# RESEARCH

# **Open Access**

# Optimal couples of rearrangement invariant spaces for the Riesz potential on the bounded domain

Shin Min Kang<sup>1</sup>, Arif Rafiq<sup>2</sup>, Waqas Nazir<sup>2</sup>, Irshaad Ahmad<sup>3</sup>, Faisal Ali<sup>4</sup> and Young Chel Kwun<sup>5\*</sup>

\*Correspondence: yckwun@dau.ac.kr <sup>5</sup>Department of Mathematics, Dong-A University, Pusan, 614-714, Korea Full list of author information is available at the end of the article

# Abstract

We prove continuity of the Riesz potential operator in optimal couples of rearrangement invariant function spaces defined in  $\mathbf{R}^n$  with the Lebesgue measure. **MSC:** 46E30; 46E35

**Keywords:** Riesz potential operator; rearrangement invariant function spaces; real interpolation

# **1** Introduction

Let  $\mathcal{M}$  be the space of all locally integrable functions f on  $\Omega \subset \mathbf{R}^n$  with the Lebesgue measure, finite almost everywhere, and let  $\mathcal{M}^+$  be the space of all non-negative locally integrable functions on  $(0, \infty)$  with respect to the Lebesgue measure, finite almost everywhere. We shall also need the following two subclasses of  $\mathcal{M}^+$ . The subclass M consists of those elements g of  $\mathcal{M}^+$  for which there exists an m > 0 such that  $t^m g(t)$  is increasing. The subclass  $M_0$  consists of those elements g of  $\mathcal{M}^+$  which are decreasing.

The Riesz potential operator  $R_{\Omega}^{s}$ , 0 < s < n,  $n \ge 1$  is defined formally by

$$R_{\Omega}^{s}f(x) = \int_{\Omega} f(y)|x-y|^{s-n} dy, \quad f \in \mathcal{M}^{+}; \qquad |\Omega| = 1.$$

$$(1.1)$$

We shall consider rearrangement invariant quasi-Banach spaces E, continuously embedded in  $L^1(\mathbf{R}^n) + L^{\infty}(\mathbf{R}^n)$ , such that the quasi-norm  $||f||_E$  in E is generated by a quasi-norm  $\rho_E$ , defined on  $\mathcal{M}^+$  with values in  $[0, \infty]$ , in the sense that  $||f||_E = \rho_E(f^*)$ . In this way equivalent quasi-norms  $\rho_E$  give the same space E. We suppose that E is nontrivial. Here  $f^*$  is the decreasing rearrangement of f, given by

$$f^*(t) = \inf \{\lambda > 0 : \mu_f(\lambda) \le t\}, \quad t > 0$$

where  $\mu_f$  is the distribution function of *f*, defined by

$$\mu_f(\lambda) = \left| \left\{ x \in \mathbf{R}^n : \left| f(x) \right| > \lambda \right\} \right|_{\mu},$$

 $|\cdot|_n$  denoting the Lebesgue *n*-measure. Note that  $f^*(t) = 0$ , if t > 1.

©2014 Kang et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



There is an equivalent quasi-norm  $\rho_p$  that satisfies the triangle inequality  $\rho_p^p(g_1 + g_2) \le \rho_p^p(g_1) + \rho_p^p(g_2)$  for some  $p \in (0, 1)$  that depends only on the space E (see [1]).

We say that the norm  $\rho_E$  is *K*-monotone (*cf.* [2], p.84, and also [3], p.305) if

$$\int_{0}^{t} g_{1}^{*}(s) \, ds \leq \int_{0}^{t} g_{2}^{*}(s) \, ds \quad \text{implies} \quad \rho_{E}(g_{1}^{*}) \leq \rho_{E}(g_{2}^{*}), \quad g_{1}, g_{2} \in \mathcal{M}^{+}.$$
(1.2)

Then  $\rho_E$  is monotone, *i.e.*,  $g_1 \leq g_2$  implies  $\rho_E(g_1) \leq \rho_E(g_2)$ .

We use the notations  $a_1 \leq a_2$  or  $a_2 \geq a_1$  for non-negative functions or functionals to mean that the quotient  $a_1/a_2$  is bounded; also,  $a_1 \approx a_2$  means that  $a_1 \leq a_2$  and  $a_1 \geq a_2$ . We say that  $a_1$  is equivalent to  $a_2$  if  $a_1 \approx a_2$ .

We say that the norm  $\rho_E$  satisfies the Minkovski inequality if for the equivalent quasinorm  $\rho_p$ ,

$$\rho_p^p\left(\sum g_j\right) \lesssim \sum \rho_p^p(g_j), \quad g_j \in \mathcal{M}^+.$$
(1.3)

For example, if *E* is a rearrangement invariant Banach function space as in [3], then by the Luxemburg representation theorem  $||f||_E = \rho_E(f^*)$  for some norm  $\rho_E$  satisfying (1.2) and (1.3). More general example is given by the Riesz-Fischer monotone spaces as in [3], p.305.

Recall the definition of the lower and upper Boyd indices  $\alpha_E$  and  $\beta_E$ . Let

$$h_E(u) = \sup\left\{\frac{\rho_E(g_u^*)}{\rho_E(g^*)} : g \in \mathcal{M}^+\right\}, \qquad g_u(t) := g(t/u)$$

be the dilation function generated by  $\rho_E$ . Then

$$\alpha_E := \sup_{0 < t < 1} \frac{\log h_E(t)}{\log t} \quad \text{and} \quad \beta_E := \inf_{1 < t < \infty} \frac{\log h_E(t)}{\log t}$$

If  $\rho_E$  is monotone, then the function  $h_E$  is submultiplicative, increasing,  $h_E(1) = 1$ ,  $h_E(u)h_E(1/u) \ge 1$ , hence  $0 \le \alpha_E \le \beta_E$ . If  $\rho_E$  is *K*-monotone, then by interpolation (analogously to [3], p.148), we see that  $h_E(s) \le \max(1, s)$ . Hence in this case we have also  $\beta_E \le 1$ .

Using the Minkovski inequality for the equivalent quasi-norm  $\rho_p$  and monotonicity of  $f^*$ , we see that

$$\rho_E(f^*) \approx \rho_E(f^{**}) \quad \text{if } \beta_E < 1, \tag{1.4}$$

where  $f^{**}(t) = \frac{1}{t} \int_0^t f^*(s) \, ds$ . The main goal of this paper is to prove continuity of the Riesz potential operator  $R_{\Omega}^s : E \mapsto G$  in optimal couples of rearrangement invariant function spaces E and G, where  $||f||_G := \rho_G(f^*)$ . It is convenient to introduce the following classes of quasi-norms, where the optimality of  $R_{\Omega}^s : E \mapsto G$  is investigated. Let  $\mathcal{N}_d$  stand for all domain quasi-norms  $\rho_E$ , which are monotone, rearrangement invariant, satisfying Minkowski's inequality,  $\rho_E(\chi_{(0,1)}) < \infty$  and

$$E \hookrightarrow L^1(\Omega). \tag{1.5}$$

Let  $\mathcal{N}_t$  consist of all target quasi-norms  $\rho_G$  that are monotone, satisfy Minkowski's inequality,  $\rho_G(\chi_{(0,1)}) < \infty$ ,  $\rho_G(\chi_{(1,\infty)}t^{s/n-1}) < \infty$  and

$$G \hookrightarrow \Lambda^{\infty}(t^{1-s/n})(\mathcal{R}^n), \tag{1.6}$$

where  $\chi_{(a,b)}$  is the characteristic function of the interval (a,b),  $0 < a < b \le \infty$ . Note that technically it is more convenient not to require that the target quasi-norm  $\rho_G$  is rearrangement invariant. Of course, the target space *G* is rearrangement invariant, since  $||f||_G = \rho_G(f^*)$ . Finally, let  $\mathcal{N} := \mathcal{N}_d \times \mathcal{N}_t$ .

**Definition 1.1** (Admissible couple) We say that the couple  $(\rho_E, \rho_G) \in \mathcal{N}$  is admissible for the Riesz potential if the following estimate is valid:

$$\rho_G(\left(R^s_\Omega f\right)^{**}) \lesssim \rho_E(f^*). \tag{1.7}$$

Moreover,  $\rho_E(E)$  is called domain quasi-norm (domain space), and  $\rho_G(G)$  is called a target quasi-norm (target space).

For example, by Theorem 2.2 below (the sufficient part), the couple  $E = \Lambda^q(t^{s/n}w)(\Omega)$ ,  $G = \Lambda^q(v)$ ,  $1 \le q \le \infty$ , is admissible if  $\beta_E < 1$  and v is related to w by the Muckenhoupt condition [4]:

$$\left(\int_{0}^{t} \left[\nu(s)\right]^{q} ds/s\right)^{1/q} \left(\int_{t}^{\infty} \left[w(s)\right]^{-r} ds/s\right)^{1/r} \lesssim 1, \qquad 1/q + 1/r = 1.$$
(1.8)

**Definition 1.2** (Optimal target quasi-norm) Given the domain quasi-norm  $\rho_E \in \mathcal{N}_d$ , the optimal target quasi-norm, denoted by  $\rho_{G(E)}$ , is the strongest target quasi-norm, *i.e.*,

$$\rho_G(g^*) \lesssim \rho_{G(E)}(g^*), \quad g \in \mathcal{M}^+, \tag{1.9}$$

for any target quasi-norm  $\rho_G \in \mathcal{N}_t$  such that the couple  $\rho_E$ ,  $\rho_G$  is admissible.

**Definition 1.3** (Optimal domain quasi-norm) Given the target quasi-norm  $\rho_G \in \mathcal{N}_t$ , the optimal domain quasi-norm, denoted by  $\rho_{E(G)}$ , is the weakest domain quasi-norm, *i.e.*,

$$\rho_{E(G)}(g^*) \lesssim \rho_E(g^*), \quad g \in \mathcal{M}^+, \tag{1.10}$$

for any domain quasi-norm  $\rho_E \in \mathcal{N}_d$  such that the couple  $\rho_E$ ,  $\rho_G$  is admissible.

**Definition 1.4** (Optimal couple) The admissible couple  $\rho_E$ ,  $\rho_G$  is said to be optimal if  $\rho_E = \rho_{E(G)}$  and  $\rho_G = \rho_{G(E)}$ .

The optimal quasi-norms are uniquely determined up to equivalence, while the corresponding optimal quasi-Banach spaces are unique.

### 2 Admissible couples

Here we give a characterization of all admissible couples ( $\rho_E$ ,  $\rho_G$ )  $\in \mathcal{N}$ . It is convenient to define the case  $\beta_E = 1$  as limiting and the case  $\beta_E < 1$  as sublimiting.

**Theorem 2.1** (General case  $\beta_E \leq 1$ ) *The couple* ( $\rho_E, \rho_G$ )  $\in \mathcal{N}$  *is admissible if and only if* 

$$\rho_G(\chi_{(0,1)}S_1g) \lesssim \rho_E(g), \quad g \in \mathcal{M}^+ \text{ or } g \in M_0, \tag{2.1}$$

where

$$S_{1}g(t) := \begin{cases} t^{s/n-1} \int_{0}^{t} g(u) \, du + \int_{t}^{1} u^{s/n} g(u) \, du/u, & 0 < t < 1, 0 < s < n, n \ge 1, \\ t^{s/n-1} \int_{0}^{1} g(u) \, du, & t > 1, 0 < s < n, n \ge 1. \end{cases}$$

$$(2.2)$$

Proof First we prove

$$\left(R^s_\Omega f\right)^{**} \lesssim S_1 f^*. \tag{2.3}$$

We are going to use real interpolation for quasi-Banach spaces. First we recall some basic definitions. Let  $(A_0, A_1)$  be a couple of two quasi-Banach spaces (see [2, 5]) and let

$$K(t,f) = K(t,f;A_0,A_1) = \inf_{f=f_0+f_1} \left\{ \|f_0\|_{A_0} + t\|f_1\|_{A_1} \right\}, \quad f \in A_0 + A_1$$

be the *K*-functional of Peetre (see [2]). By definition, the *K*-interpolation space  $A_{\Phi} = (A_0, A_1)_{\Phi}$  has a quasi-norm

$$\|f\|_{A_{\Phi}} = \|K(t,f)\|_{\Phi},$$

where  $\Phi$  is a quasi-normed function space with a monotone quasi-norm on  $(0, \infty)$  with the Lebesgue measure and such that min $\{1, t\} \in \Phi$ . Then (see [5])

$$A_0 \cap A_1 \hookrightarrow A_\Phi \hookrightarrow A_0 + A_1,$$

where by  $X \hookrightarrow Y$  we mean that X is continuously embedded in Y. If  $||g||_{\Phi} = (\int_0^{\infty} t^{-\theta q} \times g^q(t) dt/t)^{1/q}$ ,  $0 < \theta < 1$ ,  $0 < q \le \infty$ , we write  $(A_0, A_1)_{\theta,q}$  instead of  $(A_0, A_1)_{\Phi}$  (see [2]).

Using the Hardy-Littlewood inequality  $\int_{\mathbb{R}^n} |f(x)g(x)| dx \leq \int_0^\infty f^*(t)g^*(t) dt$ , we get the well-known mapping property

$$R^{s}_{\Omega}: \Lambda^{1}(t^{s/n})(\Omega) \mapsto L^{\infty}(\mathcal{R}^{n})$$

and by the Minkovski inequality for the norm  $f^{**}$  we get

$$R^{s}_{\Omega}: L^{1}(\Omega) \mapsto \Lambda^{\infty}(t^{1-s/n})(\mathcal{R}^{n}).$$

Hence

$$t^{1-s/n} \left( R^s_{\Omega} f \right)^{**}(t) \lesssim K \left( t^{1-s/n}, f; L^1(\Omega), \Lambda^1 \left( t^{s/n} \right)(\Omega) \right),$$

therefore (see [2], Section 5.7)

$$t^{1-s/n} \left( R^s_{\Omega} f \right)^{**}(t) \lesssim \begin{cases} \int_0^t f^*(u) \, du + t^{1-s/n} \int_t^1 u^{s/n} f^*(u) \, du/u, & 0 < t < 1, \\ \int_0^1 f^*(u) \, du, & t > 1, \end{cases}$$

implies

$$\left(R_{\Omega}^{s}f\right)^{**}(t) \lesssim S_{1}f^{*}(t).$$

It is clear that (1.7) follows from (2.1) and (2.3).

Now we prove that (1.7) implies (2.1). To this end we choose the test function in the form  $f(x) = g(c|x|^n), g \in \mathcal{M}^+$ , so that  $f^*(t) = g^*(t)$  for some positive constant c (*cf.* [6]). Then

$$R_{\Omega}^{s}f(x) = \int_{|y| < |x|} g(c|y|^{n}) |x - y|^{s - n} \, dy + \int_{|y| > |x|} g(c|y|^{n}) |x - y|^{s - n} \, dy,$$

whence

$$\left|R_{\Omega}^{s}f(x)\right| \gtrsim |x|^{s-n} \int_{0}^{c|x|^{n}} g(u) \, du + \int_{c|x|^{n}}^{|\Omega|=1} u^{s/n-1}g(u) \, du \gtrsim \chi_{(0,1)}(S_{1}g)(c|x|^{n}).$$

Note that  $\chi_{(0,1)}S_1g \approx \chi_{(0,1)}Q_1T'_1g + \chi_{(0,1)}\int_0^1 g(u) \, du$ , where

$$Q_1g:=\int_t^1 g(u)\,du/u,\quad t<1,$$

and

$$T'_{1}g(t) := \begin{cases} t^{s/n-1} \int_0^t g(u) \, du, & 0 < t < 1, 0 < s < n, n \ge 1, \\ t^{s/n-1} \int_0^1 g(u) \, du, & t > 1, 0 < s < n, n \ge 1, \end{cases}$$

hence  $\chi_{(0,1)}S_1g$  is decreasing, therefore

$$\left|R_{\Omega}^{s}f\right|^{*}(t) \gtrsim \chi_{(0,1)}S_{1}g(t).$$

$$(2.4)$$

Thus, if (1.7) is given, then (2.4) implies (2.1).

In the sublimiting case  $\beta_E < 1$  we can simplify the condition (2.1), replacing  $S_1$  by  $T_1$ . Here

$$T_{1g}(t) := \begin{cases} t^{s/n-1} \int_{t}^{1} u^{s/n} g(u) \, du/u, & 0 < t < 1, 0 < s < n, n \ge 1, \\ 0, & t > 1. \end{cases}$$
(2.5)

**Theorem 2.2** (Sublimiting case  $\beta_E < 1$ ) The couple  $(\rho_E, \rho_G) \in \mathcal{N}$  is admissible if and only *if* 

$$\rho_G(\chi_{(0,1)}T_1g) \lesssim \rho_E(g), \quad g \in M, \tag{2.6}$$

where we recall that

$$M := \{g \in \mathcal{M}^+ \text{ and } t^m g(t) \text{ is increasing for some } m > 0\}.$$

*Proof* Let  $\rho_E$ ,  $\rho_G$  be an admissible couple, then

$$\rho_G(\chi_{(0,1)}S_1g) \lesssim \rho_E(g).$$

Since  $\rho_G(\chi_{(0,1)}T_1g) \lesssim \rho_G(\chi_{(0,1)}S_1g)$ , it follows that  $\rho_G(\chi_{(0,1)}T_1g) \lesssim \rho_E(g)$ ,  $g \in M$ . Now we need to prove sufficiency of (2.6). We have

$$\chi_{(0,1)}S_1g^* \approx \chi_{(0,1)}T_1g^{**} + \chi_{(0,1)}g^{**}(1),$$

so

$$\rho_G(\chi_{(0,1)}S_1g^*) \lesssim \rho_G(\chi_{(0,1)}T_1g^{**}) + \rho_G(\chi_{(0,1)})g^{**}(1)$$

implies

$$ho_G(\chi_{(0,1)}S_1g^*)\lesssim 
ho_E(g^*).$$

In the subcritical case  $\alpha_E > s/n$  we have another simplification of (2.1).

**Theorem 2.3** (Case  $\alpha_E > s/n$ ) The couple  $(\rho_E, \rho_G) \in \mathcal{N}$  is admissible if and only if

$$\rho_G(\chi_{(0,1)}T_1'g) \lesssim \rho_E(g), \qquad g \in M_0 := \{g \in \mathcal{M}^+, g \text{ is decreasing}\},$$
(2.7)

where

$$T'_{1}g(t) := \begin{cases} t^{s/n-1} \int_{0}^{t} g(u) \, du, & 0 < t < 1, 0 < s < n, n \ge 1, \\ t^{s/n-1} \int_{0}^{1} g(u) \, du, & t > 1, 0 < s < n, n \ge 1. \end{cases}$$

*Proof* Let  $(\rho_E, \rho_G) \in \mathcal{N}$  be admissible, then

$$\rho_G(\chi_{(0,1)}S_1g) \lesssim \rho_E(g), \quad g \in M_0.$$

As

$$\rho_G\bigl(\chi_{(0,1)}T_1'g\bigr) \lesssim \rho_G(\chi_{(0,1)}S_1g),$$

we have

$$\rho_G(\chi_{(0,1)}T_1'g) \lesssim \rho_E(g).$$

For the reverse, it is enough to check that (2.7) implies (2.1) for  $g \in M_0$ , or

$$\rho_G(\chi_{(0,1)}T_1g) \lesssim \rho_E(g), \quad g \in M_0.$$

As

$$\chi_{(0,1)}T_1g \lesssim \chi_{(0,1)}T_1'(t^{-s/n}\chi_{(0,1)}T_1g),$$

so

$$\rho_G(\chi_{(0,1)}T_1g) \lesssim \rho_E(t^{-s/n}\chi_{(0,1)}T_1g) \approx \rho_E(t^{-s/n}Q_1(t^{s/n}g)) \lesssim \rho_E(g).$$

Here we use

$$\rho_E(Q_1(t^{-s/n}g)) \lesssim \rho_E(t^{-s/n}g), \quad g \in M_0, \alpha_E > s/n, t < 1.$$

### 2.1 Optimal quasi-norms

Here we give a characterization of the optimal domain and optimal target quasi-norms. We can define an optimal target quasi-norm by using Theorem 2.1.

**Definition 2.4** (Construction of the optimal target quasi-norm) For a given domain quasi-norm  $\rho_E \in \mathcal{N}_d$  we set

$$\rho_{G_E}(\chi_{(0,1)}g) := \inf\{\rho_E(h) : \chi_{(0,1)}g \le \chi_{(0,1)}S_1h, h \in \mathcal{M}^+\}, \quad g \in \mathcal{M}^+.$$
(2.8)

Then

$$\rho_{G(E)}(g) := \rho_{G_E}(\chi_{(0,1)}g) + \sup_{t>1} t^{1-s/n}g.$$

**Theorem 2.5** Let  $\rho_E \in \mathcal{N}_d$  be a given domain quasi-norm. Then  $\rho_{G(E)} \in \mathcal{N}_t$ , the couple  $\rho_E$ ,  $\rho_{G(E)}$  is admissible and the target quasi-norm is optimal. By definition,

$$G(E) := \left\{ f \in \mathcal{M} : \lim_{t \to \infty} f^*(t) = 0, \rho_{G(E)}(f^*) < \infty \right\}.$$
(2.9)

*Proof* To see that  $\rho_{G(E)}$  is a quasi-norm, we first prove (1.6), for that we first prove

$$\sup_{0 < t < 1} t^{1 - s/n} g^* \lesssim \rho_{G_E}(g^*), \quad g \in \mathcal{M}^+.$$

$$(2.10)$$

Take  $g \in M^+$  and consider an arbitrary  $h \in M^+$  such that, for t < 1,  $g^* \le S_1 h$ . By the Hardy inequality  $g^* \lesssim S_1(h^*)$ . Then,

$$t^{1-s/n}g^* \leq K(t^{1-s/n},h;L^1(\Omega),\Lambda^1(t^{s/n})(\Omega)).$$

Hence

$$\sup_{0 < t < 1} t^{1-s/n} g^* \leq K(1,h;L^1(\Omega),\Lambda^1(t^{s/n})(\Omega)) \lesssim \rho_E(h).$$

Taking the infimum over all *h* such that  $g^* \leq S_1 h$ , we get (2.10). Hence  $G_E \hookrightarrow \Lambda^{\infty}(t^{1-s/n})(0, 1)$ , also  $\rho_G(\chi(1,\infty)g) = \sup_{t>1} t^{1-s/n}g$ . And these two together give (1.6).  $\rho_{G(E)}$  is indeed a quasi-norm on  $\mathcal{M}^+$ . Since  $\chi_{(0,1)}(R_{\Omega}^s f)^* \lesssim \chi_{(0,1)}S_1 f^*$ , which gives  $\rho_{G_E}(\chi_{(0,1)}(R_{\Omega}^s f)^*) \lesssim \rho_E(f^*)$ . Also

$$\sup_{t>1} t^{1-s/n} (R_{\Omega}^s f)^* \lesssim \sup_{t>1} t^{1-s/n} S_1 f^* = \int_0^1 f^*(u) \, du \lesssim \rho_E(f^*).$$

Hence  $\rho_E$ ,  $\rho_{G(E)}$  is admissible couple. Now we are going to prove that  $\rho_{G(E)}$  is optimal. For this purpose, suppose that the couple  $(\rho_E, \rho_{G_1}) \in \mathcal{N}$  is admissible. Then by Theorem 2.1,

$$ho_{G_1}(\chi_{(0,1)}S_1g) \lesssim 
ho_E(g), \quad g \in \mathcal{M}^+.$$

Therefore if  $\chi_{(0,1)}g^* \leq \chi_{(0,1)}S_1h$ ,  $h \in \mathcal{M}^+$ , then

$$\rho_{G_1}(\chi_{(0,1)}g^*) \leq \rho_{G_1}(\chi_{(0,1)}S_1h) \lesssim \rho_E(h),$$

so taking the infimum on the right-hand side, we get

$$ho_{G_1}ig(\chi_{(0,1)}g^*ig)\lesssim 
ho_{G_E}ig(\chi_{(0,1)}g^*ig),$$

hence  $\rho_{G_1}(g^*) \lesssim \rho_{G(E)}(g^*)$ .

In the sublimiting case  $\beta_E < 1$  we can simplify the optimal target quasi-norm.

**Theorem 2.6** If  $\rho_E \in \mathcal{N}_d$  be a given domain quasi-norm. Then for  $g \in \mathcal{M}^+$ ,

$$\rho_{G_E}(\chi_{(0,1)}g^*) \approx \rho(\chi_{(0,1)}g^*), 
\rho(\chi_{(0,1)}g) := \inf\{\rho_E(h) : \chi_{(0,1)}g \le \chi_{(0,1)}T_1h, h \in M\},$$
(2.11)

i.e.,

$$\rho_{G(E)}(g) \approx \rho(\chi_{(0,1)}g) + \sup_{t>1} t^{1-s/n}g.$$

*Proof* If  $\chi_{(0,1)}g^* \leq \chi_{(0,1)}T_1h$ ,  $h \in M$ , then  $\chi_{(0,1)}g^* \leq \chi_{(0,1)}S_1h$ , therefore

$$\rho_{G_E}(\chi_{(0,1)}g^*) \le \rho_E(h)$$

and taking the infimum, we get

$$\rho_{G_E}(\chi_{(0,1)}g^*) \leq \rho(\chi_{(0,1)}g^*).$$

Now for the reverse, let  $\chi_{(0,1)}g^* \leq \chi_{(0,1)}S_1h, h \in \mathcal{M}^+$ . Then

 $\chi_{(0,1)}g^* \lesssim \chi_{(0,1)}S_1(h^*) \approx \chi_{(0,1)}T_1(h^{**}) + \chi_{(0,1)}f^{**}(1),$ 

so

$$\chi_{(0,1)}g^* - \chi_{(0,1)}f^{**}(1) \lesssim \chi_{(0,1)}T_1(h^{**}),$$

which gives, since  $h^{**} \in M$ ,

$$ho\left(\chi_{(0,1)}g^*-\chi_{(0,1)}f^{**}(1)
ight)\lesssim 
ho_E(h^{**})pprox
ho_E(h^*)pprox
ho_E(h),$$

and this implies

$$ho\left(\chi_{(0,1)}g^*
ight)\lesssim
ho_E(h)+f^{**}(1),$$

which gives

$$\rho\left(\chi_{(0,1)}g^*\right) \lesssim \rho_E(h).$$

Taking the infimum, we get  $\rho(\chi_{(0,1)}g^*) \lesssim \rho_{G_E}(\chi_{(0,1)}g^*)$ , hence  $\rho(\chi_{(0,1)}g^*) \approx \rho_{G_E}(\chi_{(0,1)}g^*)$ .

A simplification of the optimal target quasi-norm is possible also in the subcritical case  $\alpha_E > s/n$ .

**Theorem 2.7** Let  $\rho_E \in \mathcal{N}_d$  be a given domain quasi-norm. Then for  $g \in \mathcal{M}^+$ ,

$$\rho_{G_E}(\chi_{(0,1)}g^*) \approx \rho_1(\chi_{(0,1)}g^*), 
\rho_1(\chi_{(0,1)}g) := \inf \{ \rho_E(h) : \chi_{(0,1)}g \le T'_1h, h \in M_0 \},$$
(2.12)

i.e.,

$$\rho_{G(E)}(g) \approx \rho_1(\chi_{(0,1)}g) + \sup_{t>1} t^{1-s/n}g.$$

*Proof* If  $\chi_{(0,1)}g^* \leq \chi_{(0,1)}T'_1h$ ,  $h \in M_0$ , then

$$\chi_{(0,1)}g^* \leq \chi_{(0,1)}S_1h.$$

Therefore

$$\rho_{G_E}(\chi_{(0,1)}g^*) \le \rho_E(h),$$

and taking the infimum, we get

$$\rho_{G_E}(\chi_{(0,1)}g^*) \le \rho_1(\chi_{(0,1)}g^*).$$

For the reverse, let  $\chi_{(0,1)}g^* \leq \chi_{(0,1)}S_1h$ . Then  $\chi_{(0,1)}g^* \lesssim \chi_{(0,1)}T_1(h^*) + \chi_{(0,1)}T_1'(h^*)$ . As

$$\chi_{(0,1)}T_1g \lesssim \chi_{(0,1)}T_1'(t^{-s/n}\chi_{(0,1)}T_1g),$$

we get

$$\chi_{(0,1)}g^* \lesssim \chi_{(0,1)}T_1'(h^* + t^{-s/n}\chi_{(0,1)}T_1(h^*)),$$

whence

$$egin{aligned} &
ho_1ig(\chi_{(0,1)}g^*ig)\lesssim 
ho_Eig(t^{-s/n}\chi_{(0,1)}T_1ig(h^*ig)ig)+
ho_E(h)\ &pprox
ho_Eig(t^{-s/n}Q_1ig(t^{s/n}h^*ig)ig)+
ho_E(h)\ &\lesssim 
ho_E(h), \end{aligned}$$

where we use

$$\rho_E(Q_1(t^{-s/n}g)) \lesssim \rho_E(t^{-s/n}g), \quad g \in M_0, \alpha_E > s/n, t < 1.$$

Therefore, taking the infimum we arrive at

$$ho_1(g^*) \lesssim 
ho_{G_E}(g^*).$$

We can construct an optimal domain quasi-norm  $\rho_{E(G)}$  by Theorem 2.1 as follows.

**Definition 2.8** (Construction of an optimal domain quasi-norm) For a given target quasinorm  $\rho_G \in \mathcal{N}_t$ , we construct an optimal domain quasi-norm  $\rho_{E(G)}$  by

$$\rho_{E(G)}(g) := \rho_G(\chi_{(0,1)}S_1g^*), \quad g \in \mathcal{M}^+.$$
(2.13)

**Theorem 2.9** If  $\rho_G \in \mathcal{N}_t$  is a given target quasi-norm, then the domain quasi-norm  $\rho_{E(G)}$  is optimal. Moreover, if  $\beta_G < 1 - s/n$ , then the couple  $\rho_{E(G)}$ ,  $\rho_G$  is optimal.

*Proof* Since  $\chi_{(0,1)}S_1g^* \approx \chi_{(0,1)}T_1g^{**} + \chi_{(0,1)}g^{**}(1)$ , so

$$\rho_{E(G)}(g) \approx \rho_G \big( \chi_{(0,1)} T_1 g^{**} + \chi_{(0,1)} g^{**}(1) \big)_{g}$$

it follows that  $\rho_{E(G)}$  is a quasi-norm. To prove the property (1.5), we notice that

$$\begin{split} \rho_{E(G)}(f^*) &= \rho_G(\chi_{(0,1)}S_1f^*) \ge \rho_G(\chi_{(0,1)})(Sf^*)(1) \\ &\gtrsim \int_0^1 f^*(t) \, dt \approx \|f\|_{L^1(\Omega)}. \end{split}$$

The couple  $\rho_{E(G)}$ ,  $\rho_G$  is admissible since  $\rho_{E(G)}(g) = \rho_G(\chi_{(0,1)}S_1g^*) \ge \rho_G(\chi_{(0,1)}S_1g)$ . Moreover,  $\rho_{E(G)}$  is optimal, since for any admissible couple  $(\rho_{E_1}, \rho_G) \in \mathcal{N}$  we have  $\rho_G(\chi_{(0,1)}S_1h) \le \rho_{E_1}(h), h \in \mathcal{M}^+$ . Therefore,

$$\rho_{E(G)}(g^*) \leq \rho_{E_1}(g^*).$$

To check that if  $\beta_G < 1 - s/n$ , the couple  $\rho_{E(G)}$ ,  $\rho_G$  is optimal, we need only to prove that  $\rho_G$  is an optimal target quasi-norm, *i.e.*,  $\rho(g^*) \leq \rho_G(g^*)$ , where  $\rho = \rho_{G(E(G))}$  is defined by (2.11), since  $\beta_{E(G)} < 1$ . We have  $\chi_{(0,1)}g^{**}(t) - \chi_{(0,1)}g^{**}(1) = \chi_{(0,1)}T_1h$ , where  $h(t) = t^{-s/n}[g^{**}(t) - g^*(t)] \in M$ , t < 1, therefore,

$$\rho_{G_{E(G)}}(\chi_{(0,1)}g^{**}(t) - \chi_{(0,1)}g^{**}(1)) \le \rho_{E(G)}(h) = \rho_G(\chi_{(0,1)}S_1h^*)$$

implies

$$\rho_{G_{E(G)}}(\chi_{(0,1)}g^{**}(t)) \lesssim \rho_G(\chi_{(0,1)}S_1h^*) + g^{**}(1),$$

since

$$\chi_{(0,1)}S_1h^* = \chi_{(0,1)}t^{s/n}h^{**} + \chi_{(0,1)}T_1h^* \lesssim \chi_{(0,1)}t^{s/n}h^{**} + \chi_{(0,1)}T_1h^{**},$$

so

$$\rho_{G_{E(G)}}(\chi_{(0,1)}g^{**}(t)) \lesssim \rho_{G}(\chi_{(0,1)}t^{s/n}h^{**}) + \rho_{G}(\chi_{(0,1)}T_{1}h^{**}) + g^{**}(1).$$

Now we define

$$P_1g(t) := \frac{1}{t} \int_0^t g(u) \, du, \quad t < 1.$$

For t < 1, since  $h^* \leq Q_1 h$ , we have  $h^{**} = P_1 h^* \leq Q_1 P_1 h$ , therefore  $T_1 h^{**} \leq T_1 Q_1 (P_1 h) \leq T_1 (P_1 h)$ . Also  $T_1 (P_1 h) \approx T_1 h + t^{s/n} P_1 h$  and  $P_1 h \leq h^{**}$ . Therefore,

$$\begin{split} \rho_{G_{E(G)}}\big(\chi_{(0,1)}g^*\big) &\lesssim \rho_G(\chi_{(0,1)}T_1h) + \rho_G\big(\chi_{(0,1)}t^{s/n}h^{**}\big) + g^{**}(1) \\ &\lesssim \rho_G\big(\chi_{(0,1)}g^{**}\big) + \rho_G\big(\chi_{(0,1)}t^{s/n}h^{**}\big) + g^{**}(1). \end{split}$$

For t < 1, since  $h(t) \le t^{-s/n}g^{**}(t)$  we have  $h^*(t) \le t^{-s/n}g^{**}$ , therefore using  $\beta_G < 1 - s/n$ , Minkowski's inequality, and monotonicity of  $\rho_G$ , we have

$$ho_G(\chi_{(0,1)}t^{s/n}h^{**}) \lesssim 
ho_G(\chi_{(0,1)}g^{**}).$$

Thus

$$ho_{G_{E(G)}}ig(\chi_{(0,1)}g^*ig)\lesssim
ho_Gig(\chi_{(0,1)}g^{**}ig)pprox
ho_Gig(\chi_{(0,1)}g^*ig),$$

hence  $\rho(g^*) \leq \rho_G(g^*)$ .

**Example 2.10** If  $G = C_0$  consists of all bounded continuous functions such that  $f^*(\infty) = 0$  and  $\rho_G(g) = g^*(0) = g^{**}(0)$ , then  $\alpha_G = \beta_G = 0$  and  $\rho_{E(G)}(g) \approx \int_0^1 t^{s/n} g^{**} dt/t$ , *i.e.*,  $E = \Gamma^1(t^{s/n})(\Omega)$  and the couple *E*, *G* is optimal.

**Example 2.11** Let  $G = \Lambda^{\infty}(\nu)$  with  $\beta_G < 1 - s/n$  and let

$$\rho_E(g) = \sup \nu(t) \int_t^1 u^{s/n} g^{**}(u) \, du/u.$$

Then, the couple *E*, *G* is optimal and  $\beta_E < 1$ . In particular, this is true if  $\nu$  is slowly varying since then  $\alpha_G = \beta_G = 0$  and  $\alpha_E = \beta_E = s/n < 1$ .

## 2.2 Subcritical case

Here we suppose that  $s/n < \alpha_E$ .

**Theorem 2.12** (Sublimiting case  $\beta_E < 1$ ) For a given domain quasi-norm  $\rho_E \in \mathcal{N}_d$  with  $\rho_E(\chi_{(0,1)}(t)t^{-s/n}) < \infty$ , we have

$$\rho_{G_E}(\chi_{(0,1)}g^*) \approx \rho_E(t^{-s/n}g^*) \approx \rho_E(t^{-s/n}g^{**}), \qquad (2.14)$$

i.e.,

$$\rho_{G(E)}(g^*) \approx \rho_{G_E}(\chi_{(0,1)}g^*) + \sup_{t>1} t^{1-s/n}g.$$

*Moreover, the couple*  $\rho_E$ *,*  $\rho_{G(E)}$  *is optimal.* 

*Proof* If  $\chi_{(0,1)}g^* \leq \chi_{(0,1)}T'_1h$ ,  $h \in M_0$ , then for t < 1,  $t^{-s/n}g^* \leq h^{**}$ , whence

$$\rho_E(t^{-s/n}g^*) \lesssim \rho_E(h^{**}) \approx \rho_E(h^*) \approx \rho_E(h).$$

Taking the infimum, we get

$$\rho_E(t^{-s/n}g^*) \lesssim \rho_{G_E}(\chi_{(0,1)}g^*).$$

For the reverse, we notice that  $\chi_{(0,1)}T'_1(t^{-s/n}g^*) \gtrsim \chi_{(0,1)}g^* = g^*$ , hence  $\rho_{G_E}(\chi_{(0,1)}g^*) \lesssim \rho_E(t^{-s/n}g^*)$ .

It remains to prove that the domain quasi-norm  $\rho_E$  is also optimal. Let  $\rho_{E_1}$ ,  $\rho_{G(E)}$  be an admissible couple in  $\mathcal{N}$ . Then

$$\begin{split} \rho_{E_1}(g^*) \gtrsim \rho_{G(E)}(\chi_{(0,1)}S_1g^*) \\ &= \rho_{G_E}(\chi_{(0,1)}S_1g^*) + \sup_{t>1} t^{1-s/n}\chi_{(0,1)}S_1g^* \\ &\approx \rho_E(t^{-s/n}\chi_{(0,1)}S_1g^*) + 0 \\ &\gtrsim \rho_E(t^{-s/n}\chi_{(0,1)}T_1'g^*) \\ &\gtrsim \rho_E(\chi_{(0,1)}g^{**}) \\ &\approx \rho_E(\chi_{(0,1)}g^*) \\ &\approx \rho_E(g^*). \end{split}$$

Now we give an example.

### Example 2.13 Let

$$E = \Lambda^q (t^{\alpha} w_1)(\Omega) \cap \Lambda^r (t^{\beta} w_2)(\Omega), \quad s/n < \alpha < \beta < 1, 0 < q, r \le \infty,$$

where  $w_1$  and  $w_2$  are slowly varying. Then we have  $\alpha_E = \alpha$ ,  $\beta_E = \beta$ . Now by applying the previous theorem, we get

$$G(E) = \Lambda_0^q (t^{\alpha - s/n} w_1) \cap \Lambda_0^r (t^{\beta - s/n} w_2),$$

and the couple (E, G(E)) is optimal.

In the limiting case  $\beta_E = 1$ , the formula for the optimal target quasi-norm is more complicated.

Theorem 2.14 (Limiting case) Let

$$\rho_E(g) := \rho_H(\chi_{(0,1)}g^{**}), \qquad \rho_{G_1}(g) := \rho_H(t^{-1} \sup_{0 < u < t} u^{1-s/n}g(u)),$$

where  $\rho_H$  is a monotone quasi-norm with  $\alpha_H = \beta_H = 1$ ,  $\rho_H(\chi_{(0,1)}) < \infty$ ,  $\rho_H(\chi_{(1,\infty)}t^{-1}) < \infty$ and let

$$E := \left\{ f \in \mathcal{M} : tf^{**}(t) \to 0 \text{ as } t \to 0 \text{ and } \rho_E(f^*) < \infty \right\},$$
  
$$G_1 := \left\{ f \in \mathcal{M} : \sup_{0 < u < t} u^{1 - s/n} f^{**}(u) \to 0 \text{ as } t \to 0 \text{ and } \rho_G(f^*) < \infty \right\}.$$

Define

$$\rho_G(g) := \rho_{G_1}(\chi_{(0,1)}g) + \sup_{t>1} t^{1-s/n}g.$$

Then the couple  $\rho_E$ ,  $\rho_G$  is optimal.

Proof Note that

$$E \hookrightarrow L^1(\Omega).$$

Indeed,  $\rho_E(f^*) = \rho_H(\chi_{(0,1)}g^{**}) \gtrsim f^{**}(1) = \int_0^1 f^*(u) \, du$ . Hence the above embedding follows. Consequently,  $\rho_E \in \mathcal{N}_d$ . On the other hand,

$$\rho_G(f^*) \ge \rho_H\left(\chi_{(1,\infty)}t^{-1}\sup_{0 < u < t} u^{1-s/n}f^*(u)\right)$$
$$\ge \sup_{0 < u < 1} u^{1-s/n}f^*(u)\rho_H(\chi_{(1,\infty)}t^{-1}).$$

Hence  $G_1 \hookrightarrow \Lambda^{\infty}(t^{1-s/n})(0,1)$ . This together with  $\rho_G(\chi_{(1,\infty)}) = \sup_{t>1} t^{1-s/n}g$  gives  $G \hookrightarrow \Lambda^{\infty}(t^{1-s/n})$ . Then from the conditions on  $G_1$  it follows that  $\rho_G \in \mathcal{N}_t$ . Also,  $\alpha_E = \beta_E = 1$  and  $\alpha_G = \beta_G = 1 - s/n$ . On the other hand, if 0 < u < 1, then

$$u^{1-s/n} (R_{\Omega}^{s} f)^{**}(u) \lesssim \int_{0}^{u} f^{*}(v) \, dv + u^{1-s/n} \int_{u}^{1} v^{s/n-1} f^{*}(v) \, dv.$$

For every  $\varepsilon > 0$ , we can find a  $\delta > 0$ , such that  $vf^{**}(v) < \varepsilon$  for all  $0 < v < \delta$ . Then for 0 < t < 1,

$$\sup_{0 < u < t} u^{1 - s/n} \left( R_{\Omega}^{s} f \right)^{**}(u) \lesssim \int_{0}^{t} f^{*}(v) \, dv + \varepsilon + t^{1 - s/n} \int_{\delta}^{1} v^{s/n - 1} f^{*}(v) \, dv.$$
(2.15)

Now it is easy to check that  $\lim_{t\to 0} \sup_{0 < u < t} u^{1-s/n} (R_{\Omega}^s f)^{**} = 0$  if  $f \in E$ .

To prove that  $R^s : E \to G$  we need to check that the couple  $\rho_E$ ,  $\rho_G$  is admissible. We write for t < 1,

$$T'_1g(t) = T'_1g^*(t) = t^{s/n}g^{**}(t), \quad g \in M_0.$$

Then

$$\begin{split} \rho_G(\chi_{(0,1)}T_1'g) &= \rho_{G_1}(\chi_{(0,1)}T_1'g) + \sup_{t>1} t^{1-s/n}\chi_{(0,1)}T_1'g \\ &= \rho_H(\chi_{(0,1)}t^{-1}\sup_{0 < u < t} u^{1-s/n}T_1'g(u)) + \sup_{t>1} t^{1-s/n}\chi_{(0,1)}T_1'g \\ &= \rho_H(\chi_{(0,1)}g^{**}) \\ &= \rho_E(g). \end{split}$$

To prove that the target space is optimal, notice first that

$$\sup_{0< u < t} u^{1-s/n} f^{**}(u) \approx K(t^{1-s/n}, f; \Lambda^{\infty}(t^{1-s/n}), L^{\infty}).$$

If  $f \in G$ , then by [2]

$$\sup_{0 < u < t} u^{1-s/n} f^{**}(u) \approx \int_0^{t^{1-s/n}} h_1(u) \, du \quad \text{(where } h_1\text{, is decreasing)}$$
$$\approx \int_0^t h_1(v^{1-s/n}) v^{-s/n} \, dv \quad \text{(by a change of variables)}.$$

If  $h(v) = h_1(v^{1-s/n})v^{-s/n}$  then obviously  $h \in M_0$  and

$$\sup_{0 < u < t} u^{1 - s/n} f^{**}(u) \approx \int_0^t h(v) \, dv = t h^{**}(t),$$

whence

$$\rho_E(h) \approx \rho_H(\chi_{(0,1)}h^{**}) \approx \rho_H(\chi_{(0,1)}t^{-1}\sup_{0 < u < t} u^{1-s/n}f^{**}(u)) \approx \rho_{G_1}(\chi_{(0,1)}f^*).$$

On the other hand,

$$\sup_{0< u < t} u^{1-s/n} f^{**}(u) \approx t h^{**}(t)$$

implies  $t^{1-s/n}f^*(t) \leq th^{**}(t)$ , which gives  $f^* \leq t^{s/n}h^{**}$ , which implies  $\chi_{(0,1)}f^* \leq \chi_{(0,1)}T'_1h$ , and therefore

$$ho_{G_E}ig(\chi_{(0,1)}f^*ig)\lesssim
ho_E(h)\lesssim
ho_{G_1}ig(\chi_{(0,1)}f^*ig),$$

proving optimality of G. To check optimality of E, we notice that

$$\rho_{E(G)}(h) = \rho_G(\chi_{(0,1)}S_1h^*) \gtrsim \rho_G(\chi_{(0,1)}T_1h^{**})$$
$$\approx \rho_H(t^{-1}\sup_{0 < u < t} u^{1-s/n}\chi_{(0,1)}T_1h^{**}(u))$$
$$\gtrsim \rho_H(\chi_{(0,1)}h^{**}).$$

Hence

$$\rho_{E(G)}(h) \gtrsim \rho_{E}(h).$$

**Example 2.15** Let  $E = \Gamma_0^{\infty}(tw)(\Omega)$ , consisting of all  $f \in \Gamma^{\infty}(tw)(\Omega)$  such that  $tf^{**}(t) \to 0$  as  $t \to 0$ , *w* is slowly varying. Then  $\beta_E = 1$ . If  $G = \Gamma_1^{\infty}(t^{1-s/n}v) \cap \Gamma^{\infty}(tw)$ , where  $v(t) = \sup_{u>t} w(u)$  and

$$\Gamma_1^{\infty}(\nu) := \left\{ f \in \Gamma^{\infty}(\nu) : \sup_{0 < u < t} u^{1 - s/n} f^*(u) \to 0 \text{ as } t \to 0 \right\},$$

then this couple is optimal. In particular, if w = 1, then  $E = L^1(\Omega)$  and  $G = \Gamma_1^{\infty}(t^{1-s/n})$ .

### **Competing interests**

The authors declare that they have no competing interests.

### Authors' contributions

All authors read and approved the final manuscript.

### Author details

<sup>1</sup>Department of Mathematics and RINS, Gyeongsang National University, Jinju, 660-701, Korea. <sup>2</sup>Department of Mathematics, Lahore Leads University, Lahore, 54810, Pakistan. <sup>3</sup>Department of Mathematics, Government College University, Faisalabad, Pakistan. <sup>4</sup>Centre for Advanced Studies in Pure and Applied Mathematic, Bahauddin Zakariya University, Multan, 54000, Pakistan. <sup>5</sup>Department of Mathematics, Dong-A University, Pusan, 614-714, Korea.

### Acknowledgements

This study was supported by research funds from Dong-A University.

### Received: 15 October 2013 Accepted: 20 January 2014 Published: 10 Feb 2014

### References

- 1. Köthe, G: Topologisch Lineare Räume. Springer, Berlin (1966)
- 2. Bergh, J, Löfström, J: Interpolation Spaces, an Introduction. Springer, Berlin (1976)
- 3. Bennett, C, Sharpley, R: Interpolation of Operators. Academic Press, Boston (1988)
- 4. Muckenhoupt, B: Hardy's inequality with weights. Stud. Math. 44, 31-38 (1972)
- 5. Brudnyi, YA, Krugliak, NY: Interpolation Spaces and Interpolation Functors. North-Holland, Amsterdam (1991)
- Cianchi, A: Symmetrization and second-order Sobolev inequalities. Ann. Mat. Pura Appl. 183, 45-77 (2004). doi:10.1007/s10231-003-0080-6

### 10.1186/1029-242X-2014-60

Cite this article as: Kang et al.: Optimal couples of rearrangement invariant spaces for the Riesz potential on the bounded domain. *Journal of Inequalities and Applications* 2014, 2014:60

# Submit your manuscript to a SpringerOpen<sup>®</sup> journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- Immediate publication on acceptance
- ▶ Open access: articles freely available online
- ► High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at > springeropen.com