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1 Introduction
Denote byW ,(–, ) the Sobolev space of all real-valued functions f (·) that are absolutely
continuous on the closed interval [–, ] and such that f ′(·) ∈ L(–, ). Let m ≥  be an
integer. Denote by W (, ,m) the space

W (; ,m) �=
{
y(·) ∈ W ,(–, )

∣∣∣ ∫ 

–
tky(t)dt =  ( ≤ k ≤ m – )

}
. (.)

Kalyabin considered in [] the following problem.

Problem (Bx) Fix x ∈ [–, ], find the best constant Bm(x) such that the following inequal-
ity holds:

∣∣y(x)∣∣ ≤ Bm(x)
(∫ 

–

∣∣y′(t)
∣∣ dt) 


, ∀y(·) ∈W (, ,m). (.)

It is proved in [] that

B
m(±) =


m(m + )

, B
 (x) =

 + x


, B

() =



(.)

and the extremal functions for the case x =  are

C
(
(m + )Pm(t) +mPm+(t)

)
, (.)

where C is a constant and

Pk(t) =


kk!
dk

dtk
(
t – 

)k , k = , , , . . . , (.)
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are the classical Legendre polynomials. For notational simplicity, we denote

pk(t) =


kk!
dk–

dtk–
(
t – 

)k , k = , , . . . (.)

and

qk(x) =
∫ 
– Pk(s)|s – x|ds∫ 

– |Pk(s)| ds
=

⎧⎪⎨⎪⎩
x+
 , if k = ,

x–x
 , if k = ,

(k + )pk(x), if k ≥ .
(.)

Many problems similar to Problem (Bx) were studied; see, for example, [, ], and [].
In this paper, we will solve Problem (Bx) completely with the help of optimal control

theory. Since the cases x = ± were solved in [], wemainly consider the cases of x ∈ (–, ).
We have the following.

Theorem. Assumem ≥  and x ∈ (–, ).Then, y(·) ∈W (, ,m) is an extremal function
to Problem (Bx) if and only if

y(t) = C
[
c(x)

(
Qm+(t) – |t – x|) + 

]
, t ∈ [–, ], (.)

where C is a constant,

Qm(t) = A(x) +
∑

≤k≤m–

qk(x)Pk(t) + α(x)Pm(t) + β(x)Pm+(t), t ∈ [–, ], (.)

c(x) =


x +  – A(x)
, (.)

and A(x), α(x), β(x) are characterized by

Q′
m(–) = –, Q′

m() =  (.)

and

Qm(x) = . (.)

The sharp constant of the inequality (.) is

Bm(x) =
√
c(x)

, x ∈ (–, ). (.)

More precisely, we have the following.

Corollary . Assume m =  and x ∈ (–, ). Then

B(x) =
√
x + 


(.)
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and y(·) ∈W (, , ) is an extremal function to Problem (Bx) if and only if

y(t) = C
[


x + 

(
t – x


– |t – x|

)
+ 

]
, t ∈ [–, ]. (.)

Corollary . Assume m =  and x ∈ (–, ). Then

B(x) =
√
 – x + x – x


(.)

and y(·) ∈W (, , ) is an extremal function to Problem (Bx) if and only if

y(t) = C
[
 + x – x + x + P(t) – (x – x)(P(t) – P(t)) – |t – x|

 – x + x – x
+ 

]
.

(.)

Corollary . Assume m = n + , n≥  and x ∈ (–, ). Then

Bn+(x) =

{
(x – )


+



n∑
k=

(k + )pk(x)Pk(x)

–


(n + )(n + )

[
x – x


+

∑
≤k≤n–

(k + )(k + )(k + )pk+(x)
]
Pn+(x)

+


(n + )(n + )

[
 –

n∑
k=

k(k + )(k + )pk(x)

]
Pn+(x)

} 


. (.)

In particular,

B(x) =
√
 + ,x – ,x + ,x – ,x


√


, (.)

B(x) =
√
, + ,x – ,x + ,x – ,x + ,x – ,x


√


.

(.)

Corollary . Assume m = n + , n≥  and x ∈ (–, ). Then

Bn+(x) =

{
(x – )


+



n+∑
k=

(k + )pk(x)Pk(x)

+


(n + )(n + )

[
 –

n∑
k=

k(k + )(k + )pk(x)

]
Pn+(x)

–


(n + )(n + )

[
x – x


+

n∑
k=

(k + )(k + )(k + )pk+(x)

]

× Pn+(x)

} 


. (.)
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In particular,

B(x) =
√
 – ,x + ,x – ,x + ,x – ,x


√


, (.)

B(x) =



√


(
, – ,x + ,x – ,,x + ,,x

– ,,x + ,,x – ,x
) 
 . (.)

When x = , we have the following.

Corollary . The following holds:

B
 () = B

() =


, B

() = B
() =


,

(.)

and

B
n+() = B

n+() =



–
n∑

k=

(k + )
k+(k + )(k – )

(
k
k

)

+(–)n
(n+
n+

)
n+

(n+

)[ 


–

n∑
k=

(–)kk(k + )
k+(k – )

(
k + 
k + 

)]
, n≥ . (.)

In particular,

B
() = B

() =

,

, B
() = B

() =
,

,,
. (.)

2 Transmitting Problem (Bx) to optimal control problem
We introduce the equivalent optimal control problem to Problem (Bx). Let U = L(–, ).
We define the following control system:

d
dt

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y(t)
w(t)
z(t)
z(t)
...

zm–(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u(t)
u(t)χ(–,x)(t)

y(t)
ty(t)
...

tm–y(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, t ∈ (–, ) (.)

and the state constraints

y(–) = w(–), w() = , zk(±) =  (k = , , . . . ,m – ). (.)

Let

Pad =
{(
Y (·),u(·)) ∈ (

W ,(–, )
)m+ × U|(Y (·),u(·)) satisfying (.)-(.)} (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/523
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and

Uad =
{
u(·)|(Y (·),u(·)) ∈ Pad

}
, (.)

where

Y (·) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y(·)
w(·)
z(·)
z(·)
...

zm–(·)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (.)

Our optimal control problem corresponding to Problem (Bx) is as follows.

Problem (Cx) Let x ∈ (–, ). Find (Y (·), ū(·)) ∈ Pad such that

∫ 

–
ū(t)dt = inf

(Y (·),u(·))∈Pad

∫ 

–
u(t)dt. (.)

It is obvious that (Y (·),u(·)) 	→ y(·) is a bijection from Pad to {f (·) ∈W (, ,m)|f (x) = }.
Then one can easily see that

Bm(x) =
(

inf
(Y (·),u(·))∈Pad

∫ 

–
u(t)dt

)– 

. (.)

Therefore, we can solve Problem (Bx) by solving Problem (Cx).

3 Pontryagin’s maximum principle
We state Pontryagin’s maximum principle for optimal control problems. Symbols in this
section will have similar but probably different meanings from other sections. Thus we set
this part as a separate section. We will state a result given in []. For simplicity, we only
state it in a simple way. In other words, Lemma . below is a special case of Theorem .
and Corollary . in Chapter V of [].
Now, let T > t and U ⊆ R

m. A measurable function u(·) defined on [t,T] with range
in U is said to be a control.
Let the function f̂ = (f , f ) = (f , f , . . . , f n) be anRn+-valued vector function on [t,T]×

R
n ×R

m. Assume that f̂ is Borel measurable on t ∈ [t,T], continuous on (y,u) ∈ R
n ×R

m

and continuously differentiable on y ∈R
n.

If y(·) is an absolutely function on [t,T] with range in R
n such that

dy(t)
dt

= f
(
t, y(t),u(t)

)
, a.e. on [t,T],

then y(·) is called a state/trajectory corresponding to u(·).
Let� ⊆R

n ×R
n be a C manifold of dimensional k, where  ≤ k ≤ n. We say (y(·),u(·))

is an admissible pair if
(i) u(·) is a control,

http://www.journalofinequalitiesandapplications.com/content/2014/1/523
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(ii) y(·) is a state corresponding to u(·),
(iii) (y(t), y(T)) ∈ �.
Denote by Pad the set of all admissible pairs. The set Uad = {u(·)|(Y (·),u(·)) ∈ Pad} is

called the set of admissible controls.
If an admissible pair (ȳ(·), ū(·)) satisfies

J
(
ȳ(·), ū(·)) = inf

(y(·),u(·))∈Pad
J
(
y(·),u(·)),

then it is called an optimal pair, where

J
(
y(·),u(·)) := ∫ T


f 
(
t, y(t),u(t)

)
dt.

Assume that for each compact Y ⊂ R
n and admissible control u(·), there exists a func-

tion μ(·) = μ(·;Y ,u(·)) such that for almost all t ∈ [t,T] and all y ∈ Y ,

∣∣f̂ (t, y,u(t))∣∣ ≤ μ(t),
∣∣f̂y(t, y,u(t))∣∣ ≤ μ(t). (.)

We have the following.

Lemma . Let assumptions listed in this section hold. Let (ȳ(·), ū(·)) be an optimal pair.
Then there exists a constant λ ≤  and an absolutely continuous vector function λ =
(λ,λ, . . . ,λn) defined on [t,T] such that the following hold:

(i) The vector (λ,λ(t)) is never zero on [t,T].
(ii) For a.e. t ∈ [t,T],

λ′(t) = –fy
(
t, ȳ(t), ū(t)

)
λ(t) – λf y t, ȳ(t), ū(t)),

where

fy =

⎛⎜⎜⎜⎜⎜⎝
∂f
∂y

∂f
∂y

. . . ∂fn
∂y

∂f
∂y

∂f
∂y

. . . ∂fn
∂y

...
...

. . .
...

∂f
∂yn

∂f
∂yn . . . ∂fn

∂yn

⎞⎟⎟⎟⎟⎟⎠ .

(iii) The pointwise maximum condition holds: for almost all t ∈ [t,T] and all u ∈U ,

λf 
(
t, ȳ(t), ū(t)

)
+
〈
λ(t), f

(
t, ȳ(t), ū(t)

)〉 ≥ λf 
(
t, ȳ(t), ū(t)

)
+
〈
λ(t), f

(
t, ȳ(t),u

)〉
.

(iv) The transversality condition holds: if the mapping t 	→ f̂ (t, ȳ(t), ū(t)) is continuous at
t = t and t = T , then (–λ(t),λ(T)) is orthogonal to �.

4 Proof of Theorem 1.1
We give the following lemma first.

Lemma . Let n≥ , c ∈R, x ∈ (–, ), Q(·) is an (n + )th degree polynomial satisfying

Q(x) = , Q′() = , Q′(–) = – (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/523
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and ∫ 

–
tk
[
c
(
Q(t) – |t – x|) + 

]
dt = , ∀k = , , . . . ,n – . (.)

Then

∫ 

–

[
∂

∂t
(
Q(t) – |t – x|)] dt = 

c
. (.)

Proof Noting that Q′′(·) is an (n – )th degree polynomial, by (.), we have

∫ 

–
Q′′(t)

[
c
(
Q(t) – |t – x|) + 

]
dt = . (.)

Therefore,

∫ 

–

[
∂

∂t
(
Q(t) – |t – x|)] dt

=
∫ x

–

(
Q′(t) + 

) dt + ∫ 

x

(
Q′(t) – 

) dt
=
∫ 

–

(
Q′(t)

) dt +  + 
∫ x

–
Q′(t)dt – 

∫ 

x
Q′(t)dt

=Q()Q′() –Q(–)Q′(–) –
∫ 

–
Q′′(t)Q(t)dt +  + Q(x) – Q(–) – Q()

=
∫ 

–
Q′′(t)

(

c
– |t – x|

)
dt +  –Q(–) –Q()

=

c
+
∫ x

–
Q′′(t)(t – x)dt +

∫ 

x
Q′′(t)(x – t)dt +  –Q(–) –Q()

=

c
– ( + x) –

∫ x

–
Q′(t)dt – ( – x) +

∫ 

x
Q′(t)dt +  –Q(–) –Q()

=

c
. (.)

�

Now, we list some properties of Legendre polynomials. We can easily get

Pk() =

⎧⎪⎨⎪⎩
, if k = n + ,n≥ ,
, if k = ,
(–)n (n–)!!

(n)!! , if k = n,n≥ ,
(.)

pk() =

⎧⎪⎨⎪⎩
, if k = n + ,n≥ ,

 , if k = ,
(–)n– (n–)!!(n+)!! , if k = n,n≥ ,

(.)

Pk(–) = (–)k , Pk() = , (.)

P′
k(–) = (–)k–

k(k + )


, P′
k() =

k(k + )


, (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/523
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∫ 

–

∣∣Pk(t)
∣∣ dt = 

k + 
, (.)

and ∫ 

–

(
P′
k(t)

) dt = P′
k()Pk() – P′

k(–)Pk(–) = k(k + ), (.)∫ 

–
P′
k(t)P

′
k+(t)dt = P′

k()Pk+() – P′
k(–)Pk+(–) = , (.)

∫ 

–
Pk(t)|t – x|dt =

⎧⎪⎨⎪⎩
x + , if k = ,

x

 – x, if k = ,
pk(x), if k ≥ .

(.)

We turn to the proof of Theorem ..

Proof of Theorem .
I. Existence of optimal pair. One can prove directly that the sharp constant Bm(x) is at-

tainable, i.e., there is a nontrivial ȳ(·) ∈ W (, ,m) such that

∣∣ȳ(x)∣∣ = Bm(x)
(∫ 

–

∣∣y′(t)
∣∣ dt)– 


. (.)

Now, we give an optimal control version of this fact.
Let (Yj(·),uj(·)) ∈ Pad be a minimizing sequence of Problem (Cx). That is

lim
j→+∞

∫ 

–
uj (t)dt = inf

(Y (·),u(·))∈Pad

∫ 

–
u(t)dt. (.)

Then uj(·) is bounded in L(–, ). That is

∥∥uj(·)∥∥L(–,) ≤ M

for some constant M > . Denote Yj(·) ≡ (yj(·),wj(·), zj(·), . . . , zjm–(·)). Then, by the state
equation (.) and the constraints (.), we have

∫ 

–
yj(t)dt = zj() – zj(–) = .

Then (.)-(.), and Poincaré’s inequality imply

∥∥yj(·)∥∥W ,(–,) ≤ C,
∥∥wj(·)∥∥W ,(–,) ≤ C, ∀j ≥ , (.)

and consequently

∥∥zjk(·)∥∥W ,(–,) ≤ C, ∀k = , , . . . ,m – ; j ≥  (.)

for some constant C, C. That is, Yj(·) is bounded in (W ,(–, ))m+. Then, by Sobolev’s
imbedding theorem, Yj(·) is bounded and equicontinuous in (C[–, ])m+.

http://www.journalofinequalitiesandapplications.com/content/2014/1/523
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Thus, Eberlein-Shmulyan’s theorem and Arzelá-Ascoli’s theorem (see Chapter V, Ap-
pendix  and Chapter III, Section  in [], for example), we can suppose that

uj(·)→ ū(·), weakly in L(–, ) (.)

and

Yj(·)→ Y (·), weakly in
(
W ,(–, )

)m+, strongly in
(
C[–, ]

)m+ (.)

for some ū(·) ∈ L(–, ) and Y (·) ∈ (W ,(–, ))m+. One can easily see that (Y (·), ū(·))
satisfies (.) and (.). Thus, (Y (·), ū(·)) ∈ Pad . Moreover,∫ 

–
ū(t)dt ≤ lim

j→+∞

∫ 

–
uj (t)dt. (.)

Therefore (Y (·), ū(·)) is a solution to Problem (Cx). We call it an optimal pair of Problem
(Cx).
II. Pontryagin’s maximum principle for the optimal pair. We now apply Lemma . -

Pontryagin’s maximum principle to Problem (Cx). We can easily verify that all the condi-
tions posed in Section  hold. For example, conditions on state constraints and the local
existence of a dominating integrable function (see (.)) hold. More precisely, let

� =
{
(s, s)|s ∈R

}× {}m ×R× {} × {}m.

Then � is a C manifold of dimensional . While the state constraints (.) is equivalent
to (Y (–),Y ()) ∈ �.
On the other hand, for any u(·) ∈ L(–, ) and |Y | ≤ R, if we choose μ(t) = |u(t)|+mR,

then the condition (.) corresponding to (.) holds.
Now, by Lemma ., the optimal pair (Y (·), ū(·)) satisfies the following Pontryagin max-

imum principle: there exists a ϕ ≤  and a solution to the following adjoint equation:

d
dt

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ϕ(t)
ζ (t)
ψ(t)
ψ(t)
...

ψm–(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

–
∑m–

j= tjψj(t)



...


⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, t ∈ (–, ) (.)

such that the following conditions hold:
(i) we have the following non-trivial condition:

(
ϕ,ϕ(·), ζ (·),ψ(·), . . . ,ψm–(·)

) �= , (.)

(ii) the maximum condition:

ϕū(t) +
(
ϕ(t) + ζ (t)χ(–,x)(t)

)
ū(t)

=max
u∈R

[
ϕu +

(
ϕ(t) + ζ (t)χ(–,x)(t)

)
u
]
, a.e. t ∈ (–, ), (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/523
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(iii) the transversality condition

ϕ(–) + ζ (–) = , ϕ() = . (.)

III. Simplification. By (.), ζ (·)≡ ζ , ψ(·) ≡ ψ, . . . ,ψm–(·)≡ ψm– are constants and

ϕ′(t) = –
m–∑
j=

ψjtj, t ∈ (–, ). (.)

Then ϕ(·) is anmth degree polynomial.
By (.), we have

ϕū(t) + ϕ(t) + ζχ(–,x) = , a.e. t ∈ (–, ). (.)

If ϕ = , we get

ϕ(t) =

{
–ζ , t ∈ (–,x),
, t ∈ [x, ),

a.e. t ∈ (–, ).

Therefore, since ϕ(·) is a polynomial, we have the following:

ϕ(·)≡ , ζ = . (.)

Consequently, by (.),

ψ = ψ = · · · = ψm– = . (.)

This contradicts the non-trivial condition (.). Therefore, wemust have ϕ < .Without
loss of generality, we can suppose that ϕ = – 

 . Then it follows from (.) that

ū(t) = ϕ(t) + ζχ(–,x)(t), t ∈ (–, ). (.)

Combining the above with (.), we see that the corresponding function ȳ(·) is continu-
ously differentiable on [–,x)∪ (x, ] and

ȳ′(±) = ū(±) = . (.)

Moreover, ȳ(·) can be expressed as

ȳ(t) = –c(x)|t – x| + Q̃m(t), t ∈ [–, ], (.)

where c≡ c(x) = ζ

 and Q̃m(·) is an (m + )th degree polynomial.

http://www.journalofinequalitiesandapplications.com/content/2014/1/523


Lou Journal of Inequalities and Applications 2014, 2014:523 Page 11 of 15
http://www.journalofinequalitiesandapplications.com/content/2014/1/523

We claim that c �= . Otherwise, c = . Then it follows from (.) and

∫ 

–
tkȳ(t)dt = , k = , , , . . . ,m – , (.)

that

Q̃m(t) = cmPm(t) + cm+Pm+(t), k = , , , . . . ,m –  (.)

for some constant cm, cm+.
Then (.) and (.) imply cm = cm+ = . This contradicts the nontrivial condition.

Therefore c �=  and we can rewrite ȳ(·) as

ȳ(t) = c(x)
(
Qm(t) – |t – x|) + , t ∈ [–, ], (.)

where Qm(·) is an (m + )th degree polynomial such that

Qm(x) = , Q′
m(–) = –, Q′

m() = . (.)

IV. Conclusion. By (.),

∫ 

–
Qm(t)Pk(t)dt =

∫ 

–
Pk(t)|x – t|dt,  ≤ k ≤ m – . (.)

Thus we see that

Qm(t) = A(x) +
∑

≤k≤m–

qk(x)Pk(t) + α(x)Pm(t) + β(x)Pm+(t), (.)

where qk(x) is defined by (.). Moreover, by (.), we can determine A(x), α(x) and β(x).
Finally, using (.) again, we get

c(x) =


x +  – A(x)
. (.)

By Lemma ., we have the following:

∫ 

–

∣∣ū(t)∣∣ dt = ∫ 

–

∣∣ȳ′(t)
∣∣ dt = c(x). (.)

Then Theorem . follows from (.). �

Remark . If x = –, instead of (.)-(.), we get

ȳ(t) =Qm(t), t ∈ [–, ] (.)

with

Qm(–) = , Q′
m() =  (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/523
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and

Qm(t) = αPm(t) + βPm+(t), t ∈ [–, ]. (.)

The above equations imply the results in [] for x = ±.
On the other hand, since Bm(x) is obviously continuous respect to x ∈ [–, ], we can

certainly get Bm(±) from Theorem ..

5 Results for some special cases
We prove Corollaries .-. in this section.

Proof of Corollary . By (.), we have

Q(t) = A(x) + α(x)P(t) + β(x)P(t). (.)

Thus (.) and (.) imply α(x) = , β(x) = 
 . Then (.) implies

A(x) = –


P(x) =

 – x


. (.)

Consequently,

Q(t) =


(
P(t) – P(x)

)
=
t – x


(.)

and

c(x) ≡ 
x +  – A(x)

=


x + 
. (.)

Therefore, the extremal functions to Problem (Bx) are Cȳ(·) with

ȳ(x) =


x + 

(
t – x


– |t – x|

)
+ , (.)

while

B(x) =
√
c(x)

=
√
x + 


. (.)

�

Proof of Corollary . By (.) and (.), we have

Q(t) = A(x) +
x – x


P(t) + α(x)P(t) + β(x)P(t). (.)

Then it follows easily from (.) that

α(x) =


, β(x) = –

x – x


. (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/523
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Then, by (.),

A(x) =
 + x – x + x


. (.)

Thus

c(x) =


x +  – A(x)
=


 – x + x – x

. (.)

Therefore

B(x) =
√
c(x)

=
√
 – x + x – x


(.)

and the extremal functions to Problem (Bx) are

C
(
 + x – x + x + P(t) – (x – x)(P(t) – P(t)) – |t – x|

 – x + x – x
+ 

)
. (.)

�

Proof of Corollary . By (.) and (.), we have

Qn+(t) = A(x) +
x – x


P(t) +

n∑
k=

(k + )pk(x)Pk(t)

+ α(x)Pn+(t) + β(x)Pn+(t). (.)

Then by (.)-(.), and (.),

α(x) = –


(n + )(n + )

[
x – x


+

∑
≤k≤n–

(k + )(k + )(k + )pk+(x)
]
, (.)

β(x) =


(n + )(n + )

[
 –

n∑
k=

k(k + )(k + )pk(x)

]
, (.)

A(x) = –
x – x


P(x) –

n∑
k=

(k + )pk(x)Pk(x)

+


(n + )(n + )

[
x – x


+

∑
≤k≤n–

(k + )(k + )(k + )pk+(x)
]
Pn+(x)

–


(n + )(n + )

[
 –

n∑
k=

k(k + )(k + )pk(x)

]
Pn+(x), (.)


c(x)

=
x + 


–
A(x)


=
(x – )


+



n∑
k=

(k + )pk(x)Pk(x)

–


(n + )(n + )

[
x – x


+

∑
≤k≤n–

(k + )(k + )(k + )pk+(x)
]
Pn+(x)

+


(n + )(n + )

[
 –

n∑
k=

k(k + )(k + )pk(x)

]
Pn+(x). (.)

Finally, (.) and (.) follow from direct calculations. We get the proof. �

http://www.journalofinequalitiesandapplications.com/content/2014/1/523
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Proof of Corollary . By (.) and (.), we have

Qn+(t) = A(x) +
x – x


P(t) +

n+∑
k=

(k + )pk(x)Pk(t)

+ α(x)Pn+(t) + β(x)Pn+(t). (.)

Then by (.)-(.), and (.),

α(x) =


(n + )(n + )

[
 –

n∑
k=

k(k + )(k + )pk(x)

]
, (.)

β(x) = –


(n + )(n + )

[
x – x


+

n∑
k=

(k + )(k + )(k + )pk+(x)

]
, (.)

A(x) = –
x – x


P(x) –

n+∑
k=

(k + )pk(x)Pk(x)

–


(n + )(n + )

[
 –

n∑
k=

k(k + )(k + )pk(x)

]
Pn+(x)

+


(n + )(n + )

[
x – x


+

n∑
k=

(k + )(k + )(k + )pk+(x)

]

× Pn+(x), (.)


c(x)

=
x + 


–
A(x)


=
(x – )


+



n+∑
k=

(k + )pk(x)Pk(x)

+


(n + )(n + )

[
 –

n∑
k=

k(k + )(k + )pk(x)

]
Pn+(x)

–


(n + )(n + )

[
x – x


+

n∑
k=

(k + )(k + )(k + )pk+(x)

]

× Pn+(x). (.)

Finally, (.) and (.) follow from direct calculations. We get the proof. �

Proof of Corollary . First, we get (.) from (.), (.), (.), and (.).
By (.), pk+() =  (k = , , . . .). Thus, if n ≥ , we get from (.) and (.)

B
n+() = B

n+()

=


+



n∑
k=

(k + )pk()Pk()

+


(n + )(n + )

[
 –

n∑
k=

k(k + )(k + )pk()

]
Pn+(). (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/523
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Moreover, using (.)-(.), we get (.):

B
n+() = B

n+()

=


+



× 


×
(
–



)
–



n∑
k=

(k + )
(k – )!!
(k + )!!

(k – )!!
(k)!!

–
(–)n

(n + )(n + )

[
 –




+
n∑

k=

(–)kk(k + )(k + )
(k – )!!
(k + )!!

]
(n + )!!
(n + )!!

=



–
n∑

k=

(k + )
k+(k + )(k – )

(
k
k

)

+ (–)n
(n+
n+

)
n+

(n+

)[ 


–

n∑
k=

(–)kk(k + )
k+(k – )

(
k + 
k + 

)]
, n≥ .

Now (.) follows directly from (.). �

Competing interests
The author declares that they have no competing interests.

Acknowledgements
This work was supported in part by 973 Program (No. 2011CB808002) and NSFC (No. 11371104).

Received: 24 December 2013 Accepted: 23 April 2014 Published: 29 December 2014

References
1. Kalyabin, GA: Sharp constants in one-dimensional inequalities of Poincaré type. Math. Notes 90(4), 634-636 (2011)

(in Russian). Translation in Math. Notes, 90(3-4), 615-618 (2011)
2. Gerasimov, IV, Nazarov, AI: Best constant in a three-parameter Poincaré inequality. J. Math. Sci. 179(1), 80-99 (2011)
3. Oshime, Y, Watanabe, K: The best constant of Lp Sobolev inequality corresponding to Dirichlet boundary value

problem II. Tokyo J. Math. 34(1), 115-133 (2011)
4. Talenti, G: Best constant in Sobolev inequality. Ann. Mat. Pura Appl. (4) 110, 353-372 (1976)
5. Berkovitz, LD: Optimal Control Theory. Springer, New York (1983)
6. Yosida, K: Functional Analysis, 6th edn. Springer, Berlin (1980)

doi:10.1186/1029-242X-2014-523
Cite this article as: Lou: Sharp constants for inequalities of Poincaré type: an application of optimal control theory.
Journal of Inequalities and Applications 2014 2014:523.

http://www.journalofinequalitiesandapplications.com/content/2014/1/523

	Sharp constants for inequalities of Poincaré type: an application of optimal control theory
	Abstract
	MSC
	Keywords

	Introduction
	Transmitting Problem (Bx) to optimal control problem
	Pontryagin's maximum principle
	Proof of Theorem 1.1
	Results for some special cases
	Competing interests
	Acknowledgements
	References


