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1 Introduction

Denote by W12(-1,1) the Sobolev space of all real-valued functions f(-) that are absolutely
continuous on the closed interval [-1,1] and such that f'(:) € L2(-1,1). Let m > 1 be an
integer. Denote by W(1,2, m) the space

1
W(1;2,m) 2 { y() e lez(-1,1)‘ / *y()dt=0(0 <k <m— 1)}. 11)
-1

Kalyabin considered in [1] the following problem.

Problem (B,) Fixx € [-1,1], find the best constant B,,(x) such that the following inequal-
ity holds:

! }
|y<x)}sBm(x)( / 1|y/(t)|2dt) L Wy() e W(L2,m). (1.2)

It is proved in [1] that

1+ 3x2 1
» Bl =—— BO)=¢ (1.3)

2
2 _
B2 (£1) = —

and the extremal functions for the case x = 1 are
C((m + 2)P,(t) + MPyr (1)), (14)

where C is a constant and

1 d
2Kk dik
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are the classical Legendre polynomials. For notational simplicity, we denote

1 dk—Z 5 X
pk(t)zzk—k!m(t —1), k=2,3,...
and
2+l :
e ifk=0,
qi(x) = 4 Pl ds iy ifk=1
! 1P(s) P> ds > ’
1

2k + D)pr(x), ifk>2.

(1.6)

(1.7)

Many problems similar to Problem (B,) were studied; see, for example, [2, 3], and [4].

In this paper, we will solve Problem (B,) completely with the help of optimal control

theory. Since the cases x = £1 were solved in [1], we mainly consider the cases of x € (-1,1).

We have the following.

Theorem 1.1 Assumem > 1andx € (-1,1). Then, y(-) € W(1,2, m) is an extremal function

to Problem (By) if and only if

J/(t) = C[C(x)(QmH(t) - |t_x|) + 1]1 te [_1, 1]:

where C is a constant,

Qu(t) =A@ + Y qGr@P(E) + a(®)P(t) + B®)Ppa(t),  t€[-11],

1<k<m-1
2

clx) = x2+1-24(x)

and A(x), a(x), B(x) are characterized by

and

Q%) =0.

The sharp constant of the inequality (1.2) is

B,,(x) = #, x € (-1,1).

A 2c(x)

More precisely, we have the following.
Corollary 1.2 Assume m =1 and x € (-1,1). Then

3x2 +1

Bi(x) = G

(1.8)

(1.9)

(1.10)

(1.11)

(112)

(1.13)

(1.14)
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and y(-) € W(1,2,1) is an extremal function to Problem (B,) if and only if

2 2
<t ;x —|t—x|>+1], te[-1,1]. (115)

y(t) = C[

3x2 +1

Corollary 1.3 Assume m =2 and x € (-1,1). Then

8 — 21x2 + 30x* — 5x6
By(x) = \/ 18 (1.16)

and y(-) € W(1,2,2) is an extremal function to Problem (B,) if and only if

y(t) = C[4 +332 — 300 + 50° + 8P5 (1) ~ 2% — 3x)(P3(t) ~ 6Py (1) ~ 241t =] 1}

8 — 21x2 + 30x* — 5x6
(1.17)

Corollary 1.4 Assumem =2n+1,n>1and x € (-1,1). Then

2 1 2 1 2n
(x - r, ; ;(2k+l)pk(x)1)k(x)

B2n+1(x) = {

: X = (k +1)(2k + 1)(4k + 3)paks () | Pops ()
_2(n+1)(2n+1)|: 2 +1<;_1 + + + P2k+1x:| 21 (X

1 1 2
+m[l—§k<2k+1)(4k+1)p2k(x>]1>m(x>} ORES!

In particular,

B /297 +1,260x2% — 5,370x* + 5,900x° — 1,575x8

Bs(%) ) (1.19)
’ 1615
B V1,375 + 8,4004% — 95,025x" + 357,560x° — 597,5554° + 448,056x10 — 121,275x12
X) = .
° 16+/105
(1.20)

Corollary 1.5 Assume m=2n+2,n>1andx € (-1,1). Then

2n+1

2_1)?2 1
. 4 E. 2 kzz,;(zk + Dpi)Pilx)

Bonia (x) = {

1

"2+ D@n+3) [1 - ; k(2K + 1)(4k + 1)p2k(x)}1)2n+2(x>

1 -3 —
T2mio@n+3)| 2 ;U‘ +1)(2k +1)(4k + s)pzkﬂ(x)}

1
2

X P2n+3(x)} . (121)
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In particular,

V297 —1,440x% + 9,030x* — 20,860x° + 18,585x8 — 5,292x10

Bu(x) = , (1.22)
* 16v/15
1 2 4 6 8
Bg(x) = ——(2,200 - 15,225x> + 211,050x* — 1,162,455x° + 3,017,700
324/42
1
-3,977,127x" + 2,562,714x"> — 637,065x™) 2. (1.23)
When x = 0, we have the following.
Corollary 1.6 The following holds:
1 99
BX0)=B%(0)=—,  B0)=B2(0)= 1.24
1(0) 2()6 3(0) 4()1’280 (1.24)

and

X , 3 (4k +1) 2k\*
B3,,1(0) = B3,,,(0) = 3 g 22 (ke + 1)(2k—1) \ k

2n+2 n k
+<_1)n<n+3+3){7 ZM(%&)} ves (os)

22 (P 16 £ k3 2k =1) \ k+1

In particular,

45,325

275
B;(0) = B5(0) = 1,179,648

, B2(0) = B2(0) =
5376 2(0) = B5(0)

(1.26)
2 Transmitting Problem (By) to optimal control problem
We introduce the equivalent optimal control problem to Problem (B,). Let U = L?(-1,1).

We define the following control system:

y(8) u(t)
w(t) u(t) X (-1 (2)
d | () ¥(t)
2| 20 |7 t(t) , te(-1,1) (2.1)
Zm-1(t) " y(t)
and the state constraints
y(=1) = w(-1), w(l) =1, z(£1)=0 (k=0,1,...,m—1). (2.2)

Let

Paa = {(Y(),u(-)) € (W (-1, 1))‘“+2 x UI(Y(-), u(-)) satisfying (2.1)-(2.2)} (2.3)
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and
Uaa = {uC)(Y(), () € Paa}, (2.4)
where
()
w(-)
zo(:)
YO=1{ 20 (2.5)
Zm—l(')
Our optimal control problem corresponding to Problem (B,) is as follows.
Problem (C,) Let x € (-1,1). Find (Y(-),%(-)) € $,4 such that
1 1
/ w*(t)dt = inf / u*(t)dt. (2.6)
1 Y u(-)ePua J 1

It is obvious that (Y (-), u(-)) — y(-) is a bijection from £,; to {f(-) € W(1,2,m)|f(x) = 1}.
Then one can easily see that

B, (x) = ( inf /1 u*(t) dt)_ . (2.7)

YO NEPaa J 1

ST

Therefore, we can solve Problem (B,) by solving Problem (Cy).

3 Pontryagin’s maximum principle

We state Pontryagin’s maximum principle for optimal control problems. Symbols in this
section will have similar but probably different meanings from other sections. Thus we set
this part as a separate section. We will state a result given in [5]. For simplicity, we only
state it in a simple way. In other words, Lemma 3.1 below is a special case of Theorem 3.1
and Corollary 3.1 in Chapter V of [5].

Now, let T > £y and U € R™. A measurable function u(-) defined on [ty, T] with range
in U is said to be a control.

Let the function f = (f0,f) = (f°,f%,...,/") be an R"*!-valued vector function on [to, T] X
R” x R™, Assume that f is Borel measurable on ¢ € [ty, T], continuous on (y, u) € R” x R”
and continuously differentiable on y € R”.

If y(-) is an absolutely function on [y, T] with range in R” such that

DO f(eyw,uw), aeon i)

then y(-) is called a state/trajectory corresponding to u(-).
Let @ € R” x R” be a C! manifold of dimensional k, where 0 < k < 2xn. We say (y(-), u(-))
is an admissible pair if
(i) u(-) is a control,
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(ii) y(-) is a state corresponding to u(-),
(i) (y(to), ¥(T)) € 2.
Denote by £,, the set of all admissible pairs. The set Uq = {u(-)|(Y (), u(:)) € Paa} is
called the set of admissible controls.
If an admissible pair (y(-), #(-)) satisfies
J((),u(-)) = (y();(l})fe iy (), u(-)),

Pad

then it is called an optimal pair, where

T
IW%M»:K}ﬁ@ﬂ&MMm.

Assume that for each compact ¥ C R” and admissible control u«(-), there exists a func-
tion () = (Y, u(-)) such that for almost all ¢ € [ty, T] and all y € Y,

f(t.yu®)] <n@®,  f(tyu®)] < u@. (3.1)
We have the following.

Lemma 3.1 Let assumptions listed in this section hold. Let (y(-), u(-)) be an optimal pair.
Then there exists a constant \° < 0 and an absolutely continuous vector function ) =
(A, A2, ..., Ay) defined on [ty, T| such that the following hold:

(i) The vector (A%, A(t)) is never zero on [ty, T].

(ii) Fora.e.t € [ty, T],

N (8) = 1, (&, 3(@), W) A(£) = 1°1 8, 5(0), u(e)),

where
M I
L0 ) U
o n
I T T )
h=|" .
i n
0yn yn e 0yn

(ili) The pointwise maximum condition holds: for almost all t € [ty, T and all u € U,

A0 (8, 5(8), i(8)) + (L), f (6:5(0), (@) = A°F° (&, 3(8), (@) + (A(2), £ (&, 7(2), ) ).

(iv) The transversality condition holds: if the mapping ¢ r—>f(t,51(t), u(t)) is continuous at
t=tyandt="T,then (—A(ty), A\(T)) is orthogonal to Q.

4 Proof of Theorem 1.1
We give the following lemma first.

Lemma4.l Letn>1,ceR,x e (-1,1), Q(:) is an (n + 1)th degree polynomial satisfying

Qx)=0, QM=1 Q(-)=-1 (4.1)
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and

1
f t*[c(Q(t) - |t -x|) +1]dt=0, Vk=0,1,...,n-1

1

Then

ra )
L [E(Q(t) - |t—x|)] dt = -
Proof Noting that Q”(-) is an (n — 1)th degree polynomial, by (4.2), we have
1
/ Q'®)[c(Q) - |t —xl) +1]dt = 0.
-1

Therefore,

/_I[%(Q(t) - |t—x|)]2dt

:/x(Q’(t)+1)2dt+/l(Q/(t)—1)2dt

1

1
-1

X 1
- OV dt+2+2 '(£) dt -2 '(t)d
/(Q(t)) E+2+ /_IQ(t) ¢ /xQ(t)t

1
=QQ' M) - Q-DQ'(-1) - /1 Q" (HQ®)dt +2 +4Q(x) - 2Q(-1) - 2Q(1)

1
=/1 Q”(t)(%—It—xl)dt+2—Q(—1)—Q(1)
X 1
= 2 +/ Q”(t)(t—x)dt+/ Q't)x—-t)dt +2 - Q(-1) — Q(1)
c -1 x

X 1
=E—(1+x)—/ Q/(t)dt—(l—x)+/ Q) dt+2-Q(-1) - Q1)
-1 x

[SYNIN ST o

Now, we list some properties of Legendre polynomials. We can easily get

O’ ifk:2n+1,n20,
Pk(o): 1: lkaO,

(-1)” (2(2';)1,?”, ifk=2nn>1,

0, ifk=2n+1Ln>1,
pr(0) =1 5, ifk=2,

(-t gzzg;::, ifk=2nn>2,
Pk(_l) = (_l)kr Pk(]-) =1,

k(k+1 k(k +1

P (1) = (1) kk+1) 2+ ), P 1) = ( 2+ ),

4.2)

(4.4)

(4.5)

(4.6)

Page 7 of 15
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1 9 2
[1|Pk(t)| dtz m,

and

1
/_ (P(0)) dt = PLDP(1) - Py(-)P(~D) = k(k + 1),

1
1
/ P ()P, (t) dt = Pi(1)Py,1 (1) — Pp(-1)Pya(-1) = O,
-1
1 x*+1, ifk=0,
/ Pr(t)|t — x| dt = %xs —-x, ifk=1,
B owpilx),  ifk>2.

We turn to the proof of Theorem 1.1.

Proof of Theorem 1.1

(4.10)

(4.11)

(4.12)

(4.13)

L Existence of optimal pair. One can prove directly that the sharp constant B,,(x) is at-

tainable, i.e., there is a nontrivial ¥(-) € W(1,2, m) such that

1 _
5| =Bm<x)( / 1|y/(t)|2dt) .

Now, we give an optimal control version of this fact.

NI

Let (Yj(-), u;j(-)) € £uq be a minimizing sequence of Problem (Cy). That is

1 1
lim | w()de=_inf /uz(t)dt.

j=+o0 J_ YOu()ePua J 1

Then u;(-) is bounded in L*(-1,1). That is

||"‘/'(')||L2(71,1) =M

(4.14)

(4.15)

for some constant M > 0. Denote Yj(-) = ()/(-),w/j(-),z’;,(-),...,z’;n_l(~)). Then, by the state

equation (2.1) and the constraints (2.2), we have
1 . . .
/ Y(t)dt = z,(1) - Zy(-1) = 0.
-1
Then (2.1)-(2.2), and Poincaré’s inequality imply

”)’l() ” Wwl2(-1,1) = Cl! HM',()H W2(-1,1) = Clr V} > 1,
and consequently

”ij()” wi2(11) = Cy, Vk=0,1,....m-1j>1

(4.16)

(4.17)

for some constant Cy, Cy. That is, Y;(-) is bounded in (WLY2(~1,1))"+2. Then, by Sobolev’s

imbedding theorem, Y;(-) is bounded and equicontinuous in (C[-1, 1])7+2,

Page 8 of 15
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Thus, Eberlein-Shmulyan’s theorem and Arzeld-Ascoli’s theorem (see Chapter V, Ap-
pendix 4 and Chapter III, Section 3 in [6], for example), we can suppose that

uj(-) = u(-), weaklyin L%(-1,1) (4.18)

and

m+2

Yi() = Y(:), weaklyin (Wl'z(—l, 1))m+2, strongly in (C[—l, 1]) (4.19)
for some u(-) € L*(-1,1) and Y(-) € (W'2(-1,1))"*2. One can easily see that (Y(-), x(-))
satisfies (2.1) and (2.2). Thus, (Y (-), #(:)) € £.q4. Moreover,

1 1
/ w()de < lim | w(t)de. (4.20)

1 Jj—+00 -1

Therefore (Y(-), #(-)) is a solution to Problem (C,). We call it an optimal pair of Problem
(Ca).

II. Pontryagin’s maximum principle for the optimal pair. We now apply Lemma 4.1 -
Pontryagin’s maximum principle to Problem (C,). We can easily verify that all the condi-
tions posed in Section 3 hold. For example, conditions on state constraints and the local
existence of a dominating integrable function (see (3.1)) hold. More precisely, let

Q= {(s,s)|s IS R} x {0} x R x {1} x {0}".

Then  is a C! manifold of dimensional 2. While the state constraints (2.2) is equivalent
to (Y(-1),Y(1) € Q.

On the other hand, for any u(-) € L*(~1,1) and |Y| < R, if we choose j(t) = 2|u(t)| + mR,
then the condition (4.1) corresponding to (2.1) holds.

Now, by Lemma 4.1, the optimal pair (Y (-), (-)) satisfies the following Pontryagin max-

imum principle: there exists a ¢° < 0 and a solution to the following adjoint equation:

o(t) =Y (e
¢() 0
d | ¥o(®) 0
di | v |~ 0 » te(=L1) (4.21)
Ipm—l(t) 0

such that the following conditions hold:
(i) we have the following non-trivial condition:

((pO’(p(.)’é.(_), WO(')!'-UW}M—I(')) #0’ (422)
(ii) the maximum condition:

@ i (8) + (p(8) + S () x(c10 (1)) (2)

= Tfﬁ([wouz +(0(®) + ¢ x1w(@®)u], ae te(-L1), (4.23)

Page 9 of 15
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(iii) the transversality condition
p(-1)+¢(-1) =0, @(1) = 0. (4.24)

1II. Simplification. By (4.21), ¢ (-) = ¢, Yo(-) = Vo, .., ¥m-1(-) = ¥,,—1 are constants and

m—-1

¢'(t)==Y Wit/, te(-11). (4.25)

j=0

Then ¢(-) is an mth degree polynomial.
By (4.23), we have

20%(t) + @(t) + C X1 =0, ae.te(-1,1). (4.26)
If 90 = 0, we get

_gr te (_1: x);

a.e. te(-1,1).
0, te[xl),

p(t) =

Therefore, since ¢(-) is a polynomial, we have the following:

p()=0, ¢=0. (4.27)

Yo=yY1=-=Yp1=0. (4.28)

This contradicts the non-trivial condition (4.22). Therefore, we must have ¢° < 0. Without

loss of generality, we can suppose that ¢° = —1. Then it follows from (4.26) that
wt) = p(6) + L X (@), te(=1,1). (4.29)

Combining the above with (4.24), we see that the corresponding function y(-) is continu-

ously differentiable on [-1,x) U (x,1] and

¥ (£1) = u(£1) = 0. (4.30)
Moreover, y(-) can be expressed as

¥(t) = —c@)|t — x| + Qu(t), te[-1,1], (4.31)

where ¢ = ¢(x) = % and (~2m(-) is an (m + 1)th degree polynomial.
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We claim that ¢ # 0. Otherwise, ¢ = 0. Then it follows from (4.31) and

1
/ fye)dt =0, k=0,1,2,...,m—1, (4.32)
-1

that
am(t) = Cum(t) + Cm+1Pm+1(t); k= 0,1,2,....,m-1 (433)

for some constant c,,, Cy41.
Then (4.30) and (4.9) imply ¢,y = ¢ius1 = 0. This contradicts the nontrivial condition.

Therefore ¢ # 0 and we can rewrite ¥(-) as

y(t) = cx)(Qum(®) — [t —x]) +1, te[-1,1], (4.34)
where Q,,(-) is an (m + 1)th degree polynomial such that

Qu¥) =0, Q,(-)=-1,  Q,1)=1 (4.35)

IV. Conclusion. By (4.32),

1 1
f Q)P (t) dt = / Pr(t)|lx—tldt, 1<k<m-1. (4.36)
-1 _

1

Thus we see that

Qu®) =AW+ Y qxOPut) + 2@y (8) + BE)Pria (0), (4.37)

1<k<m-1

where gi(x) is defined by (1.7). Moreover, by (4.35), we can determine A(x), a(x) and B(x).
Finally, using (4.32) again, we get

2
==\ 4.38

() x2+1-2A(x) ( )

By Lemma 4.1, we have the following:
! 2 ! 2
f |i(e)|” dt = / [ @) dt = 2c(). (4.39)
-1 -1

Then Theorem 1.1 follows from (2.7). O
Remark 4.1 If x = -1, instead of (4.34)-(4.35), we get

J_’(t) = Qm(t)’ te [_17 1] (4'40)

with

Qu(-1)=1, Q,1)=0 (4.41)

Page 11 of 15
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and
Qm(t) = Ole(t) + ,3Pm+1(t)) te [_1) 1] (44'2)
The above equations imply the results in [1] for x = 1.
On the other hand, since B,,(x) is obviously continuous respect to x € [-1,1], we can

certainly get B,,(+1) from Theorem 1.1.

5 Results for some special cases

We prove Corollaries 1.2-1.6 in this section.
Proof of Corollary 1.2 By (1.9), we have

Qu(8) = A) + a(x)Pr(2) + B(x)Pa(2). (5.1)
Thus (1.11) and (4.9) imply «(x) = 0, B(x) = % Then (1.12) implies

1-3x2

1
Alx) = —=Py(x) = 52
(x) 3 2 (%) o (5:2)
Consequently,
1 2 —x?
Q1) = g(Pz(t) —-Py(x)) = 5 (5.3)
and
2 3
= = . 5.4
Sy T v G4
Therefore, the extremal functions to Problem (B,) are Cy(-) with
3 i
y(x) = —— —|t- 1, :
50 = e (5 -l 65)
while
1 3x2 +1
Bi(x) = %) = 5 (5.6)
d
Proof of Corollary 1.3 By (1.7) and (1.9), we have
x% - 3x
Qa2(8) = Ax) + 5 Pi(£) + a(x)Pa () + B(x)P3(2). (5.7)

Then it follows easily from (1.11) that

1 X% —3x
a(x):g, Bx) = - TR (5.8)
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Then, by (1.12),

4+ 33x% — 30a* + 5x°

Ax) = 7 (5.9)
Thus
2 24
O = T 24() " 8 _21x? + 308 _5a6 (5.10)
Therefore
By - L _\/8—21x2+30x4—5x6 (511
2= ) 48 '
and the extremal functions to Problem (B,) are
C(4 +33x% — 30x* + 5x° + 8P, (t) — 2(x% — 3x)(P3(t) — 6P1(2)) — 24|t — x| . 1>. (5.12)
8 — 21x2 + 30x* — 5x°
O
Proof of Corollary 1.4 By (1.7) and (1.9), we have
- 3x 2
Quini(8) = A@) + ——Pi(0) + kg(zk + Dpi(x)Pi(2)
+ (%) Poyy1(8) + B(x)Paya(2). (5.13)
Then by (1.11)-(1.12), and (1.10),
1 x3 —3x
o(x) = — D@D |: 5 + 1<;_l(k +1)(2k +1)(4k + S)pgk“(x)], (5.14)
1 n
A= F %) 3 2%k + V)i (x)P
() = == —Piw) - Z} + 1)pi(%)Pi ()
1 x% — 3x
t T D@D [ Tt 1<;_1(k +1)(2k +1)(4k + B)pzm(x)}sz(x)
1 n
— m |:1 — gk(Zk + 1)(4'/( + l)pzk(x)]P2n+2(x), (516)
1 241 AR (*-1)° 1o
Zc(x) = 4 - T = 4 + E ;(21{ + 1)Pk(x)Pk(x)
: x-S (K -+ 1)K + (K + 3)pair(6) | Pown ()
T 2n+1)(2n+1) |: 2 1<;71 ¥ " TPkt :| 2
1 n
ST DY) [1 - ; k(2k +1)(4k + l)pgk(x):|P2,,+2(x). (5.17)

Finally, (1.19) and (1.20) follow from direct calculations. We get the proof. O
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Proof of Corollary 1.5 By (1.7) and (1.9), we have

Q2n+2(t) = A(x) +

Then by (1.11)-(

X —3x
2

2n+1

Py(e) + Y2k + Dpr(x)Pk(2)

k=2

+ 2 (X)Papa(t) + B(x)Poyi3(2).

1.12), and (1.10),

1 n
alx) = PESVTrE) [1 - le: k(2k +1)(4k + l)ka(x):|,
() = ! 3 Sk Dk + D+ B ()

'Bx__(n+2)(2n+3) 2 +ZI:(+ " C P

x3 _ 396 2n+1
AW) = ==——P®) = Y2k + Dpe)Pe(v)

k=2
1 n
S PT [1 - gk(zk +1)(4k + 1>p2k(x>]1>2n+z(x>

1 X — 3x
+ +
(n+2)2n+3) 2

X Pyy3(%),

2¢(x)

_ @17

1 _x2+1 A(x)

4 2

2n+1

4

: [1 = > k(2K +1)(4k + Dpa(x)

T+ 1)2n+3)

k=1

+s Z(Zk + Dpi(x) Pr(x)
=2

k=1

n

X

2(n+2)(2n + 3)

2

! [”3 —3x 3k + 1)(2k + D4k +

Py3(x).

k=1

D (ke +1)(2k + 1)(4k + 3)172/(+1(x):|

:|P2n+2 (x)

3)p2k+1(x)]

Finally, (1.21) and (1.22) follow from direct calculations. We get the proof.

Proof of Corollary 1.6 First, we get (1.24) from (1.14), (1.16), (1.19), and (1.22).
By (4.7), p2k+1(0) =0 (k =1,2,...). Thus, if n > 2, we get from (1.18) and (1.21)

B%n+l(0) =

B%n+2(0)

n

N =

+

N

k=1

1
T+ 1)2n+3)

|

(4k + 1)p2i(0)Py (0)

1- Z k(2k +1)(4k + 1)pa(0)
k=1

:|P2n+2(0)'

(5.18)

(5.19)

(5.20)

(5.21)

(5.22)

(5.23)
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Moreover, using (4.6)-(4.7), we get (1.25):

B§n+1(0) = B%n+2(0)
1 5 1\ 1« (2k = 3)!! (2k = 1)1
—x=x(-=)=-=) @k+1

+2X8X< 2) 2k:2( D @on

(-1) L5
T2n+2n+3)| 8

3 < (4k +1) 2k\?
32 2 2442 (k + 1) (2k — 1) ( k)

k=2

N

k=31 @n+ 1)1
2k +2) | 2n +2)!

D (-DFk(2k +1)(4k +1)
k=2

2n+2 n k
. (1) D) |7 3 (-1)¥k(4k + 1) (2k+2) Caso,

22(3) [ 16 &= 232k 1) \ k+1

Now (1.26) follows directly from (1.25). |
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