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Abstract
In this paper, we find the least value r and the greatest value p such that the double
inequality erf(Mp(x, y;λ)) ≤ H(erf(x), erf(y);λ)≤ erf(Mr(x, y;λ)) holds for all x, y ≥ 1 (or
0 < x, y < 1) with 0 < λ < 1, where erf(x) = 2√

π

∫ x
0 e

–t2 dt, and

Mp(x, y;λ) = (λxp + (1 – λ)yp)1/p (p �= 0) andM0(x, y;λ) = xλy1–λ are, respectively, the
error function, and weighted power mean.
MSC: 33B20; 26D15
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1 Introduction
For x ∈ R, the error function erf(x) is defined as

erf(x) =
√
π

∫ x


e–t


dt.

It is well known that the error function erf(x) is odd, strictly increasing on (–∞, +∞)
with limx→+∞ erf(x) = , strictly concave and strictly log-concave on [,+∞). For the nth
derivation we have the representation

dn

dxn
erf(x) = (–)n–

√
π
e–x


Hn–(x),

where Hn(x) = (–)nex dn
dxn (e

–x ) is a Hermite polynomial.
The error function can be expanded as a power series in the following two ways []:

erf(x) =
√
π

+∞∑
n=

(–)n

n!(n + )
xn+ = e–x


+∞∑
n=


�(n + 

 )
xn+.

It also can be expressed in terms of incomplete gamma function and a confluent hyper-
geometric function:

erf(x) =
sgn(x)√

π
γ

(


,x

)
=

x√
π

F
(


;


;–x

)
.

Recently, the error function have been the subject of intensive research. In particular,
many remarkable properties and inequalities for the error function can be found in the
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literature [–]. It might be surprising that the error function has applications in heat
conduction problems [, ].
In [], Chu proved that the double inequality

√
 – e–ax ≤ erf(x)≤

√
 – e–bx

holds for all x≥  if and only if  ≤ a≤  and b ≥ 
π
.

Mitrinović and Weinacht [] established that

erf(x) + erf(y) ≤ erf(x + y) + erf(x) erf(y)

for all x, y≥ , and proved that the inequality become equality if and only if x =  or y = .
In [, ] Alzer proved that

αn =

{
. · · · , if n = ,
, if n≥ 

and βn = n –  (.)

are the best possible constants such that the double inequality

αn erf

( n∑
i=

xi

)
≤

n∑
i=

erf(xi) –
n∏
i=

erf(xi) ≤ βn erf

( n∑
i=

xi

)

holds for n≥  and all real number xi ≥  (i = , , . . . ,n), and the sharp double inequalities

erf() <
erf(x + erf(y))
erf(y + erf(x))

<
√
π

and

 <
erf(x erf(y))
erf(y erf(x))

≤ 

hold for all positive real numbers x, y with x≥ y.
Let λ ∈ (, ), andA(x, y;λ) = λx+(–λ)y,G(x, y;λ) = xλy–λ,H(x, y;λ) = xy/[λy+(–λ)x],

and Mr(x, y;λ) = [λxr + ( – λ)yr]/r (r �= ) and M(x, y;λ) = xλy–λ be, respectively, the
weighted arithmetic, geometric, harmonic, and power means of two positive numbers x
and y. Then it is well known that the inequalities

H(x, y;λ) =M–(x, y;λ) <G(x, y;λ) =M(x, y;λ) < A(x, y;λ) =M(x, y;λ)

hold for all λ ∈ (, ) and x, y >  with x �= y.
Very recently, Alzer [] proved that c(λ) = [λ+(–λ) erf()]/[erf(/(–λ))] and c(λ) = 

are the best possible factors such that the double inequality

c(λ) erf
(
H(x, y;λ)

) ≤ A
(
erf(x), erf(y);λ

) ≤ c(λ) erf
(
H(x, y;λ)

)
(.)

holds for all x, y ∈ [, +∞) and λ ∈ (, /).
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It is natural to ask what are the least value r and the greatest value p such that the double
inequality

erf
(
Mp(x, y;λ)

) ≤H
(
erf(x), erf(y);λ

) ≤ erf
(
Mr(x, y;λ)

)
holds for all x, y ≥  (or  < x, y < )? The main purpose of this article is to answer this
question.

2 Lemmas
In order to prove ourmain results we need three lemmas, whichwe present in this section.

Lemma . Let r �=  and J(x) = 
r [erf(x

/r) – √
π
x/re–x/r ]. Then the following statements

are true:
() if – ≤ r < , then J(x) <  for all x ∈ (, +∞);
() if  < r < , then J(x) >  for all x ∈ (, +∞).

Proof Simple computation leads to

J ′(x) =

r

√
π
x/r–e–x

/r
(


+ x/r

)
>  (.)

for all x ∈ (, +∞).
() If – ≤ r < , then we clearly see that

lim
x→+∞ J(x) = . (.)

Therefore, Lemma .() follows easily from (.) and (.).
() If  < r < , then it is obvious that

lim
x→+

J(x) = . (.)

Therefore, Lemma .() follows from (.) and (.). �

Lemma. Let r �= , r = –– 
e
√

π erf() = –. · · · and u(x) = 
erf(x/r) .Then the following

statements are true:
() if r ≤ r, then u(x) is strictly concave on [, +∞);
() if r ≤ r < –, then u(x) is strictly convex on (, ];
() if r ≥ –, then u(x) is strictly convex on (, +∞).

Proof Differentiating u(x) leads to

u′(x) = –

r
x/r– erf′(x/r)

erf(x/r)
(.)

and

u′′(x) =

r

√
π


erf(x/r)

x/r–e–x
/r
g(x), (.)
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where

g(x) =
(
r –  + x/r

)
erf

(
x/r

)
+

√
π
x/re–x

/r
. (.)

It follows from (.) that

g() = (r + ) erf() +


e
√

π
, (.)

g ′(x) = x/r–g(x),

g(x) =

r
erf

(
x/r

)
+

r



√

π
x/r

[
( + r)x–/r – 

]
e–x

/r
, (.)

g ′
(x) =


r



√

π
x–/r–e–x

/r
g(x),

g(x) = x/r – rx/r – ( + r). (.)

We divide the proof into four cases.
Case  r < –. Then from (.) and (.) together with (.) we clearly see that

lim
x→+

g(x) = +∞, lim
x→+∞ g(x) = , (.)

lim
x→+

g(x) =

r
< , lim

x→+∞ g(x) = +∞, (.)

lim
x→+∞ g(x) = –( + r) > , (.)

and g(x) is strictly decreasing on [,+∞).
It follows from the monotonicity of g(x) and (.) that g(x) is strictly increasing on

[,+∞).
Themonotonicity of g(x) and (.) imply that there exists x ∈ (, +∞), such that g(x) <

 for x ∈ (,x) and g(x) >  for x ∈ (x, +∞). Therefore, g(x) is strictly decreasing on [,x]
and strictly increasing on [x, +∞).
From the piecewise monotonicity of g(x) and (.) we clearly see that there exists x ∈

(, +∞), such that g(x) >  for x ∈ (,x) and g(x) <  for x ∈ (x, +∞).
If r ≤ r, then (.) leads to g() ≤ , this implies that g(x) <  for x ∈ (, +∞). Therefore,

(.) leads to the conclusion that u(x) is strictly concave on [, +∞).
If r ≤ r < –, then (.) leads to g() ≥ , this implies that g(x) >  for x ∈ (, ). There-

fore, (.) leads to the conclusion that u(x) is strictly convex on (, ).
Case  – ≤ r < . Then we clearly see that the function (+ r)x–/r – is strictly increas-

ing on (,+∞) with limx→+[( + r)x–/r – ] = –, and

g(x) <

r

[
erf

(
x/r

)
–

√
π
x/re–x

/r
]
. (.)

Therefore, Lemma .() and (.) imply that g(x) <  for x ∈ (, +∞). This leads to the
conclusion that g(x) is strictly decreasing on (,+∞).
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From (.) we get

lim
x→+∞ g(x) =  (.)

for –≤ r < .
It follows from the monotonicity of g(x) and (.) that g(x) >  for x ∈ (, +∞). There-

fore, (.) leads to the conclusion that u(x) is strictly convex on (,+∞).
Case   < r < . Then we clearly see that the function (+ r)x–/r – is strictly decreasing

on (,+∞) with limx→+∞[( + r)x–/r – ] = –, and

g(x) >

r

[
erf

(
x/r

)
–

√
π
x/re–x

/r
]
. (.)

It follows from Lemma .() and (.) that g(x) >  for x ∈ (, +∞). This leads to g(x)
being strictly increasing on (,+∞).
It follows from (.) that

lim
x→+

g(x) =  (.)

for  < r < .
From the monotonicity of g(x) and (.) we know that g(x) >  for x ∈ (, +∞). There-

fore, (.) leads to the conclusion that u(x) is strictly convex on (,+∞).
Case  r ≥ . Then from (.) we clearly see that g(x) >  for x ∈ (, +∞). Therefore, u(x)

is strictly convex on (,+∞) follows easily from (.). �

Lemma . The function h(x) = x + xe–x
∫ x

 e–t dt
is strictly increasing on (, +∞).

Proof Simple computations lead to

h′(x) =
h(x)

(
∫ x
 e–t dt)

, (.)

where

h(x) = x
(∫ x


e–t


dt

)

+
(
 – x

)
e–x


∫ x


e–t


dt – xe–x


,

h() = , h() = . · · · > , (.)

h′
(x) = 

(∫ x


e–t


dt

)

+ x
(
x – 

)
e–x


∫ x


e–t


dt + xe–x , (.)

h′
() = , (.)

h′′
 (x) = e–x


h(x), (.)

h(x) =
(
–x + x + 

)∫ x


e–t


dt +

(
–x + x

)
e–x


,

h() = , (.)

h′
(x) = x

(
 – x

)∫ x


e–t


dt + e–x . (.)
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We divide the proof into two cases.
Case  x ≥ . Then (.) leads to h′

(x) > . Therefore, h′(x) >  follows from (.) and
(.).
Case   < x < . Then from (.) we clearly see that h′

(x) > . Therefore, h′(x) > 
follows from (.) and (.) together with (.)-(.). �

3 Main results
Theorem . Let λ ∈ (, ) and r = – – 

e
√

π erf() = –. · · · . Then the double inequal-
ity

erf
(
Mμ(x, y;λ)

) ≤H
(
erf(x), erf(y);λ

) ≤ erf
(
Mν(x, y;λ)

)
(.)

holds for all  < x, y <  if and only if μ ≤ r and ν ≥ –.

Proof Firstly, we prove that (.) holds if μ ≤ r and ν ≥ –.
If μ ≤ r, u(z) = 

erf(z/μ) , then Lemma .() leads to

λu(s) + ( – λ)u(t) ≤ u
(
λs + ( – λ)t

)
(.)

for λ ∈ (, ) and s, t > .
Let s = xμ, t = yμ, and  < x, y < . Then (.) leads to the first inequality in (.).
Since the function t 
→ erf(Mt(x, y;λ)) is strictly increasing on R if ν ≥ –, it is enough

to prove the second inequality in (.) is true for – ≤ ν < .
Let –≤ ν <  and u(z) = 

erf(z/ν ) . Then Lemma .() leads to

u
(
λs + ( – λ)t

) ≤ λu(s) + ( – λ)u(t) (.)

for λ ∈ (, ) and s, t > .
Therefore, the second inequality in (.) follows from s = xν and t = yν together with

(.).
Secondly, we prove that the second inequality in (.) implies ν ≥ –.
Let  < x, y < . Then the second inequality in (.) leads to

D(x, y) := erf
(
Mν(x, y;λ)

)
–H

(
erf(x), erf(y);λ

) ≥ . (.)

It follows from (.) that

D(y, y) =
∂

∂x
D(x, y)

∣∣∣
x=y

= 

and

∂

∂x
D(x, y)

∣∣∣
x=y

= λ( – λ)y– erf′(y)
[
ν –  + 

(
y +

ye–y∫ y
 e–t

 dt

)]
. (.)

Therefore,

ν ≥ lim
y→+

[
 – 

(
y +

ye–y∫ y
 e–t

 dt

)]
= –

follows from (.) and (.) together with Lemma ..
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Finally, we prove that the first inequality in (.) implies μ ≤ r.
Let y→ . Then the first inequality in (.) leads to

L(x) =:H
(
erf(x), erf();λ

)
– erf

(
mμ(x, ;λ)

) ≥  (.)

for  < x < .
It follows from (.) that

L() = , (.)

[
λ erf() + ( – λ) erf(x)

]L′(x) =
λ√
π
e–x


L(x), (.)

where

L(x) = erf() – xμ–(λxμ +  – λ
) 

μ–[
λ erf() + ( – λ) erf(x)

]ex–(λxμ+–λ)

μ ,

lim
x→–

L(x) = , (.)

lim
x→–

L′
(x) = ( – λ) erf()

[
– –μ –


e
√

π erf()

]
. (.)

If μ > r, then from (.) we know that there exists a small δ > , such that L′
(x) <  for

x ∈ ( – δ, ). Therefore, L(x) is strictly decreasing on [ – δ, ].
The monotonicity of L(x) together with (.) and (.) imply that there exists δ > ,

such that L(x) is strictly increasing on ( – δ, )
It follows from the monotonicity of L(x) and (.) that there exists δ > , such that

L(x) <  for x ∈ ( – δ, ), this contradicts with (.). �

Theorem . Let λ ∈ (, ) and r = – – 
e
√

π erf() = –. · · · . Then the double inequal-
ity

erf
(
Mp(x, y;λ)

) ≤H
(
erf(x), erf(y);λ

) ≤ erf
(
Mr(x, y;λ)

)
(.)

holds for all x, y≥  if and only if p = –∞ and r ≥ r.

Proof Firstly, we prove that inequality (.) holds if p = –∞ and r ≥ r. Since the first
inequality in (.) is true if p = –∞, thus we only need to prove the second inequality in
(.).
It follows from the monotonicity of the function erf(Mt(x, y;λ)) with respect to t that we

only need to prove the second inequality in (.) holds for r ≤ r < –.
Let r ≤ r < – and u(z) = 

erf(z/r) . Then Lemma .() leads to

u
(
λs + ( – λ)t

) ≤ λu(s) + ( – λ)u(t) (.)

for λ ∈ (, ) and s, t ∈ (, ].
Therefore, the second inequality in (.) follows from s = xr and t = yr together with

(.).
Secondly, we prove that the second inequality in (.) implies r ≥ r.
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Let x ≥  and y≥ . Then the second inequality in (.) leads to

K (x, y) =: erf
(
Mr(x, y;λ)

)
–H

(
erf(x), erf(y);λ

) ≥ . (.)

It follows from (.) that

K (y, y) =
∂

∂x
K (x, y)

∣∣∣
x=y

= 

and

∂

∂x
K (x, y)

∣∣∣
x=y

= λ( – λ)y– erf′(y)
[
r –  + 

(
y +

ye–y∫ y
 e–t

 dt

)]
. (.)

Therefore,

r ≥ lim
y→+

[
 – 

(
y +

ye–y∫ y
 e–t

 dt

)]
= r

follows from (.) and (.) together with Lemma ..
Finally, we prove that the first inequality in (.) implies p = –∞. We divide the proof

into two cases.
Case  p≥ . Then for any fixed y ∈ (, +∞) one has

lim
x→+∞ erf

(
Mp(x, y;λ)

)
= 

and

lim
x→+∞H

(
erf(x), erf(y);λ

)
=

erf(y)
λ erf(y) +  – λ

< ,

which contradicts with the first inequality in (.).
Case  –∞ < p < . Let x ≥ , θ = λ/p, and y → +∞. Then the first inequality in (.)

leads to

T(x) =:H
(
erf(x), ;λ

)
– erf(θx)≥ . (.)

It follows from (.) that

lim
x→+∞T(x) =  (.)

and

[
λ + ( – λ) erf(x)

]T ′(x) =
√
π
e–x

[
λ –

(
λ + ( – λ) erf(x)

)
θe(–θ)x]. (.)

Note that

lim
x→+∞

[
λ –

(
λ + ( – λ) erf(x)

)
θe(–θ)x] = λ > . (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/525
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It follows from (.) and (.) that there exists a large enough η ∈ (, +∞), such that
T ′(x) >  for x ∈ (η, +∞), hence T(x) is strictly increasing on [η, +∞).
From the monotonicity of T(x) and (.) we conclude that there exists a large enough

η ∈ (, +∞), such that T(x) <  for x ∈ (η, +∞), this contradicts with (.). �
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