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1 Introduction
In this paper, we study the Cauchy problem of the inhomogeneous nonlinear Schrödinger
equation (INSE)

iut +�u + |x|b|u|p–u = , t ≥ ,x ∈R
N , (.)

u(,x) = u, (.)

where i = –; � =
∑N

j=
∂

∂xj
is the Laplace operator in R

N ; u = u(t,x): [,T)×R
N → C is

the complex valued function and  < T ≤ +∞; the parameter b ≥  and  < p < p̃ (we use
the convention: p̃ = +∞ forN = , p̃ = N

N– +
b
N– forN ≥ );N ≥  is the space dimension.

A few years ago, it was suggested that stable high power propagation can be achieved
in a plasma by sending a preliminary laser beam that creates a channel with a reduced
electron density, and thus reduces the nonlinearity inside the channel (see [, ]). In this
case, the beampropagation can bemodeled by the inhomogeneous nonlinear Schrödinger
equation in the following form:

iφt +�φ +K (x)|φ|p–φ = , φ(,x) = ϕ ∈H(
R

N)
. (.)

Recently, this type of inhomogeneous nonlinear Schrödinger equations has been widely
investigated. When k ≤ K (x) ≤ k with k,k >  and p =  + 

N , Merle [] proved the
existence and nonexistence of blow-up solutions to the Cauchy problem (.). When
K (x) = K (ε|x|) ∈ C(RN ) ∩ L∞(RN ) with small ε and p =  + 

N , Fibich, Liu and Wang [,
] obtained the stability and instability of standing waves to the Cauchy problem (.).
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We recall some known results on the blow-up solutions for the classical nonlinear
Schrödinger equation

ivt +�v + |v|p–v = , v(,x) = v ∈ H(
R

N)
. (.)

Ginibre and Velo [] showed the local well-posedness in H(RN ). Glassey [] showed the
existence of blow-up solutions when the energy is negative and |x|v ∈ L(RN ). Ogawa
and Tsutsumi [] obtained the existence of blow-up solutions in radial case without the
restriction |x|v ∈ L(RN ). Weinstein [] and Zhang [] obtained the sharp conditions of
global existence for critical and supercritical nonlinearity. Merle and Raphaël [] showed
the existence of blow-up solutions without |x|v ∈ L(RN ) for p =  + 

N . Lushnikov []
and Holmer et al. [] obtained some sufficient conditions for existence of blow-up for
p =  and N =  basing on an estimate of the kinetic energy.
In this paper, we study blow-up criteria for the Cauchy problem (.)-(.) with p >

N+b+
N , where the nonlinearity |x|b|u|p–u includes an unbounded potential |x|b. We note

that (.) has scaling: uλ(t,x) = λ
+b
p– u(λt,λx) is a solution if u(t,x) is a solution. The

scale-invariant Lebesgue norm for this equation is Lpc -norm, where pc = N(p–)
+b . Since

p > N+b+
N , we have pc = N(p–)

+b >  and we may call (.) a class of Schrödinger equa-
tions with L-super critical nonlinearity. Chen and Guo [] and Chen [] showed the
local well-posedness of the Cauchy problem (.)-(.) in H

r = H
r (RN ), where H

r (RN ) is
the set of radially symmetric functions in H(RN ). Moreover, u(t,x) satisfies the following
conservation laws:

∫
RN

∣∣u(t,x)∣∣ dx = ∫
RN

|u| dx

and

E(u) = E(u) :=



∫
RN

|∇u| dx – 
p

∫
RN

|x|b|u|p dx.

Chen andGuo [] also showed the sharp conditions of blow-up and global existence of so-
lutions to the Cauchy problem (.)-(.) by the cross-constrained variational arguments.
On the other hand, letting J(t) :=

∫
RN |x||u(t,x)| dx, this can be interpreted as the average

width of the initial distribution |u|. It follows from Chen and Guo’s results in [] that we
have the following proposition.

Proposition . Assume that u ∈ H
r , |x|u ∈ L and the corresponding solution u(t,x)

of the Cauchy problem (.)-(.) on the interval [,T). Then, for all t ∈ [,T), one has
J(t) :=

∫ |x||u(t,x)| dx < +∞,

J ′(t) = �
∫
RN

xu∇udx (.)

and

J ′′(t) = (Np – N – b)E(u) – (Np – N – b – )
∫
RN

|∇u| dx. (.)
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In the case Np – N – b – ≥ , it follows from the last relation that

J ′′(t)≤ (Np – N – b)E(u),

and for E(u) <  the positive-definite quantity J(t) becomes negative over a finite time
by virtue of the above inequality. This means that a singularity appears in the solution
of the given INSE. Indeed, applying Weinstein’s arguments [] and the classical analysis
identity

J(t) = J() + J ′()t +
∫ t


J ′′(t – s)s ds, (.)

one has the following theorem (see also Chen and Guo []).

Theorem . Let N ≥ ,  < b < N –  and N+b+
N < p < p̃ (where p̃ = +∞ for N = ,

p̃ = N
N– +

b
N– for N ≥ ). Assume u ∈ H(RN ) and |x|u ∈ L(RN ) is radially symmetric.

If the initial data satisfies either
(i)

E(u) < , (.)

(ii)

E(u) =  and J ′() < , (.)

(iii) E(u) >  and

J ′() < –
√
(Np – N – b)E(u)J(), (.)

then there exists  < T < +∞ such that the corresponding solution u(t,x) blows up in finite
time T .

We remark that in the case E(u) > , Np– N – b–≥  both collapse and spreading
of the initial disturbance are possible. Although the INSE is no longer applicable near
the formation point of a singularity and dissipative or some other limiting mechanism
come to play. It is very important to be able to predict the presence or absence of collapse
for different classes of initial conditions. The sufficient conditions for existence of blow-
up solutions are given in [] if either E(u) <  or J ′() < . A natural question arises
whether there is a sufficient condition for existence of blow-up solutions with E(u) > 
and J ′() > .
In the present paper, motivated by the studies of the classical nonlinear Schrödinger

equation (see [, , ]), we use variational characteristic of second-order derivatives of
the virial identity to catch up with the information of ‖∇u‖L , and we obtain a new suf-
ficient condition for the existence of blow-up solutions to the inhomogeneous nonlinear
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Schrödinger equation (.). More precisely, let

g(y) =

⎧⎨
⎩

√
y + 

Np–b–N–y
–Np–b–N–

 – Np–b–N
Np–b–N– if  < y < ,

–
√
y + 

Np–b–N–y
–Np–b–N–

 – Np–b–N
Np–b–N– if y≥ .

(.)

Then we have the following theorem.

Theorem . Let N ≥ ,  < b < N –  and N+b+
N < p < min{ b+N+

N , p̃}. Assume that
u ∈H(RN ) and |x|u ∈ L(RN ) is radially symmetric. If

J ′() < 

√
Np – b – N – 
Np – b – N

N‖u‖Lg
(

(Np – b – N)E(u)
N(Np – b – N – )‖u‖L

J()
)
, (.)

where g(x) is defined by (.), then there exists  < T < +∞ such that the corresponding
solution u(t,x) blows up in finite time T .

2 Notations and preliminaries
In this paper, we denote Lq(RN ), ‖ · ‖Lq(RN ), Hs(RN ) and

∫
RN ·dx by Lq, ‖ · ‖Lq , Hs and∫ ·dx, respectively. z and �z are the real part and imaginary part of the complex number

z, respectively. z is denoted the complex conjugate of the complex number z. The various
positive constants will be simply denoted by C.
For the Cauchy problem (.)-(.), the space we work in is

H
r :=

{
u ∈H|u(x) = u(r)

}
, where r =

√
x + x + · · · + xN ,

which is a Hilbert space. Moreover, we define the energy functional E(u(t)) in H
r by

E
(
u(t)

)
:=




∫ ∣∣∇u(t,x)
∣∣ dx – 

p

∫
|x|b∣∣u(t,x)∣∣p dx.

The functional E(u) is well-defined according to the Sobolev embedding theorem (see
[]). Chen and Guo [] and Chen [] showed the local well-posedness for the Cauchy
problem (.)-(.) in H

r , as follows.

Proposition . Let N ≥ , b ≥  and  + b/(N – ) < p < p̃ (where p̃ = +∞ for N = , p̃ =
N
N– +

b
N– for N ≥ ). For any u ∈ H

r , there exists a unique solution u(t,x) of the Cauchy
problem (.)-(.) on the maximal time interval [,T) such that u(t,x) ∈ C([,T);H

r ) and
either T = +∞ (global existence), or T < +∞ and limt→T ‖u(t,x)‖H

r
= +∞ (blow-up). Fur-

thermore, for all t ∈ [,T), u(t,x) satisfies the following conservation laws:
(i) Conservation of mass: ‖u(t)‖ = ‖u‖.
(ii) Conservation of energy: E(u(t,x)) = E(u).

In addition, by some basic calculations, we have the following lemma, which gives fur-
ther insight in the dynamic criterion for collapse proposed by Lushnikov in [].

Lemma . If V (t) >  is the positive solution of the following differential equation:

d

dt
V = f (V ) (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/55
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and there exists  < T < +∞ such that limt→T V (t) = , then for the solution Ṽ >  of the
following differential equation:

Ṽtt = f (Ṽ ) – h(t) ≤ f (Ṽ ), (.)

there exists  < T ≤ T < +∞ such that limt→T Ṽ (t) = .

Proof Since the function –h(t) is non-positive, which pulls Ṽ (t) to zero more quickly
than V (t) (see also []), one sees that the conclusion in Lemma . is true by the classical
analysis identity (.). �

3 Proof of Theorem 1.3
Since |x|u ∈ L, we have |x|u(t,x) ∈ L by the local well-posedness. Taking J := J(t) =∫ |x||u| dx, by Proposition ., we get J ′(t) = �∫

x · ∇uudx and

J ′′(t) = (Np – N – b)E(u) – (Np – N – b – )
∫

|∇u| dx. (.)

It follows from some calculations that
∫

|u| dx = 
N

∫
∇ · x|u| dx = –


N


∫

x · ∇uudx.

Then we get N
 ‖u‖L ≤ ‖xu‖L‖∇u‖L , and by the fact that |z| = |z| + |�z| we deduce

that

‖∇u‖L‖xu‖L ≥
∣∣∣∣
∫

x · ∇uudx
∣∣∣∣


=
N


‖u‖L +

∣∣∣∣�
∫

x · ∇uudx
∣∣∣∣


=
N


‖u‖L +

|J ′(t)|


. (.)

Injecting (.) into (.), by the conservation laws, we deduce that

J ′′(t) ≤ (Np – N – b)E(u)

–
N[Np – N – b – ]

J
‖u‖L –

Np – N – b – 
J

Jt . (.)

Letting J = A


Np–N–b+ and rewriting (.) to remove the last term with Jt , we have

Att ≤ (Np – b – N)(Np – b – N + )


E(u)A
Np–b–N–
Np–b–N+

–
N(Np – b – N – )(Np – b – N + )


‖u‖LA– +b+N–Np

Np–b–N+ , (.)

which has a simple mechanism analogy. Multiplying At in (.) and integrating with the
time variable t, we get the corresponding mechanical energy

ε(t) =


A
t +U

(
A(t)

)
, (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/55
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where

U(A) = –
(Np – b – N + )


E(u)A

(Np–b–N)
Np–b–N+

+
N(Np – b – N + )


‖u‖LA

(Np–b–N–)
Np–b–N+ .

Restricting ourselves to the case E > , and according to the assumptions on p, b and N
we see that U(A) achieves its maximum Umax at Amax with

Amax =
(N(Np – b – N – )‖u‖L

(Np – b – N)E(u)

)Np–b–N+


and

Umax =
(Np – b – N + )

Np – b – N – 
E(u)

(N(Np – b – N – )‖u‖L
(Np – b – N)E(u)

)Np–b–N


.

To facilitate the rest of the analysis, we introduce a rescaling. Define J̃(s) and ε̃(s) by the
relations

A(t) = AmaxÃ(αt), ε(t) =Umaxε̃(αt),

α =

√
Np – b – N

Np – b – N – 
E(u)
N‖u‖L

, s = αt.

Thus, by (.), Ã satisfies the following differential inequality:

Ãss ≤ Np – b – N + 


(
Ã

Np–b–N–
Np–b–N+ – Ã– +b+N–Np

Np–b–N+
)
. (.)

Applying Lemma ., if we show that for the positive solution of the following differential
equation:

Ãss =
Np – b – N + 


(
Ã

Np–b–N–
Np–b–N+ – Ã– +b+N–Np

Np–b–N+
)
, (.)

there exists a time  < s < +∞ and lims→s Ã(s) = , then for the positive solution of the
differential inequality (.), there exists a time  < s ≤ s < +∞ and lims→s Ã(s) = . In-
deed, setting

Ũ(Ã) = –
Np – b – N – 


Ã

(Np–b–N)
Np–b–N+ +

Np – b – N


Ã
(Np–b–N–)
Np–b–N+ , (.)

we see that (.) converts to

ε̃(s) =
(Np – b – N – )
(Np – b – N + )

Ã
s (s) + Ũ

(
Ã(s)

)
. (.)

It is obvious that the maximum of Ũ(Ã(s)) is , which is attained by the maximum at
Ã(s) = . By the variational characteristic of Ũ(Ã(s)), we claim that under one of the follow-

http://www.journalofinequalitiesandapplications.com/content/2014/1/55
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ing conditions, Ã(s) vanishes in finite time, so does J(t) (which implies the solution u(t,x)
blows up in finite time):
(a) ε̃() <  and Ã() < ,
(b) ε̃() ≥  and Ãs() < .

Indeed, it follows from (.) and (.) that ε̃(s) = ε̃(). (a) If ε̃() < , then ε̃(t) <  and
Ũ(Ã(s)) <  for t ∈ I (maximal existence interval). By the assumption Ã() < , we deduce
that Ã(s) <  for t ∈ I . Moreover, we have

Ã
Np–b–N–
Np–b–N+ – Ã– +b+N–Np

Np–b–N+ < .

Using (.) and the classical analysis identity

Ã(s) = Ã() + Ã′()s +
∫ s


Ã′′(s – τ )τ dτ , (.)

we see that Ã(s) vanishes in finite time. On the other hand, for the second case (b), if
ε̃() ≥ , then ε̃(t) ≥ . If follows from (.) that Ũ(Ã(s)) = , which implies that Ã(s) = 
and

Ã
Np–b–N–
Np–b–N+ – Ã– +b+N–Np

Np–b–N+ = .

Using (.) and the classical analysis identity (.), we deduce that if Ãs() < , then Ã(s)
vanishes in finite time. This completes the proof of claim (a) and (b). Now, we return to
the proof of Theorem .. If we define J̃ = Ã


Np–b–N+ , then (.) is equal to

ε̃(s) =
Np – b – N – 


J̃
Np–b–N–



[
J̃s – J̃ +

Np – b – N
Np – b – N – 

]
.

Taking

h(y) =

√
y +


Np – b – N – 

y–
Np–b–N–

 –
Np – b – N

Np – b – N – 
,

we see that

ε̃ <  ⇔ |J̃s| < h(J̃) and ε̃ ≥  ⇔ |J̃s| ≥ h(J̃).

Thus condition (a) is true if and only if

J̃() <  and – h
(
J̃()

)
< J̃s() < h

(
J̃()

)
(.)

and condition (b) is true if and only if J̃s() < –h(J̃()). Collecting the above two conditions,
we deduce that the solution u(t,x) blows up in finite time  < T < +∞ provided

J̃s() <

⎧⎨
⎩h(J̃()) if  < J̃() < ,

–h(J̃()) if J̃() ≥ .
(.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/55
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Finally, substituting back J(t), we see that

J̃() =
(Np – b – N)E(u)

N(Np – b – N – )‖u‖L
J(), J̃s() =

√
Np – b – N

Np – b – N – 
Jt()

N‖u‖L
,

which implies that (.) is equivalent to

Jt() <

⎧⎪⎨
⎪⎩

√

Np–b–N–
Np–b–N N‖u‖Lh( (Np–b–N)E(u)

N(Np–b–N–)‖u‖
L
J()) if  < J̃() < ,

–
√

Np–b–N–
Np–b–N N‖u‖Lh( (Np–b–N)E(u)

N(Np–b–N–)‖u‖
L
J()) if J̃() ≥ .

(.)
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