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Abstract
The purpose of this paper is to establish a coupled coincidence point theorem for a
pair of mappings without MMP (mixed monotone property) in metric spaces
endowed with partial order, which is not an immediate consequence of a well-known
theorem in the literature. Also, we present a result on the existence and uniqueness of
coupled common fixed points. The results presented in the paper generalize and
extend some of the results of Bhaskar and Lakshmikantham (Nonlinear Anal.
65:1379-1393, 2006), Choudhury, Metiya and Kundu (Ann. Univ. Ferrara 57:1-16, 2011),
Harjani, Lopez and Sadarangani (Nonlinear Anal. 74:1749-1760, 2011) and of Luong
and Thuan (Bull. Math. Anal. Appl. 2:16-24, 2010) for the mappings having no MMP.
We introduce an example that there exists a common coupled fixed point of the
mappings g and F such that F does not satisfy the g-mixed monotone property, and
also g and F do not commute.
MSC: 41A50; 47H10; 54H25
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1 Introduction and preliminaries
Fixed point theory is one of the famous and traditional theories in mathematics and has a
large number of applications. The Banach contractionmapping is one of the pivotal results
of analysis. It is a very popular tool for solving existence problems in many different fields
of mathematics. There are a lot of generalizations of the Banach contraction principle in
the literature. Ran and Reurings [] extended the Banach contraction principle in partially
ordered sets with some applications to linear and nonlinearmatrix equations.WhileNieto
and Rodŕiguez-López [] extended the result of Ran and Reurings and applied their main
theorems to obtain a unique solution for a first-order ordinary differential equation with
periodic boundary conditions. Bhaskar and Lakshmikantham [] introduced the concept
of mixed monotone mappings and obtained some coupled fixed point results. Also, they
applied their results on a first-order differential equation with periodic boundary condi-
tions. Recently, many researchers have obtained fixed point, common fixed point, coupled
fixed point and coupled common fixed point results in cone metric spaces, fuzzy metric
spaces, intuitionistic fuzzy normed spaces, partially orderedmetric spaces and others (see
[–]).

Definition . Let (X,d) be a metric space and F : X ×X → X and g : X → X, F and g are
said to commute if F(gx, gy) = g(F(x, y)) for all x, y ∈ X.
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Definition . Let (X,d) be a metric space and let g : X → X, F : X × X → X. The
mappings g and F are said to be compatible if limn→∞ d(gF(xn, yn),F(gxn, gyn)) =  and
limn→∞ d(gF(yn,xn),F(gyn, gxn)) =  hold whenever {xn} and {yn} are sequences in X such
that limn→∞ F(xn, yn) = limn→∞ gxn and limn→∞ F(yn,xn) = limn→∞ gyn.

Definition . Let (X,�) be a partially ordered set and F : X × X → X. The mapping F
is said to be non-decreasing if for x, y ∈ X, x � y implies F(x) � F(y) and non-increasing if
for x, y ∈ X, x � y implies F(x)� F(y).

Definition . Let (X,�) be a partially ordered set and F : X × X → X and g : X → X.
The mapping F is said to have the mixed g-monotone property if F(x, y) is monotone g-
non-decreasing in x and monotone g-non-increasing in y, that is, for any x, y ∈ X,

x,x ∈ X, gx � gx ⇒ F(x, y) � F(x, y)

and

y, y ∈ X, gy � gy ⇒ F(x, y)� F(x, y).

If g = identity mapping in Definition ., then the mapping F is said to have the mixed
monotone property.
Recently, Ðoric et al. [] showed that the mixed monotone property in coupled fixed

point results for mappings in ordered metric spaces can be replaced by another property
which is often easy to check. In particular, it is automatically satisfied in the case of a
totally ordered space, the case which is important in applications. Hence, these results
can be applied in a much wider class of problems.
If elements x, y of a partially ordered set (X,�) are comparable (i.e., x� y or y� x holds)

we will write x � y. Let g : X → X and F : X × X → X. We will consider the following
condition:

if x, y,u, v ∈ X are such that gx � F(x, y) = gu, then F(x, y) � F(u, v).

If g is an identity mapping, for all x, y, v, if x� F(x, y) then F(x, y)� F(F(x, y), v).
Ðoric et al. [] gave some examples that these conditions may be satisfied when F does

not have the g-mixed monotone property.

Definition . An element (x, y) ∈ X×X is called a coupled coincidence point of themap-
pings F : X ×X → X and g : X → X if F(x, y) = gx and F(y,x) = gy.

If g = identity mapping in Definition ., then (x, y) ∈ X × X is called a coupled fixed
point.
The purpose of this paper is to establish some coupled coincidence point results in par-

tially ordered metric spaces for a pair of mappings without mixed monotone property
satisfying a contractive condition. Also, we present a result on the existence and unique-
ness of coupled common fixed points. Also, we give an example to illustrate the main
result in this paper. The results proved generalize some of the results of Bhaskar and Lak-
shmikantham [], Choudhury et al. [], Luong and Thuan [] and Harjani et al. [] for
the mappings having no mixed monotone property.
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2 Main results
2.1 Coupled common fixed point theorems
In this section, we prove some coupled common fixed point theorems in the context of
ordered metric spaces.
We denote by � the set of functions φ : [,∞) → [,∞) satisfying:
(i) φ is continuous;
(ii) φ(t) < t for all t >  and φ(t) =  if and only if t = .

Theorem . Let (X,�) be a partially ordered set and suppose that there exists a metric d
on X such that (X,d) is a completemetric space. Suppose that F : X×X → X and g : X → X
are self-mappings on X such that the following conditions hold:

(i) g is continuous and g(X) is closed;
(ii) F(X ×X) ⊆ g(X) and g and F are compatible;
(iii) for all x, y,u, v ∈ X , if g(x)� F(x, y) = gu, then F(x, y)� F(u, v);
(iv) there exist x, y ∈ X such that gx � F(x, y) and gy � F(y,x);
(v) there exists a non-negative real number L such that

d
(
F(x, y),F(u, v)

) ≤ φ
(
max

{
d(gx, gu),d(gy, gv)

})
+ Lmin

{
d
(
F(x, y), gu

)
,d

(
F(u, v), gx

)
,

d
(
F(x, y), gx

)
,d

(
F(u, v), gu

)}
(.)

for all x, y,u, v ∈ X with gx� gu and gy� gv, where φ ∈ �;
(vi) (a) F is continuous or (b) xn → x, when n→ ∞ in X , then xn � x for sufficiently

large n.
Then there exist x, y ∈ X such that F(x, y) = g(x) and F(y,x) = g(y), that is, F and g have a
coupled coincidence point (x, y) ∈ X ×X.

Proof Using conditions (ii) and (iv), construct sequences {xn} and {yn} inX satisfying gxn =
F(xn–, yn–) and gyn = F(yn–,xn–) for n = , , . . . .
By (iv), gx � F(x, y) = gx and condition (iii) implies that gx = F(x, y) � F(x, y) =

gx. Proceeding by induction, we get that gxn– � gxn, and similarly, gyn– � gyn for each
n ∈N.
Now from the contractive condition (.), we have

d(gxn+, gxn) = d
(
F(xn, yn),F(xn–, yn–)

)
≤ φ

(
max

{
d(gxn, gxn–),d(gyn, gyn–)

})
+ Lmin

{
d
(
F(xn, yn), gxn–

)
,

d
(
F(xn–, yn–), gxn

)
,d

(
F(xn, yn), gxn

)
,d

(
F(xn–, yn–), gxn–

)}
, (.)

which implies that d(gxn+, gxn) ≤ φ(max{d(gxn, gxn–),d(gyn, gyn–)}).
Similarly, we have d(gyn+, gyn) ≤ φ(max{d(gyn, gyn–),d(gxn, gxn–)}).
Therefore, from the above two inequalities we have

max
{
d(gxn+, gxn),d(gyn+, gyn)

} ≤ φ
(
max

{
d(gxn, gxn–),d(gyn, gyn–)

})
. (.)
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Since φ(t) < t for all t >  and φ(t) =  if and only if t = , from (.) we have

max
{
d(gxn+, gxn),d(gyn+, gyn)

} ≤max
{
d(gxn, gxn–),d(gyn, gyn–)

}
.

Set �n :=max{d(gxn+, gxn),d(gyn+, gyn)}, then {�n} is a non-increasing sequence of pos-
itive real numbers. Thus, there is d ≥  such limn→∞ �n = d.
Suppose that d > , letting n → ∞ two sides of (.) and using the properties of φ, we

have

d = lim
n→∞d(gyn, gyn+) ≤ lim

n→∞φ
(
max

{
d(gyn+, gyn),d(gxn+, gxn)

})
= φ(d) < d, (.)

which is a contradiction. Hence d = , i.e.,

lim
n→∞�n = lim

n→∞max
{
d(gxn+, gxn),d(gyn+, gyn)

}
= . (.)

Now, we shall prove that {gxn} and {gyn} are Cauchy sequences. Suppose, to the contrary,
that at least one of {gxn} or {gyn} is not a Cauchy sequence. This means that there exists
an ε >  for which we can find subsequences {gxn(k)}, {gxm(k)} of {gxn} and {gyn(k), gym(k)} of
{gyn} with n(k) >m(k) ≥ k such that

max
{
d(gxn(k), gxm(k)),d

(
gyn(k), gym(k)

)} ≥ ε. (.)

Further, corresponding to m(k), we can choose n(k) in such a way that it is the smallest
integer with n(k) >m(k)≥ k and satisfies (.). Then

max
{
d(gxn(k)–, gxm(k)),d(gyn(k)–, gym(k))

}
< ε. (.)

Using the triangle inequality and (.), we have

d(gxn(k), gxm(k)) ≤ d(gxn(k), gxn(k)–) + d(gxn(k)–, gxm(k)) < d(gxn(k), gxn(k)–) + ε (.)

and

d(gyn(k), gym(k)) ≤ d(gyn(k), gyn(k)–) + d(gyn(k)–, gym(k)) < d(gyn(k), gyn(k)–) + ε. (.)

From (.), (.) and (.), we have

ε ≤ max
{
d(gxn(k), gxm(k)),d(gyn(k), gym(k))

}
< max

{
d(gxn(k), gxn(k)–),d(gyn(k), gyn(k)–)

}
+ ε.

Letting k → ∞ in the inequalities above and using (.), we get

lim
k→∞

max
{
d(gxn(k), gxm(k)),d(gyn(k), gym(k))

}
= ε. (.)

By the triangle inequality,

d(gxn(k), gxm(k)) ≤ d(gxn(k), gxn(k)–) + d(gxn(k)–, gxn(k)–) + d(gxm(k)–, gxm(k))
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Chandok and Tas Journal of Inequalities and Applications 2014, 2014:61 Page 5 of 12
http://www.journalofinequalitiesandapplications.com/content/2014/1/61

and

d(gyn(k), gym(k)) ≤ d(gyn(k), gyn(k)–) + d(gyn(k)–, gym(k)–) + d(gym(k)–, gym(k)).

From the last two inequalities and (.), we have

ε ≤ max
{
d(gxn(k), gxm(k)),d(gyn(k), gym(k))

}
≤ max

{
d(gxn(k), gxn(k)–),d(gyn(k), gyn(k)–)

}
+max

{
d(gxm(k)–, gxm(k)),d(gym(k)–, gym(k))

}
+max

{
d(gxn(k)–, gxm(k)–),d(gyn(k)–, gym(k)–)

}
. (.)

Again, by the triangle inequality,

d(gxn(k)–, gxm(k)–) ≤ d(gxn(k)–, gxm(k)) + d(gxm(k), gxm(k)–)

< d(gxm(k), gxm(k)–) + ε,

and

d(gyn(k)–, gym(k)–) ≤ d(gyn(k)–, gym(k)) + d(gym(k), gym(k)–)

< d(gym(k), gym(k)–) + ε.

Therefore,

max
{
d(gxn(k)–, gxm(k)–),d(gyn(k)–, gym(k)–)

}
<max

{
d(gxm(k), gxm(k)–),d(gym(k), gym(k)–)

}
+ ε. (.)

Taking k → ∞ in (.) and (.) and using (.), (.), we have

lim
k→∞

max
{
d(gxn(k)–, gxm(k)–),d(gyn(k)–, gym(k)–)

}
= ε. (.)

Since n(k) >m(k), gxn(k)– � gxm(k)– and gyn(k)– � gym(k)–. Then from (.) we have

d(gxn(k), gxm(k)) = d
(
F(xn(k)–, yn(k)–),F(xm(k)–, ym(k)–)

)
≤ φ

(
max

{
d(gxn(k)–, gxm(k)–),d(gyn(k)–, gym(k)–)

})
+ Lmin

{
d
(
F(xn(k)–, yn(k)–), gxm(k)–

)
,d

(
F(xm(k)–, ym(k)–), gxn(k)–

)
,

d
(
F(xn(k)–, yn(k)–), gxn(k)–

)
,d

(
F(xm(k)–, ym(k)–), gxm(k)–

)}
≤ φ

(
max

{
d(gxn(k)–, gxm(k)–),d(gyn(k)–, gym(k)–)

})
+ Lmin

{
d(gxn(k), gxn(k)–),d(gxm(k), gxm(k)–)

}
. (.)

Similarly,

d(gym(k), gyn(k)) ≤ φ
(
max

{
d(gxn(k)–, gxm(k)–),d(gyn(k)–, gym(k)–)

})
+ Lmin

{
d(gym(k), gym(k)–),d(gyn(k), gyn(k)–)

}
. (.)
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From (.) and (.), we have

max
{
d(gxn(k), gxm(k)),d(gyn(k), gym(k))

}
≤ φ

(
max

{
d(gxn(k)–, gxm(k)–),d(gyn(k)–, gym(k)–)

})
+ Lmin

{
d(gxn(k), gxn(k)–),d(gxm(k), gxm(k)–)

}
+ Lmin

{
d(gym(k), gym(k)–),d(gyn(k), gyn(k)–)

}
.

Letting n → ∞ in the above inequality and using (.), (.), (.) and the properties
of φ, we have

ε ≤ φ(ε) + Lmin{,} < ε,

which is a contradiction. Therefore, {gxn} and {gyn} are Cauchy sequences and since
g(X) is closed in a complete metric space (condition (i)), there exist x, y ∈ g(X) such that
limn→∞ gxn = limn→∞ F(xn–, yn–) = x and limn→∞ gyn = limn→∞ F(yn–,xn–) = y.
Compatibility of F and g (condition (ii)) implies that

lim
n→∞d

(
g
(
F(xn, yn)

)
,F(gxn, gyn)

)
= 

and

lim
n→∞d

(
g
(
F(yn,xn)

)
,F(gyn, gxn)

)
= .

Consider the two possibilities given in condition (vi).
(a) Suppose that F is continuous. Using the triangle inequality, we get that

d
(
gx,F(gxn, gyn)

) ≤ d
(
gx, g

(
F(xn, yn)

))
+ d

(
g
(
F(xn, yn)

)
,F(gxn, gyn)

)
.

By taking limit n → ∞ and using the continuity of F and g , we have d(gx,F(x, y)) = ,
i.e., gx = F(x, y) and, in a similar way, we have gy = F(y,x). Thus F and g have a coupled
coincidence point.
(b) In this case gxn � u = gx and gyn � v = gy for some x, y ∈ X and n sufficiently large.

For such n, using (.) we get

d
(
F(x, y), gx

) ≤ d
(
F(x, y), gxn+

)
+ d(gxn+, gx)

= d
(
F(x, y),F(xn, yn)

)
+ d(gxn+, gx)

≤ φ
(
max

{
d(gx, gxn),d(gy, gyn)

})
+ Lmin

{
d
(
F(x, y), gxn

)
,d

(
F(xn, yn), gxn

)
,

d
(
F(x, y), gx

)
,d

(
F(xn, yn), gxn

)}
+ d(gxn+, gx).

Taking n→ ∞ in the above inequality and using the compatibility of F and g and the prop-
erties of φ, we have d(F(x, y), gx) ≤ φ(max{,}) +  +  = . Hence F(x, y) = gx. Similarly,
one can show that F(y,x) = gy. Hence the result. �

http://www.journalofinequalitiesandapplications.com/content/2014/1/61
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Remark . Very recently, using the equivalence of the three basic metrics, Samet et al.
[] show that many of the coupled fixed point theorems are immediate consequences of
well-known fixed point theorems in the literature.
In our Theorem ., it is easy to see that if L �=  there is no equivalence and this theorem

is not a consequence of a known fixed point theorem.

Remark. In the above theorem, condition (iii) is a substitution for themixedmonotone
property that has been used inmost of the coupled fixed point results so far. Note that this
condition is trivially satisfied if the order � on X is total, which is the case in most of the
examples in articles mentioned in the references.

If g is an identity mapping in the above theorem, we have the following result.

Corollary . Let (X,d,≤) be a complete partially ordered metric space and let F : X ×
X → X. Suppose that the following hold:

(i) for all x, y, v ∈ X , if x� F(x, y), then F(x, y)� F(F(x, y), v);
(ii) there exist x, y ∈ X such that x � F(x, y) and y � F(y,x);
(iii) there exists a non-negative real number L such that

d
(
F(x, y),F(u, v)

) ≤ φ
(
max

{
d(x,u),d(y, v)

})
+ Lmin

{
d
(
F(x, y),u

)
,d

(
F(u, v),x

)
,

d
(
F(x, y),x

)
,d

(
F(u, v),u

)}

for all x, y,u, v ∈ X with x� u and y� v, where φ ∈ �;
(iv) (a) F is continuous or (b) xn → x, when n→ ∞ in X , then xn � x for sufficiently

large n.
Then there exist x, y ∈ X such that F(x, y) = x and y = F(y,x), that is, F has a coupled fixed
point (x, y) ∈ X ×X.

Remark . Letting L = , in inequality (.), for all x, y,u, v ∈ X, α,β ≥ , α + β < , we
have

αd(x,u) + βd(y, v)≤ (α + β)max
{
d(x,u),d(y, v)

}
= φ

(
max

{
d(x,u),d(y, v)

})
,

where φ(t) = (α + β)(t) for all t ≥  is in �. Hence Theorem . generalizes the corre-
sponding coupled fixed point results of Bhaskar and Lakshmikantham [], Choudhury et
al. [], Luong and Thuan [] and Harjani et al. [] for the mappings having no mixed
monotone property.

Taking L = , we have the following result.

Corollary . Let (X,�) be a partially ordered set and suppose that there exists a metric d
on X such that (X,d) is a completemetric space. Suppose that F : X×X → X and g : X → X
are self-mappings on X such that the following conditions hold:

(i) g is continuous and g(X) is closed;
(ii) F(X ×X) ⊆ g(X) and g and F are compatible;

http://www.journalofinequalitiesandapplications.com/content/2014/1/61
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(iii) for all x, y,u, v ∈ X , if g(x)� F(x, y) = gu, then F(x, y)� F(u, v);
(iv) there exist x, y ∈ X such that gx � F(x, y) and gy � F(y,x);
(v) F and g satisfy

d
(
F(x, y),F(u, v)

) ≤ φ
(
max

{
d(gx, gu),d(gy, gv)

})
(.)

for all x, y,u, v ∈ X with gx� gu and gy� gv, where φ ∈ �;
(vi) (a) F is continuous or (b) xn → x, when n→ ∞ in X , then xn � x for sufficiently

large n.
Then there exist x, y ∈ X such that F(x, y) = g(x) and gy = F(y,x), that is, F and g have a
coupled coincidence point (x, y) ∈ X ×X.

Corollary . Let (X,�) be a partially ordered set and suppose that there exists a metric d
on X such that (X,d) is a completemetric space. Suppose that F : X×X → X and g : X → X
are self-mappings on X such that following conditions hold:

(i) g is continuous and g(X) is closed;
(ii) F(X ×X) ⊆ g(X) and g and F are compatible;
(iii) for all x, y,u, v ∈ X , if g(x)� F(x, y) = gu, then F(x, y)� F(u, v);
(iv) there exist x, y ∈ X such that gx � F(x, y) and gy � F(y,x);
(v) there exist non-negative real numbers α, β with α + β <  such that

d
(
F(x, y),F(u, v)

) ≤ αd(gx, gu) + βd(gy, gv) (.)

for all x, y,u, v ∈ X with gx� gu and gy� gv;
(vi) (a) F is continuous or (b) xn → x, when n→ ∞ in X , then xn � x for sufficiently

large n.
Then there exist x, y ∈ X such that F(x, y) = g(x) and gy = F(y,x), that is, F and g have a
coupled coincidence point (x, y) ∈ X ×X.

Taking α = β = k ∈ [, ), we have the following result.

Corollary . Let (X,�) be a partially ordered set and suppose that there exists a metric d
on X such that (X,d) is a completemetric space. Suppose that F : X×X → X and g : X → X
are self-mappings on X such that following conditions hold:

(i) g is continuous and g(X) is closed;
(ii) F(X ×X) ⊆ g(X) and g and F are compatible;
(iii) for all x, y,u, v ∈ X , if g(x)� F(x, y) = gu, then F(x, y)� F(u, v);
(iv) there exist x, y ∈ X such that gx � F(x, y) and gy � F(y,x);
(v) there exists k ∈ [, ) such that

d
(
F(x, y),F(u, v)

) ≤ k
[
d(gx, gu) + d(gy, gv)

]
(.)

for all x, y,u, v ∈ X with gx� gu and gy� gv;
(vi) (a) F is continuous or (b) xn → x, when n→ ∞ in X , then xn � x for sufficiently

large n.
Then there exist x, y ∈ X such that F(x, y) = g(x) and gy = F(y,x), that is, F and g have a
coupled coincidence point (x, y) ∈ X ×X.

http://www.journalofinequalitiesandapplications.com/content/2014/1/61
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Now, we shall prove the existence and uniqueness of a coupled common fixed point.
Note that if (X,�) is a partially ordered set, then we endow the product space X ×X with
the following partial order relation:

for (x, y), (u, v) ∈ X ×X, (u, v)� (x, y) ⇔ x � u, y� v.

Theorem . In addition to hypotheses of Theorem ., suppose that
(vii) for every (x, y), (u, v) ∈ X ×X , there exists (w, z) ∈ X ×X such that (F(w, z),F(z,w))

is comparable to (F(x, y),F(y,x)) and (F(u, v),F(v,u)).
Then F and g have a unique coupled common fixed point, that is, there exists a unique
(p,q) ∈ X ×X such that p = gp = F(p,q) and q = gq = F(q,p).

Proof From Theorem ., there exists (x, y) ∈ X ×X such that gx = F(x, y) and gy = F(y,x).
Suppose that there is also (u, v) ∈ X × X such that gu = F(u, v) and gv = F(v,u). We will
prove that gx = gu and gy = gv. Condition (vii) implies that there exists (w, z) ∈ X × X
such that (F(w, z),F(z,w)) is comparable to both (F(x, y),F(y,x)) and (F(u, v),F(v,u)). Put
w = w, z = z and, analogously to the proof of Theorem ., choose sequences {wn}, {zn}
satisfying

gwn = F(wn–, zn–) and gzn = F(zn–,wn–)

for n ∈ N. Starting from x = x, y = y and u = u, v = v, choose sequences {xn}, {yn} and
{un}, {vn}, satisfying gxn = F(xn–, yn–), gyn = F(yn–,xn–) and gun = F(un–, vn–), gvn =
F(vn–,un–) for n ∈ N, taking into account properties of coincidence points, it is easy to
see that this can be done so that xn = x, yn = y and un = u, vn = v, i.e.,

gxn = F(x, y), gyn = F(y,x) and gun = F(u, v), gvn = F(v,u) for n ∈N.

Since (F(x, y),F(y,x)) = (gx, gy) and (F(w, z),F(z,w)) = (gw, gz) are comparable, then
gx � gw and gy � gz, and, in a similar way, we have gx � gwn and gy � gzn. Thus from
(.) we have

d(gx, gwn+) = d
(
F(x, y),F(wn, zn)

)
≤ φ

(
max

{
d(gx, gwn),d(gy, gzn)

})
+ Lmin

{
d
(
F(x, y), gwn

)
,d

(
F(wn, zn), gx

)
,

d
(
F(x, y), gx

)
,d

(
F(wn, zn), gwn

)}
, (.)

which implies that d(gx, gwn+)≤ φ(max{d(gx, gwn),d(gy, gzn)}).
Similarly, we can prove that d(gy, gzn+) ≤ φ(max{d(gx, gwn),d(gy, gzn)}).
Therefore, from the above two inequalities we have

max
{
d(gx, gwn+),d(gy, gzn+)

} ≤ φ
(
max

{
d(gx, gwn),d(gy, gzn)

})
. (.)

Since φ(t)≤ t for all t ≥ , from (.) we have

max
{
d(gx, gwn+),d(gy, gzn+)

} ≤max
{
d(gx, gwn),d(gy, gzn)

}
.

http://www.journalofinequalitiesandapplications.com/content/2014/1/61
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Hence the sequence {δn} defined by δn :=max{d(gx, gwn+),d(gy, gzn+)} is non-negative
and decreasing and so limn→∞ δn = δ for some δ ≥ .
Now, we show that δ = . Assume that δ > , letting n→ ∞ two sides of (.) and using

the properties of φ, we have

δ = lim
n→∞d(gy, gzn+)≤ lim

n→∞φ
(
max

{
d(gx, gwn),d(gy, gzn)

})
= φ(δ) < δ, (.)

which is a contradiction. Hence d = , i.e.,

lim
n→∞d(gx, gwn+) =  = lim

n→∞d(gy, gzn+) = . (.)

Similarly, we can prove that

lim
n→∞d(gu, gwn+) =  = lim

n→∞d(gv, gzn+). (.)

Using relations (.) and (.), together with the triangle inequality, we have
d(gx, gu) =  and d(gy, gv) =  and so gx = gu and gy = gv.
Denote gx = p and gy = q. So, we have that

gp = g(gx) = gF(x, y) and gq = g(gy) = gF(y,x). (.)

By definition of the sequences {xn} and {yn} we have

gxn = F(x, y) = F(xn–, yn–) and gyn = F(y,x) = F(yn–,xn–),

and so

F(xn–, yn–) → F(x, y) and gxn → F(x, y),

as well as

F(yn–,xn–) → F(y,x) and gyn → F(y,x).

Compatibility of g and F implies that

d
(
gF(xn, yn),F(gxn, gyn)

) → , n→ ∞,

i.e., gF(x, y) = F(gx, gy). This together with (.) implies that gp = F(p,q) and, in a similar
way, gq = F(q,p). Thus, we have another coincidence, and by the property we have just
proved, it follows that gp = gx = p and gq = gy = q. In other words, p = gp = F(p,q) and
q = gq = F(q,p), and (p,q) is a common coupled fixed point of g and F .
To prove the uniqueness, assume that (r, s) is another coupled commonfixed point. Then

by (.) we have r = gr = gp = p and s = gs = gq = q. Hence we get the result. �

Example . LetX = [, ]. Then (X,≤) is a partially ordered set with the natural ordering
of real numbers. Let d(x, y) = |x–y| for all x, y ∈ X. Define amapping g : X → X by g(x) = x

http://www.journalofinequalitiesandapplications.com/content/2014/1/61
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and a mapping F : X ×X → X by

F(x, y) =

⎧⎨
⎩

x–y
 x≥ y,

 x < y.

Then it is easy to check all the conditions of Theorems . and .. In particular, we will
check that g and F are compatible.
Let {xn} and {yn} be two sequences in X such that

lim
n→∞ gxn = lim

n→∞F(xn, yn) = a and lim
n→∞ gyn = lim

n→∞F(yn,xn) = b.

Then a–b
 = a and b–a

 = b, where from it follows that a = b = . Then

d
(
gF(xn, yn),F(gxn, gyn)

)
=

∣∣∣∣
(
xn – yn



)

–
xn – yn



∣∣∣∣ →  (n→ ∞),

and similarly d(gF(yn,xn),F(gyn, gxn))→ .
Now, we verify inequality (.) of Theorem . for φ(t) = 

 t, t >  and L = [,∞) for all
x, y,u, v ∈ X with gx � gu and gy � gv.

d
(
F(x, y),F(u, v)

)
=

∣∣∣∣x
 – y


–
u – v



∣∣∣∣
≤ 


∣∣x – u

∣∣ + 


∣∣y – v
∣∣

≤ 

max

{∣∣x – u
∣∣, ∣∣y – v

∣∣}

≤ φ
(
max

{
d(gx, gu),d(gy, gv)

})
+ Lmin

{
d
(
F(x, y), gu

)
,d

(
F(u, v), gx

)
,

d
(
F(x, y), gx

)
,d

(
F(u, v), gu

)}
.

Thus there exists a common coupled fixed point (, ) of the mappings g and F . Note that
F does not satisfy the g-mixed monotone property. Also, g and F do not commute.
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