Thus xα,γ ∈ (, ) if and only if

α �= ∧  < |γ | < 
 + α

. (.)

Moreover, we have

Fα,γ (xα,γ , ) =



(
αγ 

 – |γ | + α| + γ | + 
)
. (.)

. For x =  and y ∈ (, ), let

Hα,γ (y) := Fα,γ (, y) =


(
α| + γ | + ysγ (y) + α|γ |y).

For |γ | =  we have the linear functions, evidently, so let |γ | �= . Note first that

sγ (y) > , y ∈ (, ). (.)

Taking into account (.), we have

ys′γ (y) =
–( – 

γ )y√
 – ( – 

γ )y
=
sγ (y) – 
sγ (y)

, y ∈ (, ). (.)

Using (.) we get

H ′
α,γ (y) =




(
sγ (y) +

sγ (y) – 
sγ (y)

+ α|γ |
)
= , y ∈ (, ) (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/65
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if and only if

sγ (y) + α|γ |sγ (y) –  = , y ∈ (, ),

i.e., in view of (.) if and only if

sγ (y) =
–α|γ | +√

 + αγ 


=: sα,γ , y ∈ (, ).

Since |γ | �= , so from the above we get the equation

y =
 – αγ  + α|γ |√ + αγ 

( – γ )
, y ∈ (, ). (.)

Thus the solution of equation (.), and hence of (.), exists if and only if

 <
 – αγ  + α|γ |√ + αγ 

( – γ )
< . (.)

Elementary computing shows that (.) holds if and only if

|γ | <
√


 + α

. (.)

Thus the function Hα,γ has a critical point in (, ), namely

y =

√
 – αγ  + α|γ |√αγ  + 

( – γ )
=: yα,γ ,

as the unique solution of (.), if and only if (.) holds. Moreover,

Fα,γ (, yα,γ ) =


α| + γ |

+



√
 – αγ  + α|γ |√ + αγ 

( – γ )
(√

 + αγ  + α|γ |). (.)

. We will prove that for each α ∈ [, ] and γ ∈R the function Fα,γ has no critical point
in (, )× (, ).
Since y �=  and x �= , we have

∂Fα,γ

∂x
= 

if and only if

sγ (y) =  –
α|γ |
x

, y ∈ (, ). (.)

Since x > , by comparing (.) and (.), we see that x > α|γ |. By a simple observation,
we deduce that the solution of (.) can exist only when

(
α = ∧ |γ | = 

) ∨ (
α �= ∧ γ �= ∧ |γ | �= ∧ x > α|γ |). (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/65
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Squaring then (.), we obtain

sγ (y) –  = –
α|γ |
x

+
αγ 

x
. (.)

Since by (.), sγ (y) �=  for y ∈ (, ), taking into account (.), we have

∂Fα,γ

∂y
=


+
x


(
sγ (y) – 

)
+


α|γ |x + x


· s


γ (y) – 
sγ (y)

.

Thus, by using (.) and (.), after simplifying we have

∂Fα,γ

∂y
= 

if and only if

α|γ |x – x + α|γ | = , x ∈ (, ). (.)

It follows at once that for α =  and γ ∈R, as well as for α ∈ (, ] and |γ | ≥ /α, equation
(.) has no root. Thus by (.) we consider

α �= ∧ |γ | �= ∧  < |γ | < /α ∧ x > α|γ |. (.)

Solving now (.), we have

x =
 – 

√
 – αγ 

α|γ | =: x;α,γ , x =
 + 

√
 – αγ 

α|γ | =: x;α,γ .

Clearly, x;α,γ /∈ (, ) and it remains to consider x;α,γ . It is easy to check that x;α,γ > α|γ |.
Thus setting x := x;α,γ into (.) and computing, we have

y =

α|γ |
x;α,γ

– αγ 

x;α,γ

 – 
γ 

=
( – αγ  – 

√
 – αγ )αγ 

( –
√
 – αγ )( – γ )

. (.)

A solution in (, ) of (.) exists if and only if

 <
( – αγ  – 

√
 – αγ )αγ 

( –
√
 – αγ )( – γ )

< . (.)

By (.) consider

α �= ∧ |γ | �= ∧  < |γ | < 
α
. (.)

We prove that then condition (.) is false.When  < |γ | < /α, then an easy computation
shows that the left-hand inequality in (.) is false. Thus by (.) it remains to consider

α �= ∧  < |γ | < 
α

≤ . (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/65
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By an easy computation we check that then the left-hand inequality in (.) holds. Since
 – γ  > , write the right-hand inequality in (.) as

(
 – 

(
 + α)γ )√ – αγ  <

(
α + α)γ  – 

(
 + α)γ  + .

The last step is to show, which does not cause difficulties, that under the assumption (.)
the above inequality is false. We omit the details.
Summarizing, we proved that condition (.) is false, so equation (.) has no solution

in (, ).
Thus the proof that for α ∈ [, ] and γ ∈ R the function Fα,γ has no critical point in

(, )× (, ) is finished.
. Now we calculate the maximum value of Fα,γ in R, which, as was shown, is attained

on the boundary of R. Let α ∈ [, ]. Taking into account Part  with (.) and Part  with
(.), we consider the following cases.
(A) |γ | ≥ /( + α). Then the maximum value of Fα,γ is attained in a corner of R. Thus

by (.)-(.) an easy computation shows that

max
(x,y)∈R

Fα,γ (x, y) = Fα,γ (, ) =


∣∣α + ( + α)γ

∣∣. (.)

(B)
√
/( + α)≤ |γ | < /(α + ). Then the maximum value of Fα,γ is attained in a corner

of R or in (xα,γ , ). Thus, by (.)-(.) and (.), we calculate that

max
(x,y)∈R

Fα,γ (x, y) = Fα,γ (xα,γ , ) =



· αγ 

 – |γ | +


α| + γ | + 


. (.)

(C) γ = . Then the maximum value of Fα, is attained in a corner of R or in the point
(, yα,) = (, /

√
). Thus, by (.)-(.) and (.) with γ := , we see that

max
(x,y)∈R

Fα,(x, y) = Fα,(, ) =


α +



. (.)

(D)  < |γ | < √
/(α + ). Then we compare all values (.)-(.), and by (.) and

(.), Fα,γ (xα,γ , ) and Fα,γ (, yα,γ ). We will show that the value Fα,γ (xα,γ , ) is the largest
one. As it is easy to observe, it is enough to prove that

Fα,γ (xα,γ , )≥ Fα,γ (, yα,γ ) (.)

i.e., in view of (.) and (.), after a simple computation, we have


(
 +

αγ 

 – |γ |
)

≥
√
 – αγ  + α|γ |√ + αγ 

( – γ )
(√

 + αγ  + α|γ |). (.)

As |γ | < , so squaring (.) and computing, we equivalently have

α|γ | + (
α – α)γ  +

(
α + 

)|γ | – (
α + 

)
γ  – |γ | + 

≥ α|γ |( – |γ |)(αγ  + 
)/. (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/65
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To verify that (.) holds, setting uα :=
√
/(α + ), we will show that for every α ∈ [, ]

we have

Qα(u) := αu +
(
α – α)u + (

α + 
)
u –

(
α + 

)
u – u + 

≥ αu( – u)
(
αu + 

)/ =: Sα(u), u ∈ [,uα]. (.)

(o) For α = , inequality (.) is evidently true.
(o) For α = , we have u =  and inequality (.) after computing is equivalent to the

evidently true inequality

(u – )
(
u + u + u – u + u + 

) ≥ , u ∈ [, ].

(o) Let α ∈ (, ). We will show that for u ∈ [,uα],

Vα(u) :=Q
α(u) – Sα(u) =

(
Qα(u) – Sα(u)

)(
Qα(u) + Sα(u)

)
> . (.)

Further, taking into account that Qα and Sα are continuous functions with

Qα() – Sα() =  > ,

from (.) we deduce that

Qα(u) – Sα(u) > , u ∈ [,uα],

which confirms (.) and further (.).
Now we prove that (.) holds, i.e., after computation we have

Vα(u) =
(
α – α)u + (

α – α + α)u
+

(
α – α – α)u + (

–α + α + α + 
)
u

+
(
α – α – 

)
u –

(
α + α + 

)
u

+
(
α + 

)
u –

(
α + 

)
u – u + 

> , u ∈ [,uα].

As in (.), let (qk), k = , , . . . , , be a sequence of polynomials of the form

qk(u) =
k∑
j=

ajuk–j, u ∈ [,uα],

corresponding to the polynomial Q := Vα in (.) for Laguerre’s rule in [,uα].
(a) First we check the signs of the elements of the sequence (qk()), i.e., of the sequence

(ak) for k = , , . . . , . A simple computation shows that for α ∈ (, ) we have q() < ,
q() > , q() < , q() > , q() < , q() < , q() > , q() < , q() <  and
q() > . Hence

N(Vα ; ) = , α ∈ (, ). (.)
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(b) Now we check the signs of the elements of the sequence (qk(uα)) for k = , , . . . , .
After the detailed computation and arguments based on Laguerre’s rule, we show that
q(uα) < , q(uα) > , q(uα) < , q(uα) > , q(uα) < , q(uα) > , q(uα) > , q(uα) < 
and q(uα) > .Moreover, we show that there exists a unique α ∈ (, ) such that q(uα ) =
 and q(uα) <  for α ∈ (,α) and q(uα) >  for α ∈ (α, ). Thus for three cases, namely
for α ∈ (,α), α := α and α ∈ (α, ), we have

N(Vα ;uα) = .

Hence, by (.) and by Corollary ., we conclude that for each α ∈ (, ) the polynomial
Vα has no zero in (,uα), and since Vα() =  > , so (.) holds.
Now we shortly explain the method of describing the signs of qk(uα), k = , . . . , . Note

that the case k =  is evident since

q(uα) = α(α – 
)
< , α ∈ (, ).

For other cases, i.e., for k = , . . . , , we use Laguerre’s rule in each case in the samemanner.
We clarify this for the case k = . We have

q(u) =
(
α – α)u + (

α – α + α)u + α – α – α, u ∈ [,uα].

We will show that

q(uα) < , α ∈ (, ), (.)

i.e., after computing we get

√
α(α – α + 

)
<

(
–α – α + α + 

)√
α + , α ∈ (, ). (.)

To verify that (.) holds, we will show that

r(t) :=
√
t

(
t – t + 

)
<

(
–t – t + t + 

)√
t +  =: s(t), t ∈ [, ]. (.)

Applying Corollary ., we see that

w(t) := s(t) – r(t)

= –t + t + t + t + t – t – t

– t – t + t + t + t + 

=:
∑
j=

bjt–j > , t ∈ [, ]. (.)

Indeed, the numbers of sign changes in the sequence of polynomial coefficients (bk) and
in the sequence of sums (

∑k
j= bj), where k = , , . . . , , equal , i.e., N(w; ) =N(w; ) = .

Thus we conclude that the polynomial w has no zero in the interval (, ) and, since w() =
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 > , so (.) holds. Hence, and by the fact that s() > r(), we deduce that (.) holds,
which confirms (.).
Note here that for the case k =  we show that the equation

q(uα) = 

has a unique solution α =: α ∈ (, ). In this case, we show by using Laguerre’s rule that
the corresponding polynomial w as in (.) has a unique zero in (, ) and further we
deduce that

q(uα) < , α ∈ (,α)

and

q(uα) > , α ∈ (α, ).

Summarizing, taking into account (.)-(.), we have

max
(x,y)∈R

Fα,γ (x, y) =

⎧⎨
⎩


 |α + ( + α)γ |, |γ | ≥ 

+α
,


 · αγ 

–|γ | +

α

| + γ | + 
 , |γ | ≤ 

+α
.

Finally, substituting γ =  – λ, the above yields (.).
Now we deal with the sharpness of the result. Let α ∈ (, ]. We prove that for each

λ ∈ (–∞, /]∪ [τ(α), +∞) inequality (.) is sharp. Let λ ∈ [τ(α), /]. Since then

α
(



· ( – λ)

 – | – λ| + | – λ|
)
+


= α

(

λ

–



)
+


,

inequality (.) is of the form

max
f∈C(gα )

�λ(f ) ≤ α
(


λ

–



)
+


, λ ∈ [

τ(α), /
]
. (.)

Let tα,λ := α(/(λ)–). Then tα,λ ∈ [, ] and, in view of (.), ptα,λ , ∈P , with c = tα,λ and
c = . Setting δ :=  and p := ptα,λ , into (.), we get the function fα,tα,λ given by equation
(.) for which, by (.) and (.),

a = tα,λ + α =
α
λ

, a =


(
 + αtα,λ + α) = 


+ α

(

λ

–



)
.

Hence

�λ(fα,tα,λ ) =


+ α

(

λ

–



)
,

which makes the equality in (.), so in (.). Clearly, fα,tα,λ ∈ C(gα) because (.) is
satisfied for δ = .
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Let λ ∈ (–∞, τ(α)]∪ [τ(α), +∞). Then inequality (.) is of the form

max
f∈C(gα )

�λ(f ) ≤
∣∣∣∣ +



α + α – ( + α)λ

∣∣∣∣. (.)

Set δ :=  and p := L into (.). Then for α ∈ (, ) we get the function fα, given by (.)
and for α =  we get the Koebe function f, = k, with

a =  + α, a =


(
 + α + α), α ∈ (, ].

Hence

�λ(fα,) =
∣∣∣∣ +



α + α – ( + α)λ

∣∣∣∣,
which makes the equality in (.), so in (.). Clearly, fα, ∈ C(gα) for α ∈ (, ].
Let α := . We prove that for each λ ∈R inequality (.) is sharp. For λ ∈ [τ(), τ()] =

[, /] inequality (.) is of the form

max
f∈P ′ �λ(f ) ≤ 


. (.)

Setting δ :=  and, by (.), p := p, into (.), we get the function f, given by (.) with
a =  and a = /. Hence

�λ(f,) =


,

which makes the equality in (.), so in (.).
For λ ∈ (–∞, ]∪ [/,+∞) inequality (.) is of the form

max
f∈P ′ �λ(f ) ≤

∣∣∣∣ – λ

∣∣∣∣. (.)

Setting δ :=  and p := L into (.), we get the function f, given by (.) with a =  and
a = /. Hence

�λ(f,) =
∣∣∣∣ – λ

∣∣∣∣,
which makes the equality in (.), so in (.). �

Remark . Particularly, from (.) for α ∈ [, ] we have

max
f∈C(gα )

�λ(f ) =

⎧⎨
⎩|  + 

α + α – ( + α)λ|, λ ∈R \ (τ(α), τ(α)),

 + α( 

λ – 
 ), λ ∈ [τ(α), /].

For α :=  we have τ() = / and τ() = , g = k, and then Theorem . reduces to the
result of [] as follows.
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Corollary .

max
f∈C(k)

�λ(f ) ≤
⎧⎨
⎩| – λ|, λ ∈ (–∞, /]∪ [, +∞),


 +


 · (–λ)

–|–λ| + | – λ|, λ ∈ [/, ].
(.)

For each λ ∈ (–∞, /] ∪ [, +∞), the inequality is sharp and the equality is attained
by a function in C(k). In particular, for each λ ∈ [/, /] the second equality in (.) is
attained by the function ftλ := f,t,λ given by differential equation (.), where tλ := t,λ. For
each λ ∈ (–∞, /] ∪ [, +∞), the first equality in (.) is attained by the Koebe function
f := k.

For α :=  we have τ() =  and τ() = /, and Theorem . yields the following.

Corollary .

max
f∈P ′ �λ(f ) =

⎧⎨
⎩|  – λ|, λ ∈ (–∞, ]∪ [/,+∞),


 , λ ∈ [, /].

(.)

For each λ ∈ [, /] the second equality in (.) is attained by the function given by
(.). For each λ ∈ (–∞, ]∪ [/,+∞), the first equality in (.) is attained by function
(.).
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