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1 Introduction
In this paper, we consider the Cauchy problem of the following modified two-component
Camassa-Holm (MCH) system:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ut – uxxt + uux – uxuxx – uuxxx + gρρ̄x = , t > ,x ∈R,

ρt + (ρu)x = , t > ,x ∈R,

y(,x) = y(x), x ∈ R,

ρ(,x) = ρ(x), x ∈ R,

(.)

where ρ = ( – ∂
x )(ρ̄ – ρ̂), u denotes the velocity field, g is the downward constant acceler-

ation of gravity as applied to shallow water waves, ρ̄ is the average density, and ρ̂ is taken
to be a constant. For convenience we let g =  in this paper. The MCH system does ad-
mit peaked solutions in the velocity and average density; we refer to Ref. [] for details.
There the authors analytically identified the steepening mechanism that allows the singu-
lar solutions to emerge from smooth spatially confined initial data. They found that wave
breaking in the fluid velocity does not imply a singularity in the pointwise density ρ at
the point of vertical slope. Some other recent works can be found in [, ]. We find that
the MCH system is expressed in terms of an averaged or filtered density ρ̄ in analogy to
the relation between momentum and velocity by setting ρ = ( – ∂

x )(ρ̄ – ρ̂). Note that the
MCH system is a version of the CH system modified to allow for a dependence on the
average density ρ̄ (or depth, in the shallow water interpretation) as well as the pointwise
density ρ .
Let γ = ρ̄– ρ̂ , then γ =G∗ρ , where the sign ∗ denotes the spatial convolution,G(x) is the

associated Green’s function of the operator ( – ∂
x )–. Therefore system (.) is equivalent
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to the following one:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ut + uux + ∂x(G ∗ (u + 
u


x +


γ

 – 
γ


x )) = , t > ,x ∈R,

γt + uγx +G ∗ ((uxγx)x + uxγ ) = , t > ,x ∈R,

u(,x) = u(x), x ∈R,

γ (,x) = γ(x), x ∈R.

(.)

The MCH may not be integrable unlike CH. The characteristic is that it will amount to
strengthening the norm for ρ̄ from L to H in the potential energy term []. It means we
have the following conserved quantity:

E(t) =
∫
R

u + ux + γ  + γ 
x dx.

We cannot obtain the conservation of the H norm for the CH system, which reads

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ut – uxxt + uux – uxuxx – uuxxx + gρρx = , t > ,x ∈R,

ρt + (ρu)x = , t > ,x ∈R,

u(,x) = u(x), x ∈R,

ρ(,x) = ρ(x), x ∈R.

The CH system appeared initially in [], and recently Constantin and Ivanov in [] gave
a demonstration about its derivation in view of the fluid shallow water theory from the
hydrodynamic point of view. This generalization, similar to the Camassa-Holm equation,
possesses the peakon, multi-kink solutions and the bi-Hamiltonian structure [, ] and is
integrable. Well-posedness and the wave breaking mechanism were discussed in [–]
and the existence of global solutions was analyzed in [, , ]. The geometric investiga-
tion can be found in [, ].
Obviously, under the constraint of ρ(x, t) = , this system reduces to the Camassa-Holm

equation, which was derived physically by Camassa and Holm in [] (found earlier by
Fokas and Fuchssteiner [] as a bi-Hamiltonian generalization of the KdV equation) by
directly approximating the Hamiltonian for Euler’s equation in the shallow water region
with u(x, t) representing the free surface above a flat bottom. Some satisfactory results
have been obtained recently, for instance, see Refs. [–]. Moreover, wave breaking cri-
teria for a large class of initial data have been established in [, –]. In [], McKean
established the necessary and sufficient condition of wave breaking, while Zhou and his
collaborators gave a new and direct proof in [] for McKean’s theorem. In [], Xin and
Zhang showed global existence of weak solutions but uniqueness was obtained only un-
der a priori assumption that is known to hold only for initial data u(x) ∈ H such that
u(x) – uxx(x) is a sign-definite random measure. The solitary waves of the Camassa-
Holm equation are peaked solutions and are orbitally stable []; see also [] for a very
related rod equation. Recently, an asymptotic analysis was given in []. If ρ(x, t) �= , the
CH system which includes both velocity and density variables in the dynamics is actually
an extension of the CH equation. Although possessing peaked solutions in the velocity,
the CH system does not admit singular solutions in the density profile. Its mathematical
properties have been studied further in many works [–, , ].
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In Section , we recall some preliminary results on well-posedness and blow-up sce-
nario. In Section , two detailed blow-up criteria are presented.

2 Preliminaries
In this section, for completeness, we recall some elementary results and skip their proofs.
Local well-posedness for the MCH system can be obtained by Kato’s semi-group the-
ory []. In [], the authors gave a detailed description on the well-posedness theorem.

Theorem . [] Give X = (u,γ)T ∈ Hs × Hs–, s ≥ /, there exist a maximal T =
T(‖X‖Hs×Hs– ) >  and a unique solution X = (u,γ )T to system (.) such that

X = X(·,X) ∈ C
(
[,T],Hs ×Hs–) ∩C([,T],Hs– ×Hs–).

Moreover, the solution depends continuously on the initial data, i.e. the mapping

X → X(·,X) :Hs ×Hs → C
(
[,T],Hs ×Hs–) ∩C([,T],Hs– ×Hs–)

is continuous.

The next result describes the precise blow-up scenario for sufficiently regular solutions
to system (.).

Theorem . [] Let X = (u,γ)T ∈ Hs × Hs–, s ≥ /, and Let T be the maximal ex-
istence time of the solution X = (u,γ )T to system (.) with the initial data X. Then the
corresponding solution blows up in finite time if and only if

lim
t→T

inf
x∈R

ux(x, t) = –∞.

We also need to introduce the classical particle trajectorymethod for later use. Let q(x, t)
be the particle line evolved by the solution; that is, it satisfies

dq(x, t)
dt

= u
(
q(x, t), t

)
, q(x, t = ) = x.

Differentiating the first equation with respect to x, one has

d
dx

qt = qxt = ux(q, t)qx, t ∈ (,T).

Hence

qx(x, t) = e
∫ t
 ux(q,s)ds, qx(x, ) = ,

which is always positive before the blow-up time. Therefore, the function q(x, t) is an in-
creasing diffeomorphism of the line.

http://www.journalofinequalitiesandapplications.com/content/2014/1/54
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3 Blow-up
Before giving blow-up theorems, we rewrite the system (.) by y = u – uxx as follows:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

yt + uyx + yux + gρρ̄x = , t > ,x ∈R,

ρt + (ρu)x = , t > ,x ∈R,

y(,x) = y(x), x ∈R,

ρ(,x) = ρ(x), x ∈R.

As y(x, t) = ( – ∂
x )u(x, t) and as u(x, t) is given by the convolution u(x, t) = G ∗ y with

G = 
e

–|x|, we have

u(x, t) =


e–x

∫ x

–∞
eξy(ξ , t)dξ +



ex

∫ ∞

x
e–ξy(ξ , t)dξ ,

from which we get

ux(x, t) = –


e–x

∫ x

–∞
eξy(ξ , t)dξ +



ex

∫ ∞

x
e–ξy(ξ , t)dξ .

Thus,

(u + ux)(x, t) = ex
∫ ∞

x
e–ξy(ξ , t)dξ ,

(u – ux)(x, t) = e–x
∫ –x

–∞
eξy(ξ , t)dξ .

Now we give our two blow-up theorems.

Theorem . Suppose X = (u,γ)T ∈ Hs × Hs–, s ≥ 
 , for some point x ∈ R, ρ(x) =

y(x) =  and initial data satisfies the following conditions:
(i)

∫ x
–∞ eξy(ξ )dξ >  and

∫ ∞
x

e–ξy(ξ )dξ < ,
(ii)

∫ x
–∞ eξy(ξ )dξ

∫ ∞
x

e–ξy(ξ )dξ + E() < ,
where E() = ‖u‖H + ‖γ‖H . Then the solution to system (.) with the initial value X

blows up in finite time.

Remark . In fact the condition (ii) can be reduced to

∫ x

–∞
eξy(ξ )dξ

∫ ∞

x
e–ξy(ξ )dξ +

∫
R

(
γ  + γ 

ξ

)
(ξ , t)dξ < .

If γ (ξ , t) ≡ , the theory becomes the blow-up theorem in [] for the Camassa-Holm.
As γ (x, t) has nothing to do with the initial data, so we add the initial energy E() to con-
dition (ii).

Proof Differentiating the first equation in system (.) with respect to x, we obtain

utx + uuxx + ux + ∂
x

(
G ∗

(
u +



ux +



γ  –



γ 
x

))
= .

http://www.journalofinequalitiesandapplications.com/content/2014/1/54
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Applying ∂
x (G ∗ f ) =G ∗ f – f to the above equation yields

utx + uuxx = u –


ux +



γ  –



γ 
x –G ∗

(
u +



ux +



γ  –



γ 
x

)
.

This equation gives

d
dt

ux
(
q(x, t), t

)
= (uxt + uuxx)

(
q(x, t), t

)

≤ 

u

(
q(x, t), t

)
–


ux

(
q(x, t), t

)

+


γ (q(x, t), t) – 


γ 
x
(
q(x, t), t

)
–


G ∗ (

γ  – γ 
x
)

≤ 

u

(
q(x, t), t

)
–


ux

(
q(x, t), t

)

+


γ (q(x, t), t) + 


G ∗ γ 

x , (.)

where we used the fact

G ∗
(
u +



ux

)
≥ 


u.

As regards γ  we can deduce that

γ  =
∫ x

–∞
γ γx dx –

∫ ∞

x
γ γx dx ≤

∫ x

–∞
γ  + γ 

x


dx +
∫ x

∞
γ  + γ 

x


dx

=
∫ ∞

–∞
γ  + γ 

x


dx≤ 

E(). (.)

Due to (.), we obtain

γ  ≤ ‖γ ‖L∞ ≤ 

E(). (.)

Owing to G ∗ f = 

∫
R
e–|x–ξ |f (ξ )dξ , we have the following inequality:

G ∗ γ 
x =




∫
R

e–|x–ξ |γ 
x (ξ )dξ ≤ 



∫ x

–∞
γ 
x dξ +




∫ ∞

x
γ 
x dξ

≤ 

(‖u‖H + ‖γ‖H

)
=


E(). (.)

Then using (.) and (.), we can turn the inequality (.) into

d
dt

ux
(
q(x, t), t

) ≤ 

u

(
q(x, t), t

)
–


ux

(
q(x, t), t

)

+


γ (q(x, t), t) + 


G ∗ γ 

x

≤ 

u

(
q(x, t), t

)
–


ux

(
q(x, t), t

)
+


E(). (.)

In order to reach our result, we need the following claim.

http://www.journalofinequalitiesandapplications.com/content/2014/1/54


Ma et al. Journal of Inequalities and Applications 2014, 2014:54 Page 6 of 19
http://www.journalofinequalitiesandapplications.com/content/2014/1/54

Claim  ux(q(x, t), t) <  is decreasing, u(q(x, t), t) – ux(q(x, t), t) + E() <  for all
t ∈ [,T), where T is the maximal existence time of the solution.

Suppose not, i.e., there exists a t such that u(q(x, t), t) – ux(q(x, t), t) + E() <  on
[, t) and u(q(x, t), t) – ux(q(x, t), t) + E() = . Now let

I(t) :=


e–q(x,t)

∫ q(x,t)

–∞
eξy(ξ , t)dξ

and

II(t) :=


eq(x,t)

∫ ∞

q(x,t)
e–ξy(ξ , t)dξ .

Firstly for t ∈ [, t), differentiating I(t), we have

dI(t)
dt

= –


u
(
q(x, t), t

)
e–q(x,t)

∫ q(x,t)

–∞
eξy(ξ , t)dξ +



e–q(x,t)

∫ q(x,t)

–∞
eξyt(ξ , t)dξ

=


u(ux – u)

(
q(x, t), t

)
–


e–q(x,t)

∫ q(x,t)

–∞
eξ (uyx + uxy + ργx)dξ

≥ 

u(ux – u)

(
q(x, t), t

)
+



(
u + ux – uux

)(
q(x, t), t

)

–



γ (q(x, t), t) + 


γ 
x
(
q(x, t), t

)
+


G ∗ (

γ  – γ 
x
)

≥ 


(
ux – u

)(
q(x, t), t

)
–



γ (q(x, t), t) + 


γ 
x
(
q(x, t), t

)

+


G ∗ (

γ  – γ 
x
)

≥ 

ux

(
q(x, t), t

)
–


u

(
q(x, t), t

)
–



γ (q(x, t), t) – 

G ∗ γ 

x

≥ 


(
ux

(
q(x, t), t

)
– u

(
q(x, t), t

)
– E()

)
> , (.)

where we used (.) and (.).
Secondly, by the same argument, we get

dII(t)
dt

≤ –



(
ux – u

)(
q(x, t), t

)
+



γ (q(x, t), t) – 


γ 
x
(
q(x, t), t

)

–


G ∗ (

γ  – γ 
x
)

≤ –


ux

(
q(x, t), t

)
+


u

(
q(x, t), t

)
+



γ (q(x, t), t) + 

G ∗ γ 

x

≤ –



(
ux

(
q(x, t), t

)
– u

(
q(x, t), t

)
– E()

)
< . (.)

Hence, it follows from (.) and (.) and the continuity property of the ODEs that

ux
(
q(x, t), t

)
– u

(
q(x, t), t

)
– E() = –I(t)II(t) – E()

> –I()II() – E() > ,

http://www.journalofinequalitiesandapplications.com/content/2014/1/54
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for all t ∈ [, t), where we have used the condition (i) and (ii). The continuity property
implies that, when t = t, we have

ux
(
q(x, t), t

)
– u

(
q(x, t), t

)
– E() > .

This is an obvious contradiction. Then t can be extended to T . On the other hand

ux
(
q(x, t), t

)
= –



e–q(x,t)

∫ q(x,t)

–∞
eξy(ξ , t)dξ +



eq(x,t)

∫ ∞

q(x,t)
e–ξy(ξ , t)dξ

< –


e–x

∫ x

–∞
eξy(ξ , t)dξ +



ex

∫ ∞

x
e–ξy(ξ , t)dξ .

Then the initial assumption makes ux(q(x, t), t) <  obvious. So our claim is proved.
Using (.) and (.) again, we have the following equation for (ux – u)(q(x, t), t):

d
dt

(
ux – u

)(
q(x, t), t

)
= –II(t)

d
dt

I(t) – I(t)
d
dt

II(t)

≥ –II(t)
(
ux

(
q(x, t), t

)
– u

(
q(x, t), t

)
– E()

)
+ I(t)

(
u
x
(
q(x, t), t

)
– u

(
q(x, t), t

)
– E()

)
= –ux

(
q(x, t), t

)(
ux – u – E()

)(
q(x, t), t

)
, (.)

where we used ux(q(x, t), t) = –I(t) + II(t). Due to (.), we can obtain

ux
(
q(x, t), t

) ≤
∫ t





(
u – ux + E()

)(
q(x, τ ), τ

)
dτ + ux(x). (.)

Now, substituting (.) into (.), it yields

d
dt

(
ux – u

)(
q(x, t), t

)

≥
(
–

∫ t





(
u – ux + E()

)(
q(x, τ ), τ

)
dτ – ux(x)

)

× (
ux

(
q(x, t), t

)
– u

(
q(x, t), t

)
– E()

)

=



(∫ t



(
ux – u – E()

)(
q(x, τ ), τ

)
dτ – ux(x)

)

× (
ux

(
q(x, t), t

)
– u

(
q(x, t), t

)
– E()

)
. (.)

Before completing the proof, we need the following technical lemma.

Lemma . [] Suppose that �(t) is a twice continuously differential satisfying

⎧⎨
⎩

� ′′(t) ≥ C�
′(t)�(t), t > ,C > ,

�() > , ψ ′() > .
(.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/54
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Figure 1 y0.

Then �(t) blows up in finite time.Moreover the blow-up time T can be estimated in terms
of the initial datum as

T ≤max

{


C�()
,
�()
� ′()

}
.

Let �(t) =
∫ t
 (u


x – u – E())(q(x, τ ), τ )dτ – ux(x), then given the condition (i) and

due to the claim and the expression of ux(x), we get �(t) >  and � ′(t) > . Using the
above lemma, (.) is an equation of type (.) with C = 

 . We can conclude that under
the conditions (i) and (ii), the solution to system (.) blows up in finite time. �

Theorem . Suppose X = (u,ρ)T ∈ Hs × Hs–, s ≥ 
 , there exists δ satisfying when

x ∈ (x – δ,x + δ), ρ(x) ≡ , when x ∈ (–∞,x – δ], ρ(x) ≥  and when x ∈ [x + δ,∞),
ρ(x) ≤ . Some portion of the positive part of y(x) lies to the left of some portion of its
negative part with the changing sign point at x, then the solution to system (.) with the
initial value X blows up in finite time.

Before we prove the above theorem, we draw a picture of y in Figure .

Proof In order to prove the theorem, we define the following quantities:

A =
∫ x

–∞
eξy(ξ )dξ , B =

∫ ∞

x
e–ξy(ξ )dξ .

Then concerning the sign of A and B, we have four cases.
Case : A > , B < .
Case : A < , B < .
Case : A > , B > .
Case : A < , B > .
The cases for A =  or B =  are easy to handle.
First, we can find that Case  is equivalent to Case .
In fact, if (u(x, t),γ (x, t)) is a solution, let ũ(x, t) = –u(–x, t) and γ̃ (x, t) = –γ (–x, t), then

(ũ(x, t), γ̃ (x, t)) is also a solution with ũ(x) = –u(–x) and γ̃(x) = –γ(–x). Let ỹ(x) = ( –
∂
x )ũ(x) = –y(–x) with positive part on (–x, –x) and negative part on (–x, –x), then
we have

Ã =
∫ –x

–∞
eξ ỹ(ξ )dξ = –

∫ –x

–∞
eξy(–ξ )dξ = –

∫ ∞

x
e–ηy(η)dη = –B.

By the same reasoning, we have B̃ = –A.

http://www.journalofinequalitiesandapplications.com/content/2014/1/54
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Set

A
(
q(x, t), t

)
:=

∫ q(x,t)

–∞
eξy(ξ , t)dξ and B

(
q(x, t), t

)
:=

∫ ∞

q(x,t)
e–ξy(ξ , t)dξ

for any x ∈ (x – δ,x + δ), then we have

dA(q(x, t), t)
dt

=


eq(x,t)

[
u
(
q(x, t), t

)
– ux

(
q(x, t), t

)]

+



∫ q(x,t)

–∞
eξ

[
u(ξ , t) – uξ (ξ , t)

] dξ –


eq(x,t)

(
γ  – γ 

x
)(
q(x, t), t

)

+



∫ q(x,t)

–∞
eξ

(
γ  – γ 

x
)
(ξ , t)dξ , (.)

dB(q(x, t), t)
dt

= –


e–q(x,t)

[
u
(
q(x, t), t

)
+ ux

(
q(x, t), t

)]

–



∫ ∞

q(x,t)
e–ξ

[
u(ξ , t) + uξ (ξ , t)

] dξ +


e–q(x,t)

(
γ  – γ 

x
)(
q(x, t), t

)

–



∫ ∞

q(x,t)
e–ξ

(
γ  – γ 

x
)
(ξ , t)dξ . (.)

In order to get the monotonous property of A(q(x, t), t) and B(q(x, t), t), we need the fol-
lowing claim.

Claim  Under the condition of ρ(x) from the theorem, for all t >  we have

⎧⎪⎪⎨
⎪⎪⎩

ρ(q(x, t), t)≥ , x ∈ (–∞,x – δ],

ρ(q(x, t), t)≡ , x ∈ (x – δ,x + δ),

ρ(q(x, t), t)≤ , x ∈ [x + δ,∞),

and y(q(x, t), t) = .

From the first equation of system (.) we have the following equivalent form:

yt + yux + yxu + ργx = .

Applying the particle trajectory method and the second equation in (.), we obtain

d
dt

(
y
(
q(x, t), t

)
qx(x, t)

)
= (yt + yux + yxu)

(
q(x, t), t

)
qx(x, t)

= –ρ
(
q(x, t), t

)
γx

(
q(x, t), t

)
qx(x, t)

and

d
dt

ρ
(
q(x, t), t

)
qx(x, t) = ,

which implies

ρ
(
q(x, t), t

)
qx(x, t) = ρ(x).

http://www.journalofinequalitiesandapplications.com/content/2014/1/54
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Due to the condition of ρ(x) from the theorem and qx(x, t) > , we get

⎧⎪⎪⎨
⎪⎪⎩

ρ(q(x, t), t)≥ , x ∈ (–∞,x – δ],

ρ(q(x, t), t)≡ , x ∈ (x – δ,x + δ),

ρ(q(x, t), t)≤ , x ∈ [x + δ,∞),

for all t > . Then

d
dt

y
(
q(x, t), t

)
qx(x, t) =  x ∈ (x – δ,x + δ).

Thus y(q(x, t), t)qx(x, t) is independent on time t. By taking t = , we have

y
(
q(x, t), t

)
qx(x, t) = y(x) x ∈ (x – δ,x + δ).

Since y(x) =  and from the above equation, we get y(q(x, t), t) = . Therefore the claim
holds.

Claim  For any fixed t, γ 
x (x, t) – γ (x, t)≤ (γ 

x – γ )(q(η, t), t), for any η ∈ (x – δ,x + δ)
and all x ∈R.

As γ =G ∗ ρ , where G is the Green’s function, it can be expressed as G(x) = – 
e

–|x|, and
then one has the equation for γ (x, t) and γx(x, t):

γ (x, t) =


e–x

∫ x

–∞
eξ ρ(ξ , t)dξ +



ex

∫ ∞

x
e–ξ ρ(ξ , t)dξ ,

γx(x, t) = –


e–x

∫ x

–∞
eξ ρ(ξ , t)dξ +



ex

∫ ∞

x
e–ξ ρ(ξ , t)dξ .

Therefore,

(γ + γx)(x, t) = ex
∫ ∞

x
e–ξ ρ(ξ , t)dξ ,

(γ – γx)(x, t) = e–x
∫ –x

–∞
eξ ρ(ξ , t)dξ .

By direct computation, if x ≤ q(η, t), for any η ∈ (x – δ,x + δ), then from the above two
equations we can get

γ 
x (x, t) – γ (x, t) = –

(∫ q(η,t)

–∞
eξ ρ(ξ , t)dξ –

∫ q(η,t)

x
eξ ρ(ξ , t)dξ

)

×
(∫ ∞

q(η,t)
e–ξ ρ(ξ , t)dξ +

∫ q(η,t)

x
e–ξ ρ(ξ , t)dξ

)

=
(
γ 
x – γ )(q(η, t), t) –

∫ q(η,t)

–∞
eξ ρ(ξ , t)dξ

∫ q(η,t)

x
e–ξ ρ(ξ , t)dξ

+
∫ q(η,t)

x
eξ ρ(ξ , t)dξ

∫ ∞

q(η,t)
e–ξ ρ(ξ , t)dξ

≤ (
γ 
x – γ )(q(η, t), t),
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where we used the above claim as regards ρ(x, t). Similarly, if x ≤ q(η, t), for any η ∈ (x –
δ,x + δ), we also have

γ 
x (x, t) – γ (x, t) ≤ (

γ 
x – γ )(q(η, t), t).

This completes the proof of the claim.
For any x ∈ (x – δ,x + δ), by applying our claim to (.) and (.), we obtain

dA(q(x, t), t)
dt

≥ 

eq(x,t)

[
u
(
q(x, t), t

)
– ux

(
q(x, t), t

)]

+



∫ q(x,t)

–∞
eξ

[
u(ξ , t) – uξ (ξ , t)

] dξ > , (.)

dB(q(x, t), t)
dt

≤ –


e–q(x,t)

[
u
(
q(x, t), t

)
+ ux

(
q(x, t), t

)]

–



∫ ∞

q(x,t)
e–ξ

[
u(ξ , t) + uξ (ξ , t)

] dξ < , (.)

which implies A(q(x, t), t) is a strictly increasing function, while B(q(x, t), t) is a strictly
decreasing one for a nontrivial solution.
Now we prove Case .
From (.) and Claim , we have

d
dt

ux
(
q(x, t), t

)
= (uxt + uuxx)

(
q(x, t), t

)

≤ 

u

(
q(x, t), t

)
–


ux

(
q(x, t), t

)

+


γ (q(x, t), t) – 


γ 
x
(
q(x, t), t

)

–


G ∗ (

γ  – γ 
x
)

≤ 

u

(
q(x, t), t

)
–


ux

(
q(x, t), t

)

=


A

(
q(x, t), t

)
B
(
q(x, t), t

)
.

Due to the increasing property of A(q(x, t), t) and the decreasing property of B(q(x, t), t)
((.) and (.)), if we let

m(t) := ux
(
q(x, t), t

)
,

then

d
dt

m(t) ≤ 

u

(
q(x, t), t

)
–


ux

(
q(x, t), t

)

=


A

(
q(x, t), t

)
B
(
q(x, t), t

)

≤ 

AB < . (.)
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Suppose the corresponding solution exists globally in time. Sincem(t) is strictly decreasing
with initial assumption m() < , there exists a t such that for all t > t, we have

m(t) < –
√
E() < ,

where

E() =
∫
R

u + ux + γ 
 + γ 

x dx.

Thanks to (.) and the following fact:

∥∥u(x, t)∥∥
L∞(R) ≤



∥∥u(x, t)∥∥

H(R) ≤


E(t) =



E(),

we have the following inequality for t > t:

d
dt

m(t) ≤ –


m(t) +



u

(
q(x, t), t

)

≤ –


m(t) +



E()

≤ –


m(t).

Then we need the following lemma to finish our proof for Case .

Lemma . [] Assume that a differentiable function y(t) satisfies

y′(t)≤ –Cy(t) +K

with constant C,K > . If we have the initial datum y() = y < –
√

K
C , then the solution goes

to –∞ before t tends to 
–Cy+ K

y
.

Through this lemma, we can see thatm(t) goes to –∞ within finite time and Case  has
been proved.
Now we prove Case .
We will prove that after some time Case  will change to Case . So it is sufficient to

show that there exists a time T ∈ (,∞), such that
∫ q(x,t)
–∞ eξy(ξ , t)dξ >  as t > T.

Suppose not, i.e.,
∫ q(x,t)
–∞ eξy(ξ , t)dξ ≤  for any t > . As in Case , we have

∫ x

–∞
eξy(ξ )dξ < ,

∫ ∞

x
e–ξy(ξ )dξ = –ε < .

Then

lim
x→x

∫ ∞

x
e–ξy(ξ )dξ = –ε,

which shows that, for ε
 > , there exists a δ′ > , and for any x ∈ U(x, δ′) .= {x | |x – x| <

δ′}, we have
∣∣∣∣
∫ ∞

x
e–ξy(ξ )dξ + ε

∣∣∣∣ < ε


.

http://www.journalofinequalitiesandapplications.com/content/2014/1/54


Ma et al. Journal of Inequalities and Applications 2014, 2014:54 Page 13 of 19
http://www.journalofinequalitiesandapplications.com/content/2014/1/54

Figure 2 y0 for Case 2.

That is to say

∫ ∞

x
e–ξy(ξ )dξ < –

ε


< , for any x ∈U(x,ρ).

If we set x∗
 =max{x,x – δ} and x =max{x∗

 ,x – δ′} (see Figure ), then
∫ ∞

x
e–ξy(ξ )dξ < –

ε


< .

Therefore, for any x ∈ [x,x],

∫ x

–∞
eξy(ξ )dξ <  and

∫ ∞

x
e–ξy(ξ )dξ < .

When x ∈ [x,x] ⊆ (x – δ,x + δ), we see that A(q(x, t), t) is increasing and B(q(x, t), t) is
decreasing, then from the hypothesis we know for all t > 

∫ q(x,t)

–∞
eξy(ξ , t)dξ <

∫ q(x,t)

–∞
eξy(ξ , t)dξ ≤ 

and
∫ ∞

q(x,t)
e–ξy(ξ , t)dξ < .

Then we obtain

(
u – ux

)(
q(x, t), t

)
=

∫ q(x,t)

–∞
eξy(ξ , t)dξ

∫ ∞

q(x,t)
e–ξy(ξ , t)dξ

> , for x ∈ [x,x].

That is to say |ux| ≤ |u| ≤ E().
Case . For any x, y satisfying x < y ∈ [ x+x ,x], there exists a constant M > , such

that  < q(y, t) – q(x, t) ≤M.
For any a < b ∈ [ x+x ,x], assume that b – a = δ. In view of u(q(x, t), t) <  for x ∈

[x,x], we have

(∫ b

a

√
y(x)dx

)

≤
∫ q(b,t)

q(a,t)
y(ξ , t)dξ

(
q(b, t) – q(a, t)

)

≤ –
∫ q(b,t)

q(a,t)
uξξ dξ

(
q(b, t) – q(a, t)

)
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Figure 3 Case 3.1.

=
[
ux

(
q(a, t), t

)
– ux

(
q(b, t), t

)](
q(b, t) – q(a, t)

)
≤ M

[
ux

(
q(a, t), t

)
– ux

(
q(b, t), t

)]
. (.)

On the other hand, from the boundedness of u and ux, it follows that

(∫ b

a

√
y(x)dx

)

≤ E()
(
q(b, t) – q(a, t)

)
,

which implies that

q(b, t) – q(a, t)≥ (
∫ b
a

√
y(x)dx)

E()
.

From the expression of q(x, t), we know that

d
dt

qx(a, t)
qx(b, t)

=
qx(a, t)
qx(b, t)

[
ux

(
q(a, t), t

)
– ux

(
q(b, t), t

)]
.

Hence

∫ t



[
ux

(
q(a, s), s

)
– ux

(
q(b, s), s

)]
ds = ln

qx(a, t)
qx(b, t)

.

Fix some points d < a < b < c ∈ [ x+x ,x] (see Figure ), such that b– a = a– d = c– b =
δ > , and δ is small enough. Because of the convexity of q(x, t), we can deduce that

M > q(a, t) – q(d, t) > q(b, t) – q(a, t) > q(c, t) – q(b, t)

≥ (
∫ c
b

√
y(x)dx)

E()
.

Therefore, there exist η ∈ (b, c) and ξ ∈ (a,b), such that

(
∫ c
b

√
y(x)dx)

E()δ
≤ q(c, t) – q(b, t)

c – b
= qx(η, t) < qx(b, t) < qx(ξ , t)

=
q(b, t) – q(a, t)

b – a
≤ M

δ
. (.)

Similarly, we also get

(
∫ b
a

√
y(x)dx)

E()δ
< qx(a, t) <

M
δ

. (.)
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Combining (.) and (.), it follows that

∫ ∞



[
ux

(
q(a, s), s

)
– ux

(
q(b, s), s

)]
ds = ln

qx(a, t)
qx(b, t)

∣∣∣∣
t=∞

< ln
E()M

(
∫ c
b

√
y(x)dx)

< ∞.

Then a contradiction is obtained from (.): ux(q(a, t), t) – ux(q(b, t), t) is summable with
respect to t, but (

∫ b
a

√
y(x)dx) is not.

Case .. There exist some points, say a′ < b′ ∈ [ x+x ,x], such that q(b′, t) – q(a′, t) > 
is unbounded.
Different from (.), we can deal with the same term as

(∫ b

a

√
y(x)dx

)

=
(∫ q(b,t)

q(a,t)

√
y(ξ )dξ

)

=
(∫ q(b,t)

q(a,t)

√
y(ξ ) · (ξ – q(c, t)

) 
 · 

(ξ – q(c, t)) 
dξ

)

≤
∫ q(b,t)

q(a,t)
y(ξ )

(
ξ – q(c, t)

)
dξ ·

∫ q(b,t)

q(a,t)


ξ – q(c, t)

dξ

:= J · J. (.)

According to the convexity of q(x, t), we have

J = ln
q(b, t) – q(c, t)
q(a, t) – q(c, t)

= ln

(
q(b, t) – q(a, t)
q(a, t) – q(c, t)

+ 
)

< ln

(
b – a
a – c

+ 
)
= ln

b – c
a – c

. (.)

Next we will consider the first term J in (.),

J ≤ –
∫ q(b,t)

q(c,t)
uξξ

(
ξ – q(c, t)

)
dξ

= –uξ

(
ξ – q(c, t)

)|q(b,t)q(c,t) +
∫ q(b,t)

q(c,t)
uξ dξ

= –ux
(
q(b, t), t

)(
q(b, t) – q(c, t)

)
+ u

(
q(b, t), t

)
– u

(
q(c, t), t

)
< –ux

(
q(b, t), t

)(
q(b, t) – q(c, t)

)
– u

(
q(c, t), t

)
.

From the hypothesis, we know that q(b′, t) – q(a′, t) may reach ∞, which means that there
exist some times t and t, such that

d
dt

(
q
(
b′, t

)
– q

(
a′, t

))
> , for t ≤ t ≤ t.

Let d < c < a < b < a′ < b′ with c – d = a – c = b – a = a′ – b = b′ – a′ = δ (see Figure ).
Thanks to a′ < b′ ∈ [ x+x ,x], we know that the above points all belong to the interval
[x,x]. First, we prove the following claim.
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Figure 4 Case 3.2.

Claim  For any two adjacent points belong to [x,a′], say e and f with e < f , it satisfies
d
dt (q(f , t) – q(e, t)) >  as t ≤ t ≤ t.

In fact, there exist ξ ∈ (q(e, t),q(f , t)), and η ∈ (q(a′, t),q(b′, t)), such that

d
dt

(
q
(
b′, t

)
– q

(
a′, t

))
= u

(
q
(
b′, t

)
, t

)
– u

(
q
(
a′, t

)
, t

)

= ux(η, t)
(
q
(
b′, t

)
– q

(
a′, t

))
,

d
dt

(
q(f , t) – q(e, t)

)
= u

(
q(f , t), t

)
– u

(
q(e, t), t

)

= ux(ξ , t)
(
q(f , t) – q(e, t)

)
.

According to  < ux(η, t) < ux(ξ , t) and the convexity of q(x, t), we have

d
dt

(
q(f , t) – q(e, t)

)
>  for t ∈ [t, t].

So the claim is true.
Therefore,

 <
d
dt

(
q
(
a′, t

)
– q(b, t)

)
=

∫ q(a′ ,t)

q(b,t)
uξ dξ ≤ ux

(
q(b, t), t

)(
q
(
a′, t

)
– q(b, t)

)
,

for all t ∈ [t, t], which implies

ux
(
q(b, t), t

) ≥ d(q(a′, t) – q(b, t))
dt

· 
q(a′, t) – q(b, t)

.

Since y = u – uξξ > ,

–u
(
q(c, t), t

)(
q(c, t) – q(d, t)

) ≤ –
∫ q(c,t)

q(d,t)
u(ξ )dξ ≤ –

∫ q(c,t)

q(d,t)
uξξ dξ ≤ E().

Then

–u
(
q(c, t), t

) ≤ E()
q(c, t) – q(d, t)

.

Summarizing these estimates and using the convexity of q(x, t), we can get

J < –ux
(
q(b, t), t

)(
q(b, t) – q(c, t)

)
– u

(
q(c, t), t

)

≤ –
d(q(a′, t) – q(b, t))

dt
· 
q(a′, t) – q(b, t)

(
q(b, t) – q(c, t)

)
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+
E()

q(c, t) – q(d, t)

≤ –
d(q(a′, t) – q(b, t))

dt
· 
q(a′, t) – q(b, t)

(
q
(
a′, t

)
– q(b, t)

)

+
E()

q(a′, t) – q(b, t)

≤ –
d(q(a′, t) – q(b, t))

dt
+

E()
q(a′, t) – q(b, t)

< , (.)

for q(a′, t) – q(b, t) large enough and in the time interval it is increasing.
Putting (.) and (.) into (.), we know that (

∫ b
a

√
y(x)dx) becomes negative.

This is a contradiction.
Therefore, we finish the proof for Case .
Finally we finish the proof of our theorem with proving Case .
Wewant to prove thatCase  can be reduced to the first or the third case, so it is sufficient

to prove that there exists a time T ∈ (,∞), such that
∫ q(x,t)
–∞ eξy(ξ , t)dξ >  as t > T.

We suppose that for all t ∈ (,∞), we have
∫ q(x,t)
–∞ exy(x, t)dx < , then get a contradic-

tion. For any a ∈ [x∗
 ,x],

(ux – u)
(
q(a, t), t

)
= –e–q(a,t)

∫ q(a,t)

–∞
eξy(ξ , t)dξ > ,

(ux + u)
(
q(a, t), t

)
= eq(a,t)

∫ ∞

q(a,t)
e–ξy(ξ , t)dξ > .

Summarizing the above two inequalities, we obtain

ux
(
q(x, t), t

) ≥ ∣∣u(
q(x, t), t

)∣∣, for x∗
 < x < x, t ≥ .

After the above preparation, we have

(∫ x

a

√
y(x)dx

)

=
(∫ q(x,t)

q(a,t)

√
y(q)dq

)

≤
(∫ q(x,t)

q(a,t)
y(q)eq dq

)(∫ q(x,t)

q(a,t)
e–q dq

)

=
(∫ q(x,t)

q(a,t)
(u – uxx)(q)eq dq

)(
e–q(a,t) – e–q(x,t)

)

≤ (ux – u)
(
q(a, t), t

)(
 – eq(a,t)–q(x,t)

)
≤ (ux – u)

(
q(a, t), t

)
,

which implies

(∫ x

a

√
y(x)dx

)

≤ (ux – u)
(
q(a, t), t

)
, for x∗

 < x < x, t ≥ . (.)
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On the other hand, by (.), we have

∞ > –
∫ ∞


eq(ux – u)(q)dt

∣∣∣∣
x=x

x=a

=
∫ ∞


dt

∫ x

a
eq

[
(ux – u) + (ux – u)y

]
(q)dq

≥
∫ ∞


dt

∫ x

a
eqqx(ux – u)(q)dx.

Since

q + ln(qx) =
∫ t


(ux + u)(q)dt + x≥ x,

which yields

∫ ∞


dt

∫ x

a
ex(ux – u)(q)dx ≤

∫ ∞


dt

∫ x

a
eqqx(ux – u)(q)dx < ∞,

we get

∫ ∞


(ux – u)

(
q(x, t), t

)
dt <∞, for almost every x ∈ [

x∗
 ,x

]
.

Then a contradiction is obtained from (.): (ux – u)(q) taken at x = a is summable with
respect to t, but (

∫ x
a

√
y(x)dx) is not.

So there exists a time T , such that when t > T ,
∫ q(x,t)
–∞ eξy(ξ , t)dξ > . This completes the

proof for Case .

Remark . Scrutinizing the proof, we find that the condition of ρ(x) guarantees that
Claim  holds. Therefore it can be replaced by

⎧⎪⎪⎨
⎪⎪⎩

ρ(x)≤ , x ∈ (–∞,x – δ],

ρ(x)≡ , x ∈ (x – δ,x + δ),

ρ(x)≥ , x ∈ [x + δ,∞),

for all t > . Then the theorem still holds.

Remark . This blow-up theorem has nothing to do with the initial energy E(). It is the
sign of the initial density ρ(x) and the sign of y(x) that play an important role in wave
breaking, it is not the size of them that affects it. It is very similar to the necessary and
sufficient blow-up condition for the Camassa-Holm equation given by McKean in [].
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