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Abstract
In this article we study several classes of sum operator equations on ordered Banach
spaces and present some new existence and uniqueness results of positive solutions,
which extend the existing corresponding results. Moreover, we establish some
pleasant properties of nonlinear eigenvalue problems for several classes of sum
operator equations. As applications, we utilize the main results obtained in this paper
to study two classes nonlinear problems; one is the integral equation
u(t) = λ

∫ b
a G(t, s)f (s,u(s))ds, where f and G are both nonnegative, λ > 0 is a parameter;

the other is the elliptic boundary value problem for the Lane-Emden-Fowler equation
–�u = λf (x,u), u(x) > 0 in �, u(x) = 0 on ∂�, where � is a bounded domain with
smooth boundary in RN (N ≥ 1), λ > 0 and f (x,u) is allowed to be singular on ∂�. The
new results on the existence and uniqueness of positive solutions for these problems
are given, which complement the existing results of positive solutions for these
problems in the literature.
MSC: 47H10; 47H07; 45G15; 35J60; 35J65

Keywords: positive solution; operator equation; normal cone; integral equation;
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1 Introduction and preliminaries
With the development of nonlinear sciences, nonlinear functional analysis has been an
active area of research over the past several decades. As an important branch of nonlinear
functional analysis, nonlinear operator theory has attracted much attention and has been
widely studied, especially nonlinear operators which arise in the connection with non-
linear differential and integral equations have been extensively studied (see for instance
[–]). It is well known that the existence and uniqueness of positive solutions to nonlin-
ear operator equations is very important in theory and applications. Many authors have
studied this problem; for a small sample of such work, we refer the reader to [, , –].
The operator equation considered in this papers is always of the following form:

Ax = x or A(x,x) = x.

In [], Zhao considered the existence of solutions for the sum operator equation

Ax + Bx = x, (.)
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where A is increasing e-concave, B is increasing e-convex and A+B is a strict set contrac-
tion. Motivated by the works [, ], Sang et al. considered the operator equation (.),
where A is ϕ-concave, B is ϕ-convex and A + B is also a strict set contraction. However,
we can see that the conditions of the main results in [, ] are strong and of utmost
convenience.
Recently, we considered successively the operator equation (.) and the following op-

erator equation:

A(x,x) + Bx = x, (.)

the operators A, B in (.) are increasing, α-concave and sub-homogeneous, respec-
tively; the operators A, B in (.) are mixed monotone and increasing α-concave (or sub-
homogeneous), respectively. In [], by using the properties of cones and a fixed point theo-
rem for increasing general α-concave operators, we established the existence and unique-
ness of positive solutions for the operator equation (.), andwe utilized themain results to
present the existence and uniqueness of positive solutions for the following two problems;
one is a fourth-order two-point boundary value problem for elastic beam equations,

⎧⎪⎨
⎪⎩
u′′′′(t) = f (t,u(t)), ≤ t ≤ ,
u() = u′() = ,
u′′() = , u′′′() = g(u()),

where f ∈ C([, ] × R) and g ∈ C(R) are real functions; and the other is an elliptic value
problem for Lane-Emden-Fowler equations

⎧⎪⎨
⎪⎩
–�u = f (x,u) + g(x,u), x ∈ �,
u(x) > , x ∈ �,
u(x) = , x ∈ ∂�,

where f (x,u), g(x,u) are allowed to be singular on ∂�. In [], by using the properties of
cones and a fixed point theorem for mixed monotone operators, we established the exis-
tence and uniqueness of positive solutions for the operator equation (.), and we utilized
the results obtained to study the existence and uniqueness of positive solutions for a non-
linear fractional differential equation boundary value problem,

{
Dα

+u(t) = f (t,u(t),u(t)) + g(t,u(t)),  < t < ,
u() = u() = u′() = u′() = ,

where Dα
+ is the Riemann-Liouville fractional derivative of order α > . These results are

useful and interesting. For completeness, in this paper we will further consider the follow-
ing several classes of sum operators:

(i) the sum of increasing operators and decreasing operators;
(ii) the sum of increasing operators and mixed monotone operators;
(iii) the sum of decreasing operators and mixed monotone operators;
(iv) the sum of increasing operators, decreasing operators and mixed monotone

operators.
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Motivated by our works [, , ], we will study the above cases (i)-(iv). So this article
is a continuation of our papers [, , ], and we will present some interesting results
on the existence and uniqueness of positive solutions for the above several classes of sum
operator equations. To demonstrate the applicability of our abstract results, we give, in
the last section of the paper, some applications to nonlinear integral equations and elliptic
boundary value problems for the Lane-Emden-Fowler equations.
In the following two subsections, we state some definitions, notations, and known re-

sults. For convenience of the readers, we refer to [–, –, –] for details.

1.1 Some basic definitions and notations
Suppose that E is a real Banach space which is partially ordered by a cone P ⊂ E, i.e., x≤ y
if and only if y– x ∈ P. If x≤ y and x �= y, then we denote x < y or y > x. By θ we denote the
zero element of E. Recall that a non-empty closed convex set P ⊂ E is a cone if it satisfies
(i) x ∈ P,λ ≥  ⇒ λx ∈ P; (ii) x ∈ P, –x ∈ P ⇒ x = θ .
Putting P̊ = {x ∈ P|x is an interior point of P}, a cone P is said to be solid if P̊ is non-

empty. Moreover, P is called normal if there exists a constant N >  such that, for all x, y ∈
E, θ ≤ x ≤ y implies ‖x‖ ≤ N‖y‖; in this case N is called the normality constant of P. If
x,x ∈ E, the set [x,x] = {x ∈ E|x ≤ x ≤ x} is called the order interval between x and x.
We say that an operator A : E → E is increasing (decreasing) if x ≤ y implies Ax ≤ Ay
(Ax ≥ Ay).
For all x, y ∈ E, the notation x ∼ y means that there exist λ >  and μ >  such that

λx ≤ y ≤ μx. Clearly, ∼ is an equivalence relation. Given h > θ (i.e., h ≥ θ and h �= θ ), we
denote by Ph the set Ph = {x ∈ E|x∼ h}. It is easy to see that Ph ⊂ P.

Definition . Let D = P or D = P̊ and α be a real number with  ≤ α < . An operator
A : P → P is said to be α-concave if it satisfies

A(tx) ≥ tαAx, ∀t ∈ (, ),x ∈ D.

Notice that the definition of an α-concave operator mentioned above is different from
that in [], because we need not require the cone to be solid in general.

Definition . An operator A : P → P is said to be sub-homogeneous if it satisfies

A(tx) ≥ tAx, ∀t ∈ (, ),x ∈ P.

Definition . (See [, , ]) A : P×P → P is said to be a mixed monotone operator if
A(x, y) is increasing in x and decreasing in y, i.e., ui, vi (i = , ) ∈ P, u ≤ u, v ≥ v imply
A(u, v) ≤ A(u, v). An element x ∈ P is called a fixed point of A if A(x,x) = x.

1.2 Some fixed point theorems and properties
In this subsection, we assume that E is a real Banach space with a partial order introduced
by a cone P of E. Take h ∈ E, h > θ , Ph is given as in Section ..
In the paper [], we considered the existence and uniqueness of positive solutions to the

operator equation (.) on ordered Banach spaces and established the following conclu-
sion.
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Theorem . (See Theorem . in []) Let P be a normal cone in E, A : P → P be an
increasing α-concave operator and B : P → P be an increasing sub-homogeneous operator.
Assume that

(i) there is h > θ such that Ah ∈ Ph and Bh ∈ Ph;
(ii) there exists a constant δ >  such that Ax ≥ δBx, ∀x ∈ P.

Then the operator equation (.) has a unique solution x∗ in Ph. Moreover, constructing
successively the sequence yn = Ayn– + Byn–, n = , , . . . for any initial value y ∈ Ph, we
have yn → x∗ as n→ ∞.

In the paper [], we present the following fixed point theorem for a class of general
mixed monotone operators and established some pleasant properties of nonlinear eigen-
value problems for mixed monotone operators.

Theorem . (See Lemma . and Theorem . in []) Let P be a normal cone in E.
Assume that A : P × P → P is a mixed monotone operator and satisfies:

(i) there exists h ∈ P with h �= θ such that A(h,h) ∈ Ph;
(ii) for any u, v ∈ P and t ∈ (, ), there exists ϕ(t) ∈ (t, ] such that

A(tu, t–v)≥ ϕ(t)A(u, v).
Then:
() T : Ph × Ph → Ph;
() there exist u, v ∈ Ph and r ∈ (, ) such that rv ≤ u < v,

u ≤ A(u, v) ≤ A(v,u) ≤ v;
() the operator equation (.) has a unique solution x∗ in Ph;
() for any initial values x, y ∈ Ph, constructing successively the sequences

xn = A(xn–, yn–), yn = A(yn–,xn–), n = , , . . . ,

we have xn → x∗ and yn → x∗ as n→ ∞.

Theorem. (See Theorem. in []) Assume that the operator A satisfies the conditions
of Theorem .. Let xλ (λ > ) denote the unique solution of nonlinear eigenvalue equation
A(x,x) = λx in Ph. Then we have the following conclusions:

(R) If ϕ(t) > t 
 for t ∈ (, ), then xλ is strictly decreasing in λ, that is,  < λ < λ implies

xλ > xλ ;
(R) If there exists β ∈ (, ) such that ϕ(t)≥ tβ for t ∈ (, ), then xλ is continuous in λ, that

is, λ → λ (λ > ) implies ‖xλ – xλ‖ → ;
(R) If there exists β ∈ (,  ) such that ϕ(t) ≥ tβ for t ∈ (, ), then limλ→∞ ‖xλ‖ = ,

limλ→+ ‖xλ‖ =∞.

Based on Theorem ., in [] we considered the operator equation (.) and established
the following conclusions.

Theorem . (See Theorem . in []) Let P be a normal cone in E, α ∈ (, ).A : P×P →
P is a mixed monotone operator and satisfies

A
(
tx, t–y

) ≥ tαA(x, y), t ∈ (, ),x, y ∈ P.
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B : P → P is an increasing sub-homogeneous operator. Assume that
(i) there is h ∈ Ph such that A(h,h) ∈ Ph and Bh ∈ Ph;
(ii) there exists a constant δ >  such that A(x, y)≥ δBx, ∀x, y ∈ P.

Then:
() A : Ph × Ph → Ph, B : Ph → Ph;
() there exist u, v ∈ Ph and r ∈ (, ) such that

rv ≤ u < v, u ≤ A(u, v) + Bu ≤ A(v,u) + Bv ≤ v;

() the operator equation (.) has a unique solution x∗ in Ph;
() for any initial values x, y ∈ Ph, constructing successively the sequences

xn = A(xn–, yn–) + Bxn–, yn = A(yn–,xn–) + Byn–, n = , , . . . ,

we have xn → x∗ and yn → x∗ as n→ ∞.

Theorem. (See Theorem . in []) Let P be a normal cone in E, α ∈ (, ).A : P×P →
P is a mixed monotone operator and satisfies

A
(
tx, t–y

) ≥ tA(x, y), t ∈ (, ),x, y ∈ P.

B : P → P is an increasing α-concave operator. Assume that
(i) there is h ∈ Ph such that A(h,h) ∈ Ph and Bh ∈ Ph;
(ii) there exists a constant δ >  such that A(x, y)≤ δBx, ∀x, y ∈ P.

Then:
() A : Ph × Ph → Ph, B : Ph → Ph;
() there exist u, v ∈ Ph and r ∈ (, ) such that

rv ≤ u < v, u ≤ A(u, v) + Bu ≤ A(v,u) + Bv ≤ v;

() the operator equation (.) has a unique solution x∗ in Ph;
() for any initial values x, y ∈ Ph, constructing successively the sequences

xn = A(xn–, yn–) + Bxn–, yn = A(yn–,xn–) + Byn–, n = , , . . . ,

we have xn → x∗ and yn → x∗ as n→ ∞.

2 Main results
In this section we consider the existence and uniqueness of positive solutions for several
classes of sum operator equations. We always assume that E is a real Banach space with a
partial order induced by a coneP of E. Take h ∈ E, h > θ and Ph as given in the Introduction.

2.1 The sum of increasing operators and decreasing operators
Now we first consider the following sum operator equations:

Ax + Bx = x, (.)

Ax + Bx = λx, λ > . (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/58
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Theorem . Let P be a normal cone, A : P → P be an increasing operator and B : P → P
be a decreasing operator. Assume that:

(H) for any x ∈ P and t ∈ (, ), there exist ϕi(t) ∈ (t, ) (i = , ) such that

A(tx) ≥ ϕ(t)Ax, B(tx)≤ 
ϕ(t)

Bx; (.)

(H) there exists h ∈ Ph such that Ah + Bh ∈ Ph.

Then:
(i) there exist u, v ∈ Ph and r ∈ (, ) such that

rv ≤ u < v, u ≤ Au + Bv ≤ Av + Bu ≤ v;

(ii) the operator equation (.) has a unique solution x∗ in Ph;
(iii) for any initial values x, y ∈ Ph, constructing successively the sequences

xn = Axn– + Byn–, yn = Ayn– + Bxn–, n = , , . . . ,

we have xn → x∗, yn → x∗ as n→ ∞.

Proof Firstly, from (.), we have

A
(

t
x
)

≤ 
ϕ(t)

Ax, B
(

t
x
)

≥ ϕ(t)Bx, ∀x ∈ P, t ∈ (, ). (.)

Since Ah + Bh ∈ Ph, there exist constants λ,λ >  such that

λh≤ Ah + Bh ≤ λh.

Also from h ∈ Ph, there exists a constant t ∈ (, ) such that

th≤ h ≤ 
t
h.

Let ϕ(t) =min{ϕ(t),ϕ(t)}, t ∈ (, ). Then ϕ(t) ∈ (t, ). From (.) and (.), we obtain

Ah + Bh≥ A(th) + B
(

t
h

)
≥ ϕ(t)Ah + ϕ(t)Bh

≥ ϕ(t)(Ah + Bh)≥ λϕ(t)h,

Ah + Bh≤ A
(

t
h

)
+ B(th) ≤ 

ϕ(t)
Ah +


ϕ(t)

Bh

≤ 
ϕ(t)

(Ah + Bh) ≤ λ

ϕ(t)
h.

Note that λϕ(t), λ
ϕ(t)

> , we can get Ah + Bh ∈ Ph.
Next we define an operatorT = A+B by T(x, y) = Ax+By. Then T : P×P → P is amixed

monotone operator and T(h,h) = Ah + Bh ∈ Ph. Moreover, for any x, y ∈ P and t ∈ (, ),

http://www.journalofinequalitiesandapplications.com/content/2014/1/58
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we have

T
(
tx, t–y

)
= A(tx) + B

(
t–y

) ≥ ϕ(t)Ax + ϕ(t)By≥ ϕ(t)(Ax + By) = ϕ(t)T(x, y).

Hence, the operator T satisfies the condition (ii) in Theorem .. An application of The-
orem . implies that: there are u, v ∈ Ph and r ∈ (, ) such that rv ≤ u < v, u ≤
T(u, v) ≤ T(v,u) ≤ v; operator equation T(x) = x has a unique positive x∗ ∈ Ph; for
any initial values x, y ∈ Ph, constructing successively the sequences

xn = T(xn–, yn–), yn = T(yn–,xn–), n = , , . . . ,

we have ‖xn – x∗‖ →  and ‖yn – x∗‖ →  as n → ∞. That is:
(i) there exist u, v ∈ Ph and r ∈ (, ) such that

rv ≤ u < v, u ≤ Au + Bv ≤ Av + Bu ≤ v;

(ii) the operator equation (.) has a unique solution x∗ in Ph;
(iii) for any initial values x, y ∈ Ph, constructing successively the sequences

xn = Axn– + Byn–, yn = Ayn– + Bxn–, n = , , . . . ,

we have xn → x∗, yn → x∗ as n→ ∞. �

Note that h ∈ Ph, and we can easily obtain the following conclusions.

Corollary . Let P be a normal cone,A : Ph → Ph be an increasing operator and B : Ph →
Ph be a decreasing operator. Assume that:

(H) for any x ∈ Ph and t ∈ (, ), there exist ϕi(t) ∈ (t, ) (i = , ) such that

A(tx) ≥ ϕ(t)Ax, B(tx)≤ 
ϕ(t)

Bx.

Then:
(i) there exist u, v ∈ Ph and r ∈ (, ) such that

rv ≤ u < v, u ≤ Au + Bv ≤ Av + Bu ≤ v;

(ii) the operator equation (.) has a unique solution x∗ in Ph;
(iii) for any initial values x, y ∈ Ph, constructing successively the sequences

xn = Axn– + Byn–, yn = Ayn– + Bxn–, n = , , . . . ,

we have xn → x∗, yn → x∗ as n→ ∞.

Corollary . Let α,α ∈ (, ). Let P be a normal cone, A : P → P be an increasing
α-concave operator and B : P → P be a decreasing α-convex operator. Assume that (H)
holds. Then:

http://www.journalofinequalitiesandapplications.com/content/2014/1/58
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(i) there exist u, v ∈ Ph and r ∈ (, ) such that

rv ≤ u < v, u ≤ Au + Bv ≤ Av + Bu ≤ v;

(ii) the operator equation (.) has a unique solution x∗ in Ph;
(iii) for any initial values x, y ∈ Ph, constructing successively the sequences

xn = Axn– + Byn–, yn = Ayn– + Bxn–, n = , , . . . ,

we have xn → x∗, yn → x∗ as n→ ∞.

Proof Let ϕ(t) = tα , ϕ(t) = tα , t ∈ (, ). Then ϕ(t),ϕ(t) ∈ (t, ) for t ∈ (, ) and

A(tx) ≥ tαAx = ϕ(t)Ax, B(tx)≤ t–αBx =


ϕ(t)
Bx, x ∈ P.

Hence, the conclusions follow from Theorem .. �

Corollary . Let α ∈ (, ) and P be a normal cone. Let A : P → P be an increasing
α-concave operator and A : P → P be an increasing sub-homogeneous operator, B : P → P
be a decreasing operator which satisfies (.). Assume that:

(H) there exists h ∈ Ph such that Ah +Ah ∈ Ph;
(H) there exists δ >  such that Ax≥ δAx, x ∈ P;
(H) there exists h ∈ Ph such that Bh ∈ Ph.

Then:
(i) there exist u, v ∈ Ph and r ∈ (, ) such that

rv ≤ u < v, u ≤ Au +Au + Bv ≤ Av +Av + Bu ≤ v;

(ii) the following operator equation:

Ax +Ax + Bx = x, (.)

has a unique solution x∗ in Ph;
(iii) for any initial values x, y ∈ Ph, constructing successively the sequences

xn = Axn– +Axn– + Byn–,

yn = Ayn– +Ayn– + Bxn–, n = , , . . . ,

we have xn → x∗, yn → x∗ as n→ ∞.

Proof Define an operator A = A +A by Ax = Ax +Ax. Then A : P → P is an increasing
operator and Ah ∈ Ph. Since h,h ∈ Ph, there exist t, t ∈ (, ) such that

th≤ h ≤ 
t
h, th≤ h ≤ 

t
h.

http://www.journalofinequalitiesandapplications.com/content/2014/1/58
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Then h ≤ 
t
h≤ 

tt
h, h ≥ th ≥ tth, and thus

Bh ≥ B
(


tt

h
)

≥ ϕ(tt)Bh, Bh ≤ B(tth) ≤ 
ϕ(tt)

Bh.

Note that ϕ(tt), 
ϕ(tt)

>  and Bh ∈ Ph, we can get Bh ∈ Ph. Hence, Ah + Bh ∈ Ph.
From the proof of Theorem ., there exists β(t) ∈ (α, ) with respect to t, such that

A(tx) ≥ tβ(t)Ax, ∀t ∈ (, ),x ∈ P.

Let ϕ(t) = tβ(t), t ∈ (, ). Then ϕ(t) ∈ (t, ) and A(tx)≥ ϕ(t)Ax, x ∈ P.
Therefore, operators A, B satisfy all the conditions of Theorem .. So we easily obtain

the following conclusions:
(i) there exist u, v ∈ Ph, and r ∈ (, ) such that

rv ≤ u < v, u ≤ Au +Au + Bv ≤ Av +Av + Bu ≤ v;

(ii) the operator equation (.) has a unique solution x∗ in Ph;
(iii) for any initial values x, y ∈ Ph, constructing successively the sequences

xn = Axn– +Axn– + Byn–,

yn = Ayn– +Ayn– + Bxn–, n = , , . . . ,

we have xn → x∗, yn → x∗ as n→ ∞. �

Corollary . Assume that all the conditions of Theorem . hold. Let xλ (λ > ) denote
the unique solution of operator equation (.). Then we have the following conclusions:

(i) if ϕi(t) > t 
 (i = , ) for t ∈ (, ), then xλ is strictly decreasing in λ, that is,

 < λ < λ implies xλ > xλ ;
(ii) if there exists β ∈ (, ) such that ϕi(t) ≥ tβ (i = , ) for t ∈ (, ), then xλ is

continuous in λ, that is, λ → λ (λ > ) implies ‖xλ – xλ‖ → ;
(iii) if there exists β ∈ (,  ) such that ϕi(t) ≥ tβ (i = , ) for t ∈ (, ), then

limλ→∞ ‖xλ‖ = , limλ→+ ‖xλ‖ =∞.

Proof Define an operator T = A + B by T(x, y) = Ax + By. Then T : P × P → P is a mixed
monotone operator. From the proof of Theorem ., we have T(h,h) ∈ Ph, and

T
(
tx, t–y

) ≥ ϕ(t)T(x, y), t ∈ (, ),x, y ∈ P,

where ϕ(t) =min{ϕ(t),ϕ(t)}. Evidently, ϕ(t) ∈ (t, ) for t ∈ (, ). Hence, the conclusions
follow from Theorem .. �

Similarly, we can easily obtain the following result.

Corollary . Assume that all the conditions of Corollary . hold. Let xλ (λ > ) denote
the unique solution of operator equation (.). Then we have the following conclusions:

http://www.journalofinequalitiesandapplications.com/content/2014/1/58
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(i) if α,α ∈ (,  ), then xλ is strictly decreasing in λ, that is,  < λ < λ implies
xλ > xλ ;

(ii) xλ is continuous in λ, that is, λ → λ (λ > ) implies ‖xλ – xλ‖ → ;
(iii) if α,α ∈ (,  ), then limλ→∞ ‖xλ‖ = , limλ→+ ‖xλ‖ =∞.

2.2 The sum of increasing operators andmixedmonotone operators
Next, we consider the following sum operator equations:

Ax + B(x,x) = x, (.)

Ax + B(x,x) = λx, λ > . (.)

Theorem. Let P be a normal cone,A : P → P be an increasing operator and B : P×P →
P be a mixed monotone operator. Assume that:

(H) for any x ∈ P, t ∈ (, ), there exists ϕ(t) ∈ (t, ) such that

A(tx) ≥ ϕ(t)Ax; (.)

(H) for any x, y ∈ P, t ∈ (, ), there exists ϕ(t) ∈ (t, ) such that

B
(
tx, t–y

) ≥ ϕ(t)B(x, y); (.)

(H) there exists h ∈ Ph such that Ah + B(h,h) ∈ Ph.

Then:
(i) there exist u, v ∈ Ph and r ∈ (, ) such that

rv ≤ u < v, u ≤ Au + B(u, v) ≤ Av + B(v,u) ≤ v;

(ii) the operator equation (.) has a unique solution x∗ in Ph;
(iii) for any initial values x, y ∈ Ph, constructing successively the sequences

xn = Axn– + B(xn–, yn–), yn = Ayn– + B(yn–,xn–), n = , , . . . ,

we have xn → x∗, yn → x∗ as n→ ∞.

Proof From (.), we obtain

B
(
t–x, ty

) ≤ 
ϕ(t)

B(x, y), x, y ∈ P, t ∈ (, ). (.)

Since Ah + B(h,h) ∈ Ph, there exist constants λ,λ >  such that

λh≤ Ah + B(h,h) ≤ λh.

Also, from h ∈ Ph, there exists a small constant t ∈ (, ) such that

th≤ h ≤ 
t
h.

http://www.journalofinequalitiesandapplications.com/content/2014/1/58
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Let ϕ(t) =min{ϕ(t),ϕ(t)}. Then ϕ(t) ∈ (t, ) for t ∈ (, ). From (.)-(.),

Ah + B(h,h)≥ A(th) + B
(
th, t– h

) ≥ ϕ(t)Ah + ϕ(t)B(h,h)

≥ ϕ(t)
[
Ah + B(h,h)

] ≥ λϕ(t)h,

Ah + B(h,h)≤ A
(
t– h

)
+ B

(
t– h, th

) ≤ 
ϕ(t)

Ah +


ϕ(t)
B(h,h)

≤ 
ϕ(t)

[
Ah + B(h,h)

] ≤ λ

ϕ(t)
h.

Note that λϕ(t), λ
ϕ(t)

> , we can get Ah + B(h,h) ∈ Ph.
Next, we define an operator T = A + B by T(x, y) = Ax + B(x, y). Then T : P × P → P is a

mixed monotone operator and T(h,h) = Ah + B(h,h) ∈ Ph. Moreover, for any x, y ∈ P and
t ∈ (, ), we have

T
(
tx, t–y

)
= A(tx) + B

(
tx, t–y

) ≥ ϕ(t)Ax + ϕ(t)B(x, y)

≥ ϕ(t)
[
Ax + B(x, y)

]
= ϕ(t)T(x, y).

Hence, all the conditions of Theorem . are satisfied. An application of Theorem . im-
plies that: there are u, v ∈ Ph and r ∈ (, ) such that rv ≤ u < v, u ≤ T(u, v) ≤
T(v,u) ≤ v; operator equation T(x,x) = x has a unique solution x∗ ∈ Ph; for any initial
values x, y ∈ Ph, constructing successively the sequences

xn = T(xn–, yn–), yn = T(yn–,xn–), n = , , . . . ,

we have ‖xn – x∗‖ →  and ‖yn – x∗‖ →  as n → ∞. That is:
(i) there exist u, v ∈ Ph and r ∈ (, ) such that

rv ≤ u < v, u ≤ Au + B(u, v) ≤ Av + B(v,u) ≤ v;

(ii) the operator equation (.) has a unique solution x∗ in Ph;
(iii) for any initial values x, y ∈ Ph, constructing successively the sequences

xn = Axn– + B(xn–, yn–), yn = Ayn– + B(yn–,xn–), n = , , . . . ,

we have xn → x∗, yn → x∗ as n→ ∞. �

Corollary . Let P be a normal cone, A : Ph → Ph be an increasing operator and B :
Ph × Ph → Ph be a mixed monotone operator. Assume that:

(H) for any x ∈ Ph, t ∈ (, ), there exists ϕ(t) ∈ (t, ) such that

A(tx)≥ ϕ(t)Ax;

(H) for any x, y ∈ Ph, t ∈ (, ), there exists ϕ(t) ∈ (t, ) such that

B
(
tx, t–y

) ≥ ϕ(t)B(x, y).
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Then:
(i) there exist u, v ∈ Ph and r ∈ (, ) such that

rv ≤ u < v, u ≤ Au + B(u, v) ≤ Av + B(v,u) ≤ v;

(ii) the operator equation (.) has a unique solution x∗ in Ph;
(iii) for any initial values x, y ∈ Ph, constructing successively the sequences

xn = Axn– + B(xn–, yn–), yn = Ayn– + B(yn–,xn–), n = , , . . . ,

we have xn → x∗, yn → x∗ as n→ ∞.

Corollary . Let α ∈ (, ) and P be a normal cone. Let A : P → P be an increasing op-
erator which satisfies (H), B : P → P be an increasing sub-homogeneous operator and
B : P × P → P be a mixed monotone operator which satisfies

B
(
tx, t–y

) ≥ tαB(x, y), t ∈ (, ),x, y ∈ P. (.)

Assume that:

(H) there exist h,h ∈ Ph such that

Ah ∈ Ph, Bh + B(h,h) ∈ Ph;

(H) there exists a constant δ >  such that

B(x, y)≥ δBx, x, y ∈ P.

Then:
(i) there exist u, v ∈ Ph and r ∈ (, ) such that

rv ≤ u < v,

u ≤ Au + Bu + B(u, v)≤ Av + Bv + B(v,u)≤ v;

(ii) the following operator equation:

Ax + Bx + B(x,x) = x (.)

has a unique solution x∗ in Ph;
(iii) for any initial values x, y ∈ Ph, constructing successively the sequences

xn = Axn– + Bxn– + B(xn–, yn–),

yn = Ayn– + Byn– + B(yn–,xn–), n = , , . . . ,

we have xn → x∗, yn → x∗ as n→ ∞.
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Proof Define an operator B = B + B by B(x, y) = Bx + B(x, y). Then B : P × P → P is a
mixed monotone operator and B(h,h) = Bh + B(h,h) ∈ Ph. Since h,h ∈ Ph, there
exist t, t ∈ (, ) such that

th≤ h ≤ 
t
h, th≤ h ≤ 

t
h.

Then h ≤ 
t
h≤ 

tt
h, h ≥ th≥ tth, and thus

Ah ≥ A(tth) ≥ ϕ(tt)Ah, Ah ≤ A
(


tt

h
)

≤ 
ϕ(tt)

Ah.

Note thatϕ(tt), 
ϕ(tt)

>  andAh ∈ Ph, we can getAh ∈ Ph. Hence,Ah +B(h,h) ∈ Ph.
Note that (H) and from the proof of Theorem., there existsβ(t) ∈ (α, ) with respect

to t such that

B
(
tx, t–y

) ≥ tβ(t)B(x, y), ∀t ∈ (, ),x, y ∈ P.

Let ϕ(t) = tβ(t), t ∈ (, ). Then ϕ(t) ∈ (t, ) and

B
(
tx, t–y

) ≥ ϕ(t)B(x, y), ∀t ∈ (, ),x, y ∈ P.

Therefore, the operatorsA, B satisfy all the conditions of Theorem .. So we easily obtain
the following conclusions:

(i) there exist u, v ∈ Ph and r ∈ (, ) such that

rv ≤ u < v,

u ≤ Au + Bu + B(u, v) ≤ Av + Bv + B(v,u) ≤ v;

(ii) the operator equation (.) has a unique solution x∗ in Ph;
(iii) for any initial values x, y ∈ Ph, constructing successively the sequences

xn = Axn– + Bxn– + B(xn–, yn–),

yn = Ayn– + Byn– + B(yn–,xn–), n = , , . . . ,

we have xn → x∗, yn → x∗ as n→ ∞. �

Corollary . Let α ∈ (, ) and P be a normal cone. Let A : P → P be an increasing
operator which satisfies (H), B : P → P be an increasing α-concave operator and B :
P × P → P be a mixed monotone operator which satisfies

B
(
tx, t–y

) ≥ tB(x, y), t ∈ (, ),x, y ∈ P. (.)

Assume that (H) holds and

(H) there exists a constant δ >  such that B(x, y)≤ δBx, ∀x, y ∈ P.

http://www.journalofinequalitiesandapplications.com/content/2014/1/58
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Then:
(i) there exist u, v ∈ Ph and r ∈ (, ) such that

rv ≤ u < v, u ≤ Au + Bu + B(u, v) ≤ Av + Bv + B(v,u) ≤ v;

(ii) the operator equation (.) has a unique solution x∗ in Ph;
(iii) for any initial values x, y ∈ Ph, constructing successively the sequences

xn = Axn– + Bxn– + B(xn–, yn–),

yn = Ayn– + Byn– + B(yn–,xn–), n = , , . . . ,

we have xn → x∗, yn → x∗ as n→ ∞.

Proof Consider the same operator B defined by the proof of Corollary ., we have B :
P× P → P is a mixed monotone operator and B(h,h) ∈ Ph. From Definition ., we have
A(tx) ≤ 

tα Ax, t ∈ (, ), x ∈ P. Since h,h ∈ Ph, there exist t, t ∈ (, ) such that

th≤ h ≤ 
t
h, th≤ h ≤ 

t
h.

Then tth ≤ h ≤ 
tt

h, and thus

Ah ≥ A(tth) ≥ (tt)αAh, Ah ≤ A
(


tt

h
)

≤ 
(tt)α

Ah.

Note that (tt)α , 
(tt)α

>  and Ah ∈ Ph, we can get Ah ∈ Ph. Hence, Ah +B(h,h) ∈ Ph.
Note that (H) and from the proof of Theorem ., we know that there exists β(t) ∈

(α, ) with respect to t such that

B
(
tx, t–y

) ≥ tβ(t)B(x, y), ∀t ∈ (, ),x, y ∈ P.

Let ϕ(t) = tβ(t), t ∈ (, ). Then ϕ(t) ∈ (t, ) and B(tx, t–y) ≥ ϕ(t)B(x, y), x, y ∈ P.
Therefore, the operators A, B satisfy all the conditions of Theorem .. So we easily

obtain the following conclusions:
(i) there exist u, v ∈ Ph and r ∈ (, ) such that

rv ≤ u < v,

u ≤ Au + Bu + B(u, v) ≤ Av + Bv + B(v,u) ≤ v;

(ii) the operator equation (.) has a unique solution x∗ in Ph;
(iii) for any initial values x, y ∈ Ph, constructing successively the sequences

xn = Axn– + Bxn– + B(xn–, yn–),

yn = Ayn– + Byn– + B(yn–,xn–), n = , , . . . ,

we have xn → x∗, yn → x∗ as n→ ∞. �

Similar to Corollary ., we have the following result.
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Corollary . Assume that all the conditions of Theorem . hold. Let xλ (λ > ) denote
the unique solution of operator equation (.). Then we have the following conclusions:

(i) if ϕi(t) > t 
 (i = , ) for t ∈ (, ), then xλ is strictly decreasing in λ, that is,

 < λ < λ implies xλ > xλ ;
(ii) if there exists β ∈ (, ) such that ϕi(t) ≥ tβ (i = , ) for t ∈ (, ), then xλ is

continuous in λ, that is, λ → λ (λ > ) implies ‖xλ – xλ‖ → ;
(iii) if there exists β ∈ (,  ) such that ϕi(t) ≥ tβ (i = , ) for t ∈ (, ), then

limλ→∞ ‖xλ‖ = , limλ→+ ‖xλ‖ =∞.

2.3 The sum of decreasing operators andmixedmonotone operators
In the following we also consider the operator equations (.) and (.).

Theorem. Let P be a normal cone,A : P → P be a decreasing operator and B : P×P →
P be a mixed monotone operator. Assume that (H) and (H) hold and

(H) for any x ∈ P and t ∈ (, ), there exists ϕ(t) ∈ (t, ) such that

A(tx)≤ 
ϕ(t)

Ax. (.)

Then:
(i) there exist u, v ∈ Ph and r ∈ (, ) such that

rv ≤ u < v, u ≤ Av + B(u, v) ≤ Au + B(v,u) ≤ v;

(ii) the operator equation (.) has a unique solution x∗ in Ph;
(iii) for any initial values x, y ∈ Ph, constructing successively the sequences

xn = Ayn– + B(xn–, yn–), yn = Axn– + B(yn–,xn–), n = , , . . . ,

we have xn → x∗, yn → x∗ as n→ ∞.

Proof From (.), we have

A
(

t
x
)

≥ ϕ(t)Ax, t ∈ (, ),x ∈ P. (.)

Since Ah + B(h,h) ∈ Ph, there exist constants λ,λ >  such that

λh≤ Ah + B(h,h) ≤ λh.

Also from h ∈ Ph, there exists a small constant t ∈ (, ) such that

th≤ h ≤ 
t
h.

Let ϕ(t) =min{ϕ(t),ϕ(t)}. Then ϕ(t) ∈ (t, ) for t ∈ (, ). From (H) and (.), (.),

Ah + B(h,h)≥ A
(

t
h

)
+ B

(
th, t– h

) ≥ ϕ(t)Ah + ϕ(t)B(h,h)

≥ ϕ(t)
[
Ah + B(h,h)

] ≥ λϕ(t)h,

http://www.journalofinequalitiesandapplications.com/content/2014/1/58
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Ah + B(h,h)≤ A(th) + B
(
t– h, th

) ≤ 
ϕ(t)

Ah +


ϕ(t)
B(h,h)

≤ 
ϕ(t)

[
Ah + B(h,h)

] ≤ λ

ϕ(t)
h.

Note that λϕ(t), λ
ϕ(t)

> , we can get Ah + B(h,h) ∈ Ph.
Next, we define an operator T = A + B by T(x, y) = Ay + B(x, y). Then T : P × P → P is a

mixed monotone operator and T(h,h) = Ah + B(h,h) ∈ Ph.
Moreover, for any x, y ∈ P and t ∈ (, ), we have

T
(
tx, t–y

)
= A

(
t–y

)
+ B

(
tx, t–y

) ≥ ϕ(t)Ay + ϕ(t)B(x, y)

≥ ϕ(t)
[
Ay + B(x, y)

]
= ϕ(t)T(x, y).

Hence, all the conditions of Theorem . are satisfied. Application of Theorem . implies
that: there areu, v ∈ Ph and r ∈ (, ) such that rv ≤ u < v,u ≤ T(u, v) ≤ T(v,u) ≤
v; operator equationT(x,x) = x has a unique solution x∗ ∈ Ph; for any initial values x, y ∈
Ph, constructing successively the sequences

xn = T(xn–, yn–), yn = T(yn–,xn–), n = , , . . . ,

we have ‖xn – x∗‖ →  and ‖yn – x∗‖ →  as n → ∞. That is,
(i) there exist u, v ∈ Ph and r ∈ (, ) such that

rv ≤ u < v, u ≤ Av + B(u, v)≤ Au + B(v,u) ≤ v;

(ii) the operator equation (.) has a unique solution x∗ in Ph;
(iii) for any initial values x, y ∈ Ph, constructing successively the sequences

xn = Ayn– + B(xn–, yn–), yn = Axn– + B(yn–,xn–), n = , , . . . ,

we have xn → x∗, yn → x∗ as n→ ∞. �

Corollary . Let P be a normal cone, A : Ph → Ph be a decreasing operator and B :
Ph × Ph → Ph be a mixed monotone operator. Assume that:

(H) for any x ∈ Ph and t ∈ (, ), there exists ϕ(t) ∈ (t, ) such that

A(tx)≤ 
ϕ(t)

Ax;

(H) for any x, y ∈ Ph, t ∈ (, ), there exists ϕ(t) ∈ (t, ) such that

B
(
tx, t–y

) ≥ ϕ(t)B(x, y).

Then:
(i) there exist u, v ∈ Ph and r ∈ (, ) such that

rv ≤ u < v, u ≤ Av + B(u, v) ≤ Au + B(v,u) ≤ v;
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(ii) the operator equation (.) has a unique solution x∗ in Ph;
(iii) for any initial values x, y ∈ Ph, constructing successively the sequences

xn = Ayn– + B(xn–, yn–), yn = Axn– + B(yn–,xn–), n = , , . . . ,

we have xn → x∗, yn → x∗ as n→ ∞.

Corollary . Assume that all the conditions of Theorem . hold. Let xλ (λ > ) denote
the unique solution of operator equation (.). Then we have the following conclusions:

(i) if ϕi(t) > t 
 (i = , ) for t ∈ (, ), then xλ is strictly decreasing in λ, that is,

 < λ < λ implies xλ > xλ ;
(ii) if there exists β ∈ (, ) such that ϕi(t) ≥ tβ (i = , ) for t ∈ (, ), then xλ is

continuous in λ, that is, λ → λ (λ > ) implies ‖xλ – xλ‖ → ;
(iii) if there exists β ∈ (,  ) such that ϕi(t) ≥ tβ (i = , ) for t ∈ (, ), then

limλ→∞ ‖xλ‖ = , limλ→+ ‖xλ‖ =∞.

2.4 The sum of increasing operators, decreasing operators, andmixedmonotone
operators

From the above results, we can easily obtain the following results on operator equa-
tions:

Ax + Bx + B(x,x) = x, (.)

Ax +Ax + Bx + B(x,x) = x. (.)

By Theorem . and Corollary ., Corollary ., we have the following conclu-
sions.

Theorem . Let α ∈ (, ) and P be a normal cone. Let A : P → P be a decreasing op-
erator which satisfies (H), operators B, B be the same as for Corollary .. Assume that
(H), (H) hold. Then:

(i) there exist u, v ∈ Ph and r ∈ (, ) such that

rv ≤ u < v,

u ≤ Av + Bu + B(u, v) ≤ Au + Bv + B(v,u)≤ v;

(ii) the operator equation (.) has a unique solution x∗ in Ph;
(iii) for any initial values x, y ∈ Ph, constructing successively the sequences

xn = Ayn– + Bxn– + B(xn–, yn–),

yn = Axn– + Byn– + B(yn–,xn–), n = , , . . . ,

we have xn → x∗, yn → x∗ as n→ ∞.

Theorem . Let α ∈ (, ) and P be a normal cone. Let A : P → P be a decreasing oper-
ator which satisfies (H), operators B, B be the same as for Corollary .. Assume that
(H), (H) hold. Then:

http://www.journalofinequalitiesandapplications.com/content/2014/1/58
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(i) there exist u, v ∈ Ph and r ∈ (, ) such that

rv ≤ u < v,

u ≤ Av + Bu + B(u, v) ≤ Au + Bv + B(v,u)≤ v;

(ii) the operator equation (.) has a unique solution x∗ in Ph;
(iii) for any initial values x, y ∈ Ph, constructing successively the sequences

xn = Ayn– + Bxn– + B(xn–, yn–),

yn = Axn– + Byn– + B(yn–,xn–), n = , , . . . ,

we have xn → x∗, yn → x∗ as n→ ∞.

FromCorollary ., Corollary ., and Corollary ., we can easily obtain the following
results.

Theorem . Let α,α ∈ (, ) and P be a normal cone, operators A, A satisfy the con-
ditions of Corollary ., where A is α-concave, operators B, B satisfy the conditions of
Corollary ., where B satisfies (.) with α replaced by α. Then:

(i) there exist u, v ∈ Ph and r ∈ (, ) such that

rv ≤ u < v,

u ≤ Au +Au + Bu + B(u, v) ≤ Av +Av + Bv + B(v,u) ≤ v;

(ii) the operator equation (.) has a unique solution x∗ in Ph;
(iii) for any initial values x, y ∈ Ph, constructing successively the sequences

xn = Axn– +Axn– + Bxn– + B(xn–, yn–),

yn = Ayn– +Ayn– + Byn– + B(yn–,xn–),

where n = , , . . . , we have xn → x∗, yn → x∗ as n→ ∞.

Theorem. Let α,α ∈ (, ) and P be a normal cone, operator A : P → P is α-concave,
operators B, B satisfy the conditions of Corollary ., where B is α-concave. Then:

(i) there exist u, v ∈ Ph and r ∈ (, ) such that

rv ≤ u < v,

u ≤ Au +Au + Bu + B(u, v) ≤ Av +Av + Bv + B(v,u) ≤ v;

(ii) the operator equation (.) has a unique solution x∗ in Ph;
(iii) for any initial values x, y ∈ Ph, constructing successively the sequences

xn = Axn– +Axn– + Bxn– + B(xn–, yn–),

yn = Ayn– +Ayn– + Byn– + B(yn–,xn–),

where n = , , . . . , we have xn → x∗, yn → x∗ as n→ ∞.
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3 Some applications
In this section, we will apply the main results to study nonlinear problems which in-
clude nonlinear integral equations and nonlinear elliptic boundary value problems for the
Lane-Emden-Fowler equations. And then we will obtain new results on the existence and
uniqueness of positive solutions for these problems, which are not consequences of the
corresponding fixed point theorems in the literature.

3.1 Applications to nonlinear integral equations
A standard approach, in studying the existence of positive solutions of boundary value
problems (BVPs for short) for ordinary differential equations, is to rewrite the problem as
an equivalent positive-solution problem for a Hammerstein integral equation of the form

u(t) = λ

∫ b

a
G(t, s)f

(
s,u(s)

)
ds, (.)

in the space E = C[a,b], where the nonlinearity f and the kernel G (the Green function
of the problem) are both nonnegative, λ >  is a parameter. One seeks fixed points of a
Hammerstein integral operator in a suitable cone of positive functions.
Set P = {u ∈ C[a,b]|u(t)≥ , t ∈ [a,b]}, the standard cone. It is easy to see that P is a nor-

mal cone of which the normality constant is . Then Ph = {x ∈ P|there are λ(x) ≥ λ(x) >
 such that λ(x)h(t) ≤ x(t) ≤ λ(x)h(t), t ∈ [a,b]}. Assume that G(t, s) : [a,b] × [a,b] →
[, +∞) is continuous with G(t, s) �≡  and there exist h,m,n ∈ C([a,b], [, +∞)) with
h(t),m(t),n(t) �≡ , such that

m(s)h(t)≤G(t, s)≤ n(s)h(t) for all t, s ∈ [a,b]. (.)

Theorem . Assume that f (t,x) = f(t,x) + f(t,x) �≡  and

(H) fi : [a,b] × [, +∞) → [, +∞) is continuous (i = , ), f(t,x) is increasing in x ∈
[, +∞) for fixed t ∈ [a,b] and f(t,x) is decreasing in x ∈ [, +∞) for fixed t ∈ [a,b];

(H) for η ∈ (, ), there exist ϕi(η) ∈ (η, ) (i = , ) such that

f(t,ηx)≥ ϕ(η)f(t,x), f(t,ηx)≤ 
ϕ(η)

f(t,x), ∀t ∈ [a,b],x ∈ [, +∞).

Then, for any given λ > , the integral equation (.) has a unique positive solution u∗
λ in Ph.

Moreover, for any initial values x, y ∈ Ph, constructing successively the sequences:

xn = λ

∫ b

a
G(t, s)

[
f
(
s,xn–(s)

)
+ f

(
s, yn–(s)

)]
ds,

yn = λ

∫ b

a
G(t, s)

[
f
(
s, yn–(s)

)
+ f

(
s,xn–(s)

)]
ds, n = , , . . . ,

we have xn → u∗
λ, yn → u∗

λ as n → +∞. Further, (i) if ϕi(t) > t 
 (i = , ) for t ∈ (, ), then

u∗
λ is strictly increasing in λ, that is,  < λ < λ implies u∗

λ
< u∗

λ
; (ii) if there exists β ∈ (, )

such that ϕi(t) ≥ tβ (i = , ) for t ∈ (, ), then u∗
λ is continuous in λ, that is, λ → λ (λ >

) implies ‖u∗
λ – u∗

λ
‖ → ; (iii) if there exists β ∈ (,  ) such that ϕi(t) ≥ tβ (i = , ) for

t ∈ (, ), then limλ→+ ‖u∗
λ‖ = , limλ→+∞ ‖u∗

λ‖ = +∞.
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Proof Define two operators A : P → E and B : P → E by

Au(t) =
∫ b

a
G(t, s)f

(
s,u(s)

)
ds, Bu(t) =

∫ b

a
G(t, s)f

(
s,u(s)

)
ds.

It is easy to see that u is the solution of (.) if and only if u = λ(Au + Bu). From (H), we
know that A : P → P is increasing and B : P → P is decreasing. Further, from (H), we can
prove that A, B satisfy (H). Next we prove that Ah + Bh ∈ Ph. Set hmax = maxt∈[a,b] h(t),
hmin =mint∈[a,b] h(t). Then hmax ≥ hmin > .
For any t ∈ [a,b], from (H) and (.), we have

Ah(t) + Bh(t) =
∫ b

a
G(t, s)

[
f
(
s,h(s)

)
+ f

(
s,h(s)

)]
ds

≥
∫ b

a
h(t)m(s)

[
f(s,hmin) + f(s,hmax)

]
ds

= h(t)
∫ b

a
m(s)

[
f(s,hmin) + f(s,hmax)

]
ds,

Ah(t) + Bh(t) ≤
∫ b

a
h(t)n(s)

[
f(s,hmax) + f(s,hmin)

]
ds

= h(t)
∫ b

a
n(s)

[
f(s,hmax) + f(s,hmin)

]
ds.

Let r =
∫ b
a m(s)[f(s,hmin) + f(s,hmax)]ds, r =

∫ b
a n(s)[f(s,hmax) + f(s,hmin)]ds. Note that

f = f + f ≥  is continuous with f �≡  and from (.), we get  < r ≤ r and in con-
sequence, rh ≤ Ah + Bh ≤ rh. That is, Ah + Bh ∈ Ph. Hence, all the conditions of The-
orem . are satisfied. It follows from Theorem . and Corollary . that the operator
equation Au + Bu = 

λ
u has a unique solution u∗

λ in Ph, that is, λ(Au∗
λ + Bu∗

λ) = u∗
λ. So u∗

λ is
a unique positive solution of the integral equation (.) in Ph for given λ > . From Corol-
lary ., we have (i) if ϕi(t) > t 

 (i = , ) for t ∈ (, ), then u∗
λ is strictly increasing in λ, that

is,  < λ < λ implies u∗
λ
< u∗

λ
; (ii) if there exists β ∈ (, ) such that ϕi(t)≥ tβ (i = , ) for

t ∈ (, ), then u∗
λ is continuous in λ, that is, λ → λ (λ > ) implies ‖u∗

λ –u∗
λ

‖ → ; (iii) if
there exists β ∈ (,  ) such that ϕi(t) ≥ tβ (i = , ) for t ∈ (, ), then limλ→+ ‖u∗

λ‖ = ,
limλ→+∞ ‖u∗

λ‖ = +∞.
Let Aλ = λA, Bλ = λB. Then Aλ, Bλ also satisfy the conditions of Theorem .. By Theo-

rem ., for any initial values x, y ∈ Ph, constructing successively the sequences

xn = Aλxn– + Bλyn–, yn = Aλyn– + Bλxn–, n = , , . . . ,

we have xn → u∗
λ, yn → u∗

λ as n→ +∞. That is,

xn = λ

∫ b

a
G(t, s)

[
f
(
s,xn–(s)

)
+ f

(
s, yn–(s)

)]
ds→ u∗

λ(t),

yn = λ

∫ b

a
G(t, s)

[
f
(
s, yn–(s)

)
+ f

(
s,xn–(s)

)]
ds→ u∗

λ(t)

as n→ +∞. �
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Theorem . Assume that f (t,x) = f(t,x) + f(t,x,x) �≡  with f(t,x) satisfies (H) and

(H) f(t,x, y) : [a,b] × [, +∞) × [, +∞) → [, +∞) is continuous, increasing in x ∈
[, +∞) for fixed t ∈ [a,b], y ∈ [, +∞), decreasing in y ∈ [, +∞) for fixed t ∈ [a,b],
x ∈ [, +∞);

(H) for η ∈ (, ), there exist ϕi(η) ∈ (η, ) (i = , ) such that

f(t,ηx)≥ ϕ(η)f(t,x),

f
(
t,ηx,η–y

) ≥ ϕ(η)f(t,x, y), ∀t ∈ [a,b],x, y ∈ [, +∞).

Then, for any given λ > , the integral equation (.) has a unique positive solution u∗
λ in Ph.

Moreover, for any initial values x, y ∈ Ph, constructing successively the sequences:

xn = λ

∫ b

a
G(t, s)

[
f
(
s,xn–(s)

)
+ f

(
s,xn–(s), yn–(s)

)]
ds,

yn = λ

∫ b

a
G(t, s)

[
f
(
s, yn–(s)

)
+ f

(
s, yn–(s),xn–(s)

)]
ds, n = , , . . . ,

we have xn → u∗
λ, yn → u∗

λ as n → +∞. Further, the conclusions (i), (ii), and (iii) in Theo-
rem . also hold.

Proof Define two operators A : P → E and B : P × P → E by

Au(t) =
∫ b

a
G(t, s)f

(
s,u(s)

)
ds, B(u, v)(t) =

∫ b

a
G(t, s)f

(
s,u(s), v(s)

)
ds.

It is easy to see that u is the solution of (.) if and only if u = λ[Au + B(u,u)]. From (H)
and (H), we know that A : P → P is increasing and B : P × P → P is mixed monotone.
Further, from (H), we can prove that A, B satisfy (H) and (H). Next we prove that
Ah + B(h,h) ∈ Ph.
For any t ∈ [a,b], from (H), (H), and (.), we have

Ah(t) + B(h,h)(t) =
∫ b

a
G(t, s)

[
f
(
s,h(s)

)
+ f

(
s,h(s),h(s)

)]
ds

≥
∫ b

a
h(t)m(s)

[
f(s,hmin) + f(s,hmin,hmax)

]
ds

= h(t)
∫ b

a
m(s)

[
f(s,hmin) + f(s,hmin,hmax)

]
ds,

Ah(t) + B(h,h)(t) ≤
∫ b

a
h(t)n(s)

[
f(s,hmax) + f(s,hmax,hmin)

]
ds

= h(t)
∫ b

a
n(s)

[
f(s,hmax) + f(s,hmax,hmin)

]
ds.

Let r =
∫ b
a m(s)[f(s,hmin) + f(s,hmin,hmax)]ds, r =

∫ b
a n(s)[f(s,hmax) + f(s,hmax,hmin)]ds.

Note that f = f + f is nonnegative and continuous with f �≡  and from (.), we get  <
r ≤ r and in consequence, rh ≤ Ah + B(h,h) ≤ rh. That is, Ah + B(h,h) ∈ Ph. Hence, all
the conditions of Theorem. are satisfied. It follows fromTheorem. andCorollary .
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that the operator equationAu+B(u,u) = 
λ
u has a unique solution u∗

λ in Ph, that is, λ[Au∗
λ+

B(u∗
λ,u∗

λ)] = u∗
λ. So u∗

λ is a unique positive solution of the integral equation (.) in Ph for
given λ > . From Corollary ., we have (i) if ϕi(t) > t 

 (i = , ) for t ∈ (, ), then u∗
λ is

strictly increasing in λ, that is,  < λ < λ implies u∗
λ
< u∗

λ
; (ii) if there exists β ∈ (, )

such that ϕi(t) ≥ tβ (i = , ) for t ∈ (, ), then u∗
λ is continuous in λ, that is, λ → λ (λ >

) implies ‖u∗
λ – u∗

λ
‖ → ; (iii) if there exists β ∈ (,  ) such that ϕi(t) ≥ tβ (i = , ) for

t ∈ (, ), then limλ→+ ‖u∗
λ‖ = , limλ→+∞ ‖u∗

λ‖ = +∞.
Let Aλ = λA, Bλ = λB. Then Aλ, Bλ also satisfy the conditions of Theorem .. By

Theorem ., for any initial values x, y ∈ Ph, constructing successively the sequences
xn = Aλxn– + Bλ(xn–, yn–), yn = Aλyn– + Bλ(yn–,xn–), n = , , . . . , we have xn → u∗

λ,
yn → u∗

λ as n→ +∞. That is,

xn = λ

∫ b

a
G(t, s)

[
f
(
s,xn–(s)

)
+ f

(
s,xn–(s), yn–(s)

)]
ds→ u∗

λ(t),

yn = λ

∫ b

a
G(t, s)

[
f
(
s, yn–(s)

)
+ f

(
s, yn–(s),xn–(s)

)]
ds→ u∗

λ(t)

as n→ +∞. �

Theorem . Assume that f (t,x) = f(t,x) + f(t,x,x) �≡  with f(t,x) satisfies all the con-
ditions of f(t,x) in Theorem . and f(t,x, y) satisfies (H) and (H). Then, for any given
λ > , the integral equation (.) has a unique positive solution u∗

λ in Ph.Moreover, for any
initial values x, y ∈ Ph, constructing successively the sequences:

xn = λ

∫ b

a
G(t, s)

[
f
(
s, yn–(s)

)
+ f

(
s,xn–(s), yn–(s)

)]
ds,

yn = λ

∫ b

a
G(t, s)

[
f
(
s,xn–(s)

)
+ f

(
s, yn–(s),xn–(s)

)]
ds, n = , , . . . ,

we have xn → u∗
λ, yn → u∗

λ as n → +∞. Further, the conclusions (i), (ii), and (iii) in Theo-
rem . also hold.

Proof Similar to the proofs of Theorem . and Theorem ., the conclusions follow from
Theorem . and Corollary .. �

3.2 Applications to nonlinear elliptic BVPs for the Lane-Emden-Fowler equations
Let � be a bounded domain with smooth boundary in RN (N ≥ ). Consider the following
singular Dirichlet problem for the Lane-Emden-Fowler equation:

⎧⎪⎨
⎪⎩
–�u = λf (x,u), x ∈ �,
u(x) > , x ∈ �,
u(x) = , x ∈ ∂�,

(.)

where λ >  and the nonlinear term f (x,u) is allowed to be singular on ∂�.
The problem (.) arises in the study of non-Newtonian fluids, boundary layer phenom-

ena for viscous fluids, chemical heterogeneous catalysts, as well as in the theory of heat
conduction in electricallymaterials (see [–]). The theory of singular elliptic boundary
value problems for partial differential equations has become an important area of inves-
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tigation in the past three decades, see [–] and references therein. By means of sub-
supersolutions and various techniques related to themaximum principle for elliptic equa-
tions, some existence and nonexistence results, a unique positive solution are established.
In [, ], we investigated the existence and uniqueness of positive solutions to the singular
Dirichlet problem for the Lane-Emden-Fowler equation (.), where f (x,u) is increasing
in u ∈ (, +∞) for each x ∈ � in []; f (t,u) = f(t,u) + f(t,u) with fi(t,u) is increasing in
u ∈ (, +∞) for each x ∈ �, i = ,  in [] and λ = . However, to our knowledge, the re-
sults on the existence-uniqueness of positive solutions for singular elliptic equation are
still few. The purpose here is to establish the existence-uniqueness of positive solutions to
the singular Dirichlet problem for the Lane-Emden-Fowler equation (.) by using some
fixed point results in Section .
Throughout this subsection, denote Wk,l(�) the Sobolev space (see []), where l > 

and k is a nonnegative integer. And denote h the eigenfunction corresponding to the
smallest eigenvalue λ of the problem –�ϕ = λϕ in �, and ϕ|∂� = . For convenience, we
can assume that h(x) ≥  in �̄. Moreover, it is well known that (see for instance [])
there exist two positive constants C, C such that the first eigenvalue function satisfies

 < C ≤ h(x)
[
d(x)

]– ≤ C, x ∈ �, (.)

where d(x) = dist(x, ∂�).

Lemma . (See [, Theorem , p.]) Let � be a bounded domain in RN with smooth
boundary ∂�. Let u ∈ Lloc(�) and assume that, for some k ≥ , u satisfies

{
–�u + ku ≥  in �,
u≥  on �.

Then either u = , or there exists ε >  such that u(x)≥ ε dist(x, ∂�) in �.

The proof of this result is due to Brezis and Nirenberg and the result is inspired by the
work of Stampachia. Brezis and Nirenberg obtained this result in order to solve a similar
eigenvalue problem as considered here. Actually, the result was extended to more general
operators, such as �p, under some suitable restrictions in order to solve a large class of
problems (see for example the problems considered recently in the work of Covei []).
Here we recall the result since can be used to prove the following simple but useful lemma.

Lemma . (See [, Theorem ., p.]) Let � be a bounded domain with smooth
boundary in RN (N ≥ ). If w ∈ W ,l(�) and w(x) =  for x ∈ ∂�, then there exists a con-
stant M >  such that

∣∣w(x)∣∣ ≤Mh(x), x ∈ �,

where M depends only upon N and �.

Theorem . Assume that f (x,u) = f(x,u) + f(x,u) and

(H) fi(x,u), i = ,  is nonnegative on�× (, +∞),Hölder continuous in the variable xwith
the Hölder exponent γ ∈ (, ) for each u ∈ (, +∞) and continuous in the variable u
for each x ∈ �;
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(H) f(x,u) is increasing in u for each x and f(x,u) is decreasing in u for each x, and for
any t ∈ (, ), there exists a constant ϕi(t) ∈ (t, ), i = , , such that

f(x, tu)≥ ϕ(t)f(x,u), f(x, tu)≤ 
ϕ(t)

f(x,u) for any u ∈ (, +∞);

(H) f(x,u), f(x,u) satisfy the conditions of integrability, i.e.,∫
�

fi
(
x,h(x)

)l dx < +∞, i = ,  for some l >N .

Then the problem (.) has a unique positive solution u∗
λ ∈ C,τ (�̄) with respect to λ > ,

where τ = – N
l .Moreover, (i) if ϕi(t) > t 

 (i = , ) for t ∈ (, ), then u∗
λ is strictly increasing

in λ, that is,  < λ < λ implies u∗
λ
< u∗

λ
; (ii) if there exists β ∈ (, ) such that ϕi(t)≥ tβ (i =

, ) for t ∈ (, ), then u∗
λ is continuous in λ, that is, λ → λ (λ > ) implies ‖u∗

λ–u∗
λ

‖ → ;
(iii) if there exists β ∈ (,  ) such that ϕi(t) ≥ tβ (i = , ) for t ∈ (, ), then limλ→+ ‖u∗

λ‖ = ,
limλ→+∞ ‖u∗

λ‖ = +∞.

Proof For the sake of convenience, set E = C(�̄), the Banach space of continuous functions
on �̄ with the norm ‖u‖ = max{|u(x)| : x ∈ �̄}. Set P = {u ∈ C(�̄)|u(x) ≥ ,x ∈ �̄}, the
standard cone. It is clear that P is a normal cone in E and the normality constant is , Ph
is given as in the Section .. We divide the proof into several steps.
Step . We consider the following linear elliptic boundary value problem:

⎧⎪⎨
⎪⎩
–�w = f(x,u), x ∈ �,
w(x) > , x ∈ �,
w(x) = , x ∈ ∂�,

(.)

where u ∈ Ph . Since u ∈ Ph , we can choose a sufficiently small number r ∈ (, ) such
that

rh(x)≤ u(x)≤ 
r
h(x), x ∈ �̄.

Then from (H),

f
(
x,u(x)

) ≥ f
(
x, rh(x)

) ≥ ϕ(r)f
(
x,h(x)

)
, x ∈ �, (.)

f
(
x,u(x)

) ≤ f
(
x,


r
h(x)

)
≤ 

ϕ(r)
f
(
x,h(x)

)
, x ∈ �. (.)

Thus we get by applying the integrability condition (H) that says that∫
�

[
f
(
x,u(x)

)]l dx < +∞,

namely, f(x,u) ∈ Ll(�). By the classical theory of linear elliptic equations (see []), the
problem (.) admits a unique strong solution wu ∈ W ,l(�) ∩ W ,l

 (�). Recall that l > N .
Using the Sobolev imbedding theory, wu ∈ C,τ (�̄) with τ =  – N

l . Now we define an op-
erator A : Ph → E by

Au(x) = wu(x), u ∈ Ph ,
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where wu is the unique strong solution of (.) for u ∈ Ph . Evidently, A : Ph → P. Suppose
that φ is the solution of (.) with u = h, then Ah = φ ∈ C,τ (�̄). Then from Lemma .,
there exists a positive constant Cφ such that

φ(x)≤ Cφh(x), x ∈ �̄. (.)

Note that f (x,h(x)) ≥ . By the maximal principle, φ(x) ≥ . Since φ(x) >  for x ∈ �, an
application of Lemma . implies that

φ(x)≥ εd(x), x ∈ �̄. (.)

Combining (.) and (.), there exists a positive constant cφ such that

φ(x)≥ cφh(x), x ∈ �̄. (.)

Let wu is the unique strong solution of (.) for u ∈ Ph . From (.) and (.), and applying
the comparison principle, we conclude that

ϕ(r)φ(x) ≤ wu(x) ≤ 
ϕ(r)

φ(x), x ∈ �̄,

and, from (.) and (.), we get Au = wu ∈ Ph for any u ∈ Ph . So we find that A : Ph →
Ph is well defined. Further, from (H) and the comparison principle, we can easily prove
that A : Ph → Ph is increasing. In the following we prove that A(tu) ≥ ϕ(t)Au for any
u ∈ Ph and t ∈ (, ). For any u ∈ Ph and t ∈ (, ), we have{

–�A(tu) = f(x, tu), x ∈ �,
A(tu)(x) = , x ∈ ∂�

and {
–�ϕ(t)Au = ϕ(t)f(x,u), x ∈ �,
ϕ(t)Au(x) = , x ∈ ∂�.

From (H) we also get f(x, tu(x)) – ϕ(t)f(x,u(x))≥  for any x ∈ �̄. Therefore,{
–�(A(tu) – ϕ(t)Au) ≥ , x ∈ �,
A(tu)(x) – ϕ(t)Au(x) = , x ∈ ∂�.

Using the comparison principle again, we can obtain A(tu) ≥ ϕ(t)Au immediately. So we
have A(tu) ≥ ϕ(t)Au for t ∈ (, ), u ∈ Ph .
Step . We consider the following linear elliptic boundary value problem:⎧⎪⎨

⎪⎩
–�w = f(x,u), x ∈ �,
w(x) > , x ∈ �,
w(x) = , x ∈ ∂�,

(.)

where u ∈ Ph . Since u ∈ Ph , we can choose a sufficiently small number r ∈ (, ) such
that

rh(x)≤ u(x)≤ 
r
h(x), x ∈ �̄.
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Then from (H),

f
(
x,u(x)

) ≤ f
(
x, rh(x)

) ≤ 
ϕ(r)

f
(
x,h(x)

)
, x ∈ �,

f
(
x,u(x)

) ≥ f
(
x,


r
h(x)

)
≥ ϕ(r)f

(
x,h(x)

)
, x ∈ �.

Thus we get by applying the integrability condition (H) that says that
∫
�
[f(x,u(x))]l dx <

+∞, namely, f(x,u) ∈ Ll(�). By the classical theory of linear elliptic equations, the prob-
lem (.) admits a unique strong solutionwu ∈W ,l(�)∩W ,l

 (�). Recall that l >N . Using
the Sobolev imbedding theory, wu ∈ C,τ (�̄) with τ =  – N

l . Now we define an operator
B : Ph → E by Bu(x) = wu(x), u ∈ Ph , where wu is the unique strong solution of (.) for
u ∈ Ph . Similar to Step ,we can prove thatB : Ph → Ph is well defined. Using the compar-
ison principle again, we can easily see that B : Ph → Ph is decreasing and B(tu) ≤ 

ϕ(t)
Bu

for any u ∈ Ph and t ∈ (, ).
Step . Now all the conditions of Corollary . are satisfied. It follows fromCorollary .

and Corollary . that the operator equation Au+Bu = 
λ
u has a unique solution u∗

λ in Ph ,
that is, λ(Au∗

λ + Bu∗
λ) = u∗

λ. So u∗
λ is a unique positive solution of the problem (.) in Ph

for given λ > . By the theory of the linear elliptic equation, the problem
⎧⎪⎨
⎪⎩
–�w = λ[f(x,u∗

λ) + f(x,u∗
λ)], x ∈ �,

w(x) > , x ∈ �,
w(x) = , x ∈ ∂�,

admits a unique solution u∗
λ ∈ W ,l(�) ∩ W ,l

 (�), and hence u∗
λ ∈ C,τ (�). Recalling the

uniqueness of the solution of (.), one can see easily that u∗
λ = u∗

λ. Thus the problem (.)
has a unique classical solution u∗

λ ∈ C,τ (�̄). Moreover, by using Corollary . and the
theory of the linear elliptic equation, we can easily prove that (i) if ϕi(t) > t 

 (i = , ) for
t ∈ (, ), then u∗

λ is strictly increasing in λ, that is,  < λ < λ implies u∗
λ
< u∗

λ
; (ii) if there

exists β ∈ (, ) such that ϕi(t) ≥ tβ (i = , ) for t ∈ (, ), then u∗
λ is continuous in λ, that

is, λ → λ (λ > ) implies ‖u∗
λ–u∗

λ
‖ → ; (iii) if there exists β ∈ (,  ) such that ϕi(t)≥ tβ

(i = , ) for t ∈ (, ), then limλ→+ ‖u∗
λ‖ = , limλ→+∞ ‖u∗

λ‖ = +∞. �

Similar to the proofs of Theorem . and Theorems ., ., we can easily obtain the
following conclusions.

Theorem . Assume that f (x,u) = f(x,u) + f(x,u,u) and f(x,u) satisfies all the condi-
tions of Theorem ., f satisfies

(H) f(x,u, v) is nonnegative on�× (, +∞)× (, +∞),Hölder continuous in the variable
x with the Hölder exponent γ ∈ (, ) for each u, v ∈ (, +∞) and is continuous in the
variables u, v for each x ∈ �;

(H) for any t ∈ (, ), there exists a constant ϕ(t) ∈ (t, ) such that

f
(
x, tu, t–v

) ≥ ϕ(t)f(x,u, v) for any u, v ∈ (, +∞);

(H) f(x,u, v) satisfies the condition of integrability, i.e.,
∫

�

f
(
x,h(x),h(x)

)l dx < +∞ for some l >N .
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Then the problem (.) has a unique positive solution u∗
λ ∈ C,τ (�̄) with respect to λ > ,

where τ =  – N
l . Further, the conclusions (i), (ii), and (iii) in Theorem . also hold.

Theorem . Assume that f (x,u) = f(x,u) + f(x,u,u) with f satisfying all the conditions
of f in Theorem . and f satisfying (H), (H), and (H). Then the problem (.) has
a unique positive solution u∗

λ ∈ C,τ (�̄) with respect to λ > , where τ =  – N
l . Further, the

conclusions (i), (ii), and (iii) in Theorem . also hold.
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30. Ghergu, M, Rădulescu, V: Sublinear singular elliptic problems with two parameters. J. Differ. Equ. 195, 520-536 (2003)
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