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1 Introduction
The strongly singular non-convolution operatorwas introduced byAlvarez andMilman in
[], whose properties are similar to those of the Calderón-Zygmund operator, but the ker-
nel is more singular near the diagonal than that of the standard case. Furthermore, follow-
ing a suggestion of Stein, the authors in [] showed that the pseudo-differential operators
with symbols in the class S–β

α,δ , where  < δ ≤ α <  and n(–α)/≤ β < n/, are included in
the strongly singular Calderón-Zygmund operator. Thus, the strongly singular Calderón-
Zygmund operator correlates closely with both the theory of Calderón-Zygmund singular
integrals in harmonic analysis and the theory of pseudo-differential operators in PDE.

Definition . Let T : S → S ′ be a bounded linear operator.T is called a strongly singular
Calderón-Zygmund operator if the following conditions are satisfied.
() T can be extended into a continuous operator from L(Rn) into itself.
() There exists a function K (x, y) continuous away from the diagonal {(x, y) : x = y}

such that

∣∣K (x, y) –K (x, z)
∣∣ + ∣∣K (y,x) –K (z,x)

∣∣ ≤ C
|y – z|δ

|x – z|n+ δ
α

,

if |y – z|δ ≤ |x – z| for some  < δ ≤  and  < α < . And
〈Tf , g〉 = ∫∫

K (x, y)f (y)g(x)dydx, for f , g ∈ S with disjoint supports.
() For some n( – α)/≤ β < n/, both T and its conjugate operator T∗ can be

extended to continuous operators from Lq to L, where /q = / + β/n.
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Alvarez andMilman [, ] discussed the boundedness of the strongly singular Calderón-
Zygmund operator on Lebesgue spaces. Lin [] proved the boundedness of the strongly
singular Calderón-Zygmund operator on Morrey spaces. Furthermore, Lin and Lu []
showed the boundedness of the strongly singular Calderón-Zygmund operator on Herz-
type Hardy spaces.
Suppose that T is a strongly singular Calderón-Zygmund operator and b is a locally inte-

grable function on Rn. The commutator [b,T] generated by b and T is defined as follows:

[b,T](f )(x) = b(x)T(f )(x) – T(bf )(x).

The authors in [] obtained the boundedness of the commutators generated by strongly
singular Calderón-Zygmund operators and Lipschitz functions on Lebesgue spaces. Lin
and Lu [] proved the boundedness of the commutators of strongly singular Calderón-
Zygmund operators on Hardy-type spaces. Moreover, Lin and Lu [, ] discussed the
boundedness of the commutator [b,T] on Morrey spaces when b is a BMO function or
a Lipschitz function, respectively.
The classical Morrey space was originally introduced byMorrey in [] to study the local

behavior of solutions of second order elliptic partial differential equations. For the prop-
erties and applications of classical Morrey spaces, one can refer to [, ]. In [], Chiarenza
and Frasca showed the boundedness of the Hardy-Littlewood maximal operator, the frac-
tional integral operator and the Calderón-Zygmund singular integral operator onMorrey
spaces. In , Fu and Lu [] established the boundedness of weighted Hardy operators
and their commutators on Morrey spaces.
In , Komori and Shirai [] defined the weighted Morrey spaces and studied the

boundedness of the Hardy-Littlewood maximal operator, the fractional integral opera-
tor, and the classical Calderón-Zygmund singular integral operator on these weighted
spaces. In , Wang [] showed the boundedness of commutators generated by clas-
sical Calderón-Zygmund operators and weighted BMO functions on weighted Morrey
spaces. In , the authors in [] proved the boundedness of some sublinear operators
and their commutators on weighted Morrey spaces.
Inspired by the above results, themain purpose of this paper is to overcome the stronger

singularity near the diagonal and establish the boundedness properties of the strongly sin-
gular Calderón-Zygmund operators and their commutators on weighted Morrey spaces.
Let us first recall some necessary definitions and notations.

Definition . ([]) A non-negative measurable function ω is said to be in the Mucken-
houpt class Ap with  < p <∞ if for every cube Q in Rn, there exists a positive constant C
independent of Q such that

(


|Q|
∫
Q

ω(x)dx
)(


|Q|

∫
Q

ω(x)–p
′
dx

)p–

≤ C,

whereQ denotes a cube inRn with the side parallel to the coordinate axes and /p+/p′ = .
When p = , a non-negative measurable function ω is said to belong to A, if there exists a
constant C >  such that for any cube Q,


|Q|

∫
Q

ω(y)dy ≤ Cω(x), a.e. x ∈Q.
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It is well known that if ω ∈ Ap with  < p < ∞, then ω ∈ Ar for all r > p, and ω ∈ Aq for
some  < q < p.

Definition . ([]) A weighted function ω belongs to the reverse Hölder class RHr if
there exist two constants r >  and C >  such that the reverse Hölder inequality

(


|Q|
∫
Q

ω(x)r dx
) 

r
≤ C

(


|Q|
∫
Q

ω(x)dx
)

holds for every cube Q in Rn.

It is well known that ifω ∈ Ap with ≤ p < ∞, then there exists a r >  such thatω ∈ RHr .
It follows directly from Hölder’s inequality that ω ∈ RHr implies ω ∈ RHs for all  < s < r.

Definition . Let  ≤ p <∞ and ω be a weighted function. A locally integrable function
b is said to be in the weighted BMO space BMOp(ω) if

‖b‖BMOp(ω) = sup
Q

(


ω(Q)

∫
Q

∣∣b(x) – bQ
∣∣pω(x)–p dx)/p

< ∞,

where bQ = 
|Q|

∫
Q b(y)dy and the supremum is taken over all cubes Q⊂ Rn.

Moreover, we denote simply BMO(ω) when p = .

Definition . The Hardy-Littlewood maximal operatorM is defined by

M(f )(x) = sup
Q�x


|Q|

∫
Q

∣∣f (y)∣∣dy.
We setMs(f ) =M(|f |s)/s, where  < s <∞.
The sharp maximal operatorM� is defined by

M�(f )(x) = sup
Q�x


|Q|

∫
Q

∣∣f (y) – fQ
∣∣dy ∼ sup

Q�x
inf
a∈C


|Q|

∫
Q

∣∣f (y) – a
∣∣dy,

where fQ = 
|Q|

∫
Q f (x)dx. We define the t-sharp maximal operator M�

t (f ) = M�(|f |t)/t ,
where  < t < .
Let ω be a weight. The weighted maximal operatorMω is defined by

Mω(f )(x) = sup
Q�x


ω(Q)

∫
Q

∣∣f (y)∣∣ω(y)dy.
We also setMs,ω(f ) =Mω(|f |s)/s, where  < s < ∞.

Definition . ([]) Let  ≤ p < ∞,  < k < , and ω be a weighted function. Then the
weighted Morrey space Lp,k(ω) is defined by

Lp,k(ω) =
{
f ∈ Lploc(ω) : ‖f ‖Lp,k (ω) <∞}

,
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where

‖f ‖Lp,k (ω) = sup
Q

(


ω(Q)k

∫
Q

∣∣f (x)∣∣pω(x)dx)/p

,

and the supremum is taken over all cubes Q in Rn.

Definition . ([]) Let  ≤ p < ∞ and  < k < . Then for two weighted functions u and
v, the weighted Morrey space Lp,k(u, v) is defined by

Lp,k(u, v) =
{
f ∈ Lploc(u) : ‖f ‖Lp,k (u,v) < ∞}

,

where

‖f ‖Lp,k (u,v) = sup
Q

(


v(Q)k

∫
Q

∣∣f (x)∣∣pu(x)dx)/p

.

2 Main results
Now we state our main results as follows.

Theorem . Let T be a strongly singular Calderón-Zygmund operator, and α, β , δ be
given in Definition .. If n(–α)+β

β < p < ∞,  < k < , and ω ∈ Aβp/[n(–α)+β], then T is
bounded on Lp,k(ω).

Theorem . Let T be a strongly singular Calderón-Zygmund operator, α, β , δ be given
in Definition . and n(–α)

 < β < n
 . Suppose

n(–α)+β
β < p < ∞,  < k < , and ω ∈ A ∩ RHr

with r > (n(–α)+β)(p–)
βp–n(–α)–β . If b ∈ BMO(ω), then [b,T] is bounded from Lp,k(ω) to Lp,k(ω–p,ω).

If we consider the extreme cases α →  and β →  in Definition ., then the strongly
singular Calderón-Zygmund operator comes back to the classical Calderón-Zygmund op-
erator. Thus, we get the boundedness of the classical Calderón-Zygmund operator and its
commutator on weighted Morrey spaces as corollaries of Theorem . and Theorem ..

Corollary . Let T be a classical Calderón-Zygmund operator. If  < p < ∞,  < k < ,
and ω ∈ Ap, then T is bounded on Lp,k(ω).

Corollary . Let T be a classical Calderón-Zygmund operator,  < p < ∞,  < k <  and
ω ∈ A. If b ∈ BMO(ω), then [b,T] is bounded from Lp,k(ω) to Lp,k(ω–p,ω).

Remark . Actually, Corollary . and Corollary . have been exactly obtained in []
and [] in the special case δ = . Thus, from this perspective, Theorem . and Theo-
rem . generalized the corresponding results in [, ], and the range of the index in
Theorem . and Theorem . is reasonable.

3 Preliminaries
Before we give the proofs of our main results, we need some lemmas.

Lemma . ([]) If T is a strongly singular Calderón-Zygmund operator, then T can be
defined to be a continuous operator from L∞ to BMO.

http://www.journalofinequalitiesandapplications.com/content/2014/1/519
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Lemma . ([]) If T is a strongly singular Calderón-Zygmund operator, then T is of weak
(L,L) type.

By Lemma ., Lemma ., Definition ., and interpolation theory, we find that T
is bounded on Lp,  < p < ∞. Besides the (Lp,Lp)-boundedness, the strongly singu-
lar Calderón-Zygmund operator T still has other kinds of boundedness properties on
Lebesgue spaces. By interpolating between (L,Lq′ ) and (L∞,BMO), where q is given in
Definition . and /q+/q′ = ,T is bounded from Lu to Lv with ≤ u <∞ and v = uq′

 . It is
easy to see that  < u

v ≤ α in this situation. Then we interpolate between (L,Lq′ ) and weak
(L,L) to obtain the boundedness of T from Lu to Lv, where  < u ≤  and v = uq′

q′–uq′+u– .
In this situation,  < u

v ≤ α if and only if n(–α)+β
β ≤ u ≤ . In a word, the boundedness

properties of the strongly singular Calderón-Zygmund operator on Lebesgue spaces can
be summarized as follows.

Remark . The strongly singular Calderón-Zygmund operator T is bounded on Lp for
 < p < ∞. And T is bounded from Lu to Lv, n(–α)+β

β ≤ u < ∞ and  < u
v ≤ α. In particu-

lar, if we restrict n(–α)
 < β < n

 in () of Definition ., then T is bounded from Lu to Lv,
n(–α)+β

β < u <∞, and  < u
v < α.

Lemma . ([, ]) Let ω ∈ A.Then for any ≤ p < ∞, there exists an absolute constant
C >  such that ‖b‖BMOp(ω) ≤ C‖b‖BMO(ω).

Lemma . ([]) If  < p <∞,  < k < , and ω ∈ Ap, then M is bounded on Lp,k(ω).

Lemma . ([]) Let  < p <∞,  < k < , and ω ∈ A∞, then for any  < s < p, we have
∥∥Ms,ω(f )

∥∥
Lp,k (ω) ≤ C‖f ‖Lp,k (ω).

Lemma . ([]) Let  < t < ,  < p < ∞, and  < k < . If u, v ∈ A∞, then we have
∥∥Mt(f )

∥∥
Lp,k (u,v) ≤ C

∥∥M�
t (f )

∥∥
Lp,k (u,v)

for all functions f such that the left-hand side is finite. In particular, when u = v = ω and
ω ∈ A∞, we have

∥∥Mt(f )
∥∥
Lp,k (ω) ≤ C

∥∥M�
t (f )

∥∥
Lp,k (ω)

for all functions f such that the left-hand side is finite.

Lemma . Given ε > , we have lnx ≤ 
ε
xε , for all x ≥ .

Let ϕ(x) = lnx – 
ε
xε , x ≥ . The above result comes from the monotone property of the

function ϕ.

Lemma . If T is a strongly singular Calderón-Zygmund operator, α, β , δ are given in
Definition ., and  < t < , then for all n(–α)+β

β ≤ s < ∞, there exists a positive constant
C such that

M�
t (Tf )(x)≤ CMs(f )(x), x ∈ Rn

for every bounded and compactly supported function f .
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Proof For any ball B = B(x, rB) ⊂ Rn which contains x, there are two cases.
Case : rB > .
We have

(


|B|
∫
B

∣∣∣∣T(f )(y)∣∣t – ∣∣T(f χ(B)c )(x)
∣∣t∣∣dy)/t

≤
(


|B|

∫
B

∣∣T(f )(y) – T(f χ(B)c )(x)
∣∣t dy)/t

≤ C
(


|B|

∫
B

∣∣T(f χB)(y)
∣∣t dy)/t

+C
(


|B|

∫
B

∣∣T(f χ(B)c )(y) – T(f χ(B)c )(x)
∣∣t dy)/t

:= I + I.

For I, by Hölder’s inequality and the Ls-boundedness of T , we get

I ≤ C


|B|
∫
B

∣∣T(f χB)(y)
∣∣dy

≤ C
(


|B|

∫
B

∣∣T(f χB)(y)
∣∣s dy)/s

≤ C
(


|B|

∫
B

∣∣f (y)∣∣s dy)/s

≤ CMs(f )(x).

Since rB >  and |y – x|α ≤ |z – x| for any y ∈ B, z ∈ (B)c, by Hölder’s inequality and
() of Definition ., we have

I ≤ C
|B|

∫
B

∣∣T(f χ(B)c )(y) – T(f χ(B)c )(x)
∣∣dy

≤ C
|B|

∫
B

∫
(B)c

∣∣K (y, z) –K (x, z)
∣∣∣∣f (z)∣∣dzdy

≤ C
|B|

∫
B

∫
(B)c

|y – x|δ
|z – x|n+ δ

α

∣∣f (z)∣∣dzdy
≤ CrδB

∞∑
j=

∫
j+B\jB

|f (z)|
|z – x|n+ δ

α

dz

≤ CrδB
∞∑
j=

(
jrB

)– δ
α


|j+B|

∫
j+B

∣∣f (z)∣∣dz

≤ Crδ–
δ
α

B

∞∑
j=

(
j

)– δ
α

(


|j+B|
∫
j+B

∣∣f (z)∣∣s dz)/s

≤ CMs(f )(x)r
δ– δ

α
B

∞∑
j=

(
j

)– δ
α

≤ CMs(f )(x).
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Case :  < rB ≤ .
Denote B̃ = B(x, rαB). There is

(


|B|
∫
B

∣∣∣∣T(f )(y)∣∣t – ∣∣T(f χ(B̃)c )(x)
∣∣t∣∣dy)/t

≤
(


|B|

∫
B

∣∣T(f )(y) – T(f χ(B̃)c )(x)
∣∣t dy)/t

≤ C
(


|B|

∫
B

∣∣T(f χB̃)(y)
∣∣t dy)/t

+C
(


|B|

∫
B

∣∣T(f χ(B̃)c )(y) – T(f χ(B̃)c )(x)
∣∣t dy)/t

:= II + II.

Since n(–α)+β
β ≤ s < ∞, by Remark ., there exists an l such that T is bounded from Ls

into Ll and  < s
l ≤ α. It follows from Hölder’s inequality that

II ≤ C
|B|

∫
B

∣∣T(f χB̃)(y)
∣∣dy

≤ C
(

B

∫
B

∣∣T(f χB̃)(y)
∣∣l dy)/l

≤ C|B|–/l
(∫

B̃

∣∣f (y)∣∣s dy)/s

= Cr–n/l+αn/s
(


|B̃|

∫
B̃

∣∣f (y)∣∣s dy)/s

≤ CMs(f )(x).

Since  < rB ≤  and |y – x|α ≤ |z – x| for any y ∈ B, z ∈ (B̃)c, similarly to I, we have

II ≤ C
|B|

∫
B

∣∣T(f χ(B̃)c )(y) – T(f χ(B̃)c )(x)
∣∣dy

≤ C
|B|

∫
B

∫
(B̃)c

∣∣K (y, z) –K (x, z)
∣∣∣∣f (z)∣∣dzdy

≤ C
|B|

∫
B

∫
(B̃)c

|y – x|δ
|z – x|n+ δ

α

∣∣f (z)∣∣dzdy
≤ CrδB

∞∑
j=

∫
j+B̃\jB̃

|f (z)|
|z – x|n+ δ

α

dz

≤ CrδB
∞∑
j=

(
jrαB

)– δ
α


|j+B̃|

∫
j+B̃

∣∣f (z)∣∣dz

≤ C
∞∑
j=

(
j

)– δ
α

(


|j+B̃|
∫
j+B̃

∣∣f (z)∣∣s dz)/s

≤ CMs(f )(x).
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Therefore, combining the estimates in both cases, there is

M�
t (Tf )(x)∼ sup

B�x
inf
a∈C

(


|B|
∫
B

∣∣∣∣T(f )(y)∣∣t – a
∣∣dy) 

t
≤ CMs(f )(x). �

Lemma . Let ω ∈ A and f be a function in BMO(ω). Suppose  ≤ p < ∞, x ∈ Rn, and
r, r > . Then

(


|B(x, r)|
∫
B(x,r)

∣∣f (y) – fB(x,r)
∣∣pω(y)–p dy) 

p

≤ C‖f ‖BMO(ω)ω(x)
(
 +

∣∣∣∣ln r
r

∣∣∣∣
)(

ω(B(x, r))
|B(x, r)|

)– 
p′
.

Proof Without loss of generality, we may assume that  < r ≤ r and omit the case  <
r < r since their similarity. For  < r ≤ r, there are k,k ∈ Z such that k– < r ≤ k

and k– < r ≤ k . Then k ≤ k and

(k – k – ) ln < ln
r
r

< (k – k + ) ln.

Thus, we have

(


|B(x, r)|
∫
B(x,r)

∣∣f (y) – fB(x,r)
∣∣pω(y)–p dy) 

p

≤
(


|B(x, r)|

∫
B(x,r)

∣∣f (y) – fB(x,k )
∣∣pω(y)–p dy) 

p

+
(|fB(x,r) – fB(x,k )| + |fB(x,k ) – fB(x,k )|

)

×
(


|B(x, r)|

∫
B(x,r)

ω(y)–p dy
) 

p

≤
(

n

|B(x, k )|
∫
B(x,k )

∣∣f (y) – fB(x,k )
∣∣pω(y)–p dy) 

p

+

(
|fB(x,r) – fB(x,k )| +

k–∑
j=k

|fB(x,j+) – fB(x,j)|
)

×
(


|B(x, r)|

∫
B(x,r)

ω(y)–p dy
) 

p

≤ C‖f ‖BMO(ω)ω(x)

p +

(


|B(x, r)|
∫
B(x,r)

∣∣f (y) – fB(x,k )
∣∣dy

+
k–∑
j=k


|B(x, j)|

∫
B(x,j)

∣∣f (y) – fB(x,j+)
∣∣dy

)

×
(


|B(x, r)|

∫
B(x,r)

ω(y)–p dy
) 

p
.

http://www.journalofinequalitiesandapplications.com/content/2014/1/519
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Write


|B(x, r)|

∫
B(x,r)

∣∣f (y) – fB(x,k )
∣∣dy

≤ n

|B(x, k )|
(∫

B(x,k )

∣∣f (y) – fB(x,k )
∣∣pω(y)–p dy) 

p

×
(∫

B(x,k )
ω(y)dy

) 
p′

≤ n
ω(B(x, k ))
|B(x, k )|

×
(


ω(B(x, k ))

∫
B(x,k )

∣∣f (y) – fB(x,k )
∣∣pω(y)–p dy) 

p

≤ n‖f ‖BMO(ω)ω(x)

and


|B(x, j)|

∫
B(x,j)

∣∣f (y) – fB(x,j+)
∣∣dy

≤ n

|B(x, j+)|
(∫

B(x,j+)

∣∣f (y) – fB(x,j+)
∣∣pω(y)–p dy) 

p

×
(∫

B(x,j+)
ω(y)dy

) 
p′

≤ n‖f ‖BMO(ω)ω(x).

If  < p < ∞, then by the fact ω ∈ A ⊂ Ap′ , we have

(


|B(x, r)|
∫
B(x,r)

ω(y)–p dy
) 

p

=
[(


|B(x, r)|

∫
B(x,r)

ω(y)–p dy
)p′–] 

p(p′–)

≤ C
(


|B(x, r)|

∫
B(x,r)

ω(y)dy
)– 

p(p′–)

= C
(

ω(B(x, r))
|B(x, r)|

)– 
p′
.

If p = , then the above estimate holds obviously.
Thus,

(


|B(x, r)|
∫
B(x,r)

∣∣f (y) – fB(x,r)
∣∣pω(y)–p dy) 

p

≤ C‖f ‖BMO(ω)ω(x)

p

http://www.journalofinequalitiesandapplications.com/content/2014/1/519
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+C

(
n‖f ‖BMO(ω)ω(x) +

k–∑
j=k

n‖f ‖BMO(ω)ω(x)

)(
ω(B(x, r))
|B(x, r)|

)– 
p′

≤ C‖f ‖BMO(ω)ω(x)
(

ω(B(x, r))
|B(x, r)|

)– 
p′
+C‖f ‖BMO(ω)ω(x)(k – k + )

(
ω(B(x, r))
|B(x, r)|

)– 
p′

≤ C‖f ‖BMO(ω)ω(x)
(
 +

∣∣∣∣ln r
r

∣∣∣∣
)(

ω(B(x, r))
|B(x, r)|

)– 
p′
.

This completes the proof of Lemma .. �

Lemma . Let T be a strongly singular Calderón-Zygmund operator, α, β , δ be given
in Definition . and n(–α)

 < β < n
 . Let  < t < , n(–α)+β

β < s < ∞, ω ∈ A ∩ RHr with
r > (n(–α)+β)(s–)

βs–n(–α)–β , and b ∈ BMO(ω), then we have

M�
t
(
[b,T]f

)
(x)≤ C‖b‖BMO(ω)

(
ω(x)Ms,ω(Tf )(x) +ω(x)Ms,ω(f )(x)

)
, a.e. x ∈ Rn.

Proof For any ball B = B(x, rB) with the center x and radius rB, there are two cases.
Case : rB > .
We decompose f = f + f, where f = f χB and χB denotes the characteristic function of

B. Observe that

[b,T](f )(y)

=
(
b(y) – bB

)
T(f )(y) – T

(
(b – bB)f

)
(y)

=
(
b(y) – bB

)
T(f )(y) – T

(
(b – bB)f

)
(y) – T

(
(b – bB)f

)
(y).

Since  < t < , we have
(


|B|

∫
B

∣∣∣∣[b,T](f )(y)∣∣t – ∣∣T(
(b – bB)f

)
(x)

∣∣t∣∣dy)/t

≤
(


|B|

∫
B

∣∣[b,T](f )(y) + T
(
(b – bB)f

)
(x)

∣∣t dy)/t

≤ C
(


|B|

∫
B

∣∣(b(y) – bB
)
T(f )(y)

∣∣t dy)/t

+C
(


|B|

∫
B

∣∣T(
(b – bB)f

)
(y)

∣∣t dy)/t

+C
(


|B|

∫
B

∣∣T(
(b – bB)f

)
(y) – T

(
(b – bB)f

)
(x)

∣∣t dy)/t

:= I + I + I.

We are now going to estimate each term, respectively. Since ω ∈ A, it follows from
Hölder’s inequality and Lemma . that

I ≤ C
|B|

∫
B

∣∣(b(y) – bB
)
T(f )(y)

∣∣dy
≤ C

|B|
(∫

B

∣∣b(y) – bB
∣∣s′ω(y)–s′ dy)/s′(∫

B

∣∣Tf (y)∣∣sω(y)dy)/s

http://www.journalofinequalitiesandapplications.com/content/2014/1/519


Lin and Sun Journal of Inequalities and Applications 2014, 2014:519 Page 11 of 15
http://www.journalofinequalitiesandapplications.com/content/2014/1/519

≤ C‖b‖BMO(ω)
ω(B)
|B|

(


ω(B)

∫
B

∣∣Tf (y)∣∣sω(y)dy)/s

≤ C‖b‖BMO(ω)ω(x)Ms,ω(Tf )(x).

Applying Kolmogorov’s inequality [], Lemma ., Hölder’s inequality, and Lemma .,
we get

I ≤ C
|B|/t

(|B|–t∥∥(b – bB)f
∥∥t


)/t
=

C
|B|

∫
B

∣∣(b(y) – bB
)
f (y)

∣∣dy
≤ C

|B|
(∫

B

∣∣b(y) – bB
∣∣s′ω(y)–s′ dy)/s′(∫

B

∣∣f (y)∣∣sω(y)dy)/s

≤ C‖b‖BMO(ω)
ω(B)
|B|

(


ω(B)

∫
B

∣∣f (y)∣∣sω(y)dy)/s

≤ C‖b‖BMO(ω)ω(x)Ms,ω(f )(x).

Since rB >  and |y – x|α ≤ |z – x| for any y ∈ B, z ∈ (B)c, by () of Definition ., we
have

I ≤ C
|B|

∫
B

∣∣T(
(b – bB)f

)
(y) – T

(
(b – bB)f

)
(x)

∣∣dy
≤ C

|B|
∫
B

∫
(B)c

∣∣K (y, z) –K (x, z)
∣∣∣∣b(z) – bB

∣∣∣∣f (z)∣∣dzdy
≤ C

∞∑
j=


|B|

∫
B

∫
j+B\jB

|y – x|δ
|z – x|n+ δ

α

∣∣b(z) – bB
∣∣∣∣f (z)∣∣dzdy

≤ CrδB
∞∑
j=

(
jrB

)– δ
α


|B|

∫
B


|j+B|

∫
j+B\jB

∣∣b(z) – bB
∣∣∣∣f (z)∣∣dzdy

≤ Crδ–
δ
α

B

∞∑
j=

(
j

)– δ
α


|j+B|

∫
j+B

∣∣b(z) – bB
∣∣∣∣f (z)∣∣dz.

Applying Hölder’s inequality and Lemma ., we get

I ≤ C
∞∑
j=

(
j

)– δ
α


|j+B|

(∫
j+B

∣∣b(z) – bB
∣∣s′ω(z)–s′ dz)/s′

×
(∫

j+B

∣∣f (z)∣∣sω(z)dz)/s

≤ C
∞∑
j=

(
j

)– δ
α


|j+B|

∣∣j+B∣∣ 
s′ ‖b‖BMO(ω)jω(x)

(
ω(j+B)
|j+B|

)– 
s

×
(∫

j+B

∣∣f (z)∣∣sω(z)dz)/s

≤ C‖b‖BMO(ω)ω(x)
∞∑
j=

j
(
j

)– δ
α

(


ω(j+B)

∫
j+B

∣∣f (z)∣∣sω(z)dz)/s

http://www.journalofinequalitiesandapplications.com/content/2014/1/519
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≤ C‖b‖BMO(ω)ω(x)Ms,ω(f )(x)
∞∑
j=

j
(
j

)– δ
α

≤ C‖b‖BMO(ω)ω(x)Ms,ω(f )(x).

Case :  < rB ≤ .
Since r > (n(–α)+β)(s–)

βs–n(–α)–β , that is, n(–α)+β
β < rs

s+r– , there exists an s such that n(–α)+β
β <

s < rs
s+r– . For the index s which we chose, by Remark ., there exists an l such that T is

bounded from Ls to Ll and  < s
l
< α. Then we can take a θ satisfying  < s

l
< θ < α.

Let B̃ = B(x, rθB). We decompose f = f + f, where f = f χB̃ and χB̃ denotes the charac-
teristic function of B̃. Write

[b,T](f )(y)

=
(
b(y) – bB

)
T(f )(y) – T

(
(b – bB)f

)
(y)

=
(
b(y) – bB

)
T(f )(y) – T

(
(b – bB)f

)
(y) – T

(
(b – bB)f

)
(y).

Since  < t < , we have

(


|B|
∫
B

∣∣∣∣[b,T](f )(y)∣∣t – ∣∣T(
(b – bB)f

)
(x)

∣∣t∣∣dy)/t

≤
(


|B|

∫
B

∣∣[b,T](f )(y) + T
(
(b – bB)f

)
(x)

∣∣t dy)/t

≤ C
(


|B|

∫
B

∣∣(b(y) – bB
)
T(f )(y)

∣∣t dy)/t

+C
(


|B|

∫
B

∣∣T(
(b – bB)f

)
(y)

∣∣t dy)/t

+C
(


|B|

∫
B

∣∣T(
(b – bB)f

)
(y) – T

(
(b – bB)f

)
(x)

∣∣t dy)/t

:= II + II + II.

Similarly to estimate I, we have

II ≤ C‖b‖BMO(ω)ω(x)Ms,ω(Tf )(x).

Since  < s < s < ∞, there exists an l ( < l < ∞) such that 
s

= 
s +


l . By Hölder’s in-

equality and the (Ls ,Ll )-boundedness of T , we have

II ≤ C
|B|

∫
B

∣∣T(
(b – bB)f

)
(y)

∣∣dy
≤ C

(


|B|
∫
B

∣∣T(
(b – bB)f

)
(y)

∣∣l dy) 
l

≤ C|B|– 
l

(∫
B̃

∣∣b(y) – bB
∣∣s ∣∣f (y)∣∣s dy) 

s

≤ C|B|– 
l

(∫
B̃

∣∣b(y) – bB
∣∣lω(y)– l

s dy
) 

l
(∫

B̃

∣∣f (y)∣∣sω(y)dy) 
s

≤ CMs,ω(f )(x)ω(B̃)

s |B|– 

l

(∫
B̃

∣∣b(y) – bB
∣∣lω(y)– l

s dy
) 

l
.

http://www.journalofinequalitiesandapplications.com/content/2014/1/519
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Let p = (r–)(s–s)
s(s–)

. Since s < rs
s+r– , we get  < p < ∞. So p′

 =
(r–)(s–s)
rs–(s+r–)s

and  < p′
 < ∞.

Applying Hölder’s inequality for p and p′
, Lemma ., and noticing that r = lp

s′ – p
p′

, we

get

II ≤ CMs,ω(f )(x)ω(B̃)

s |B|– 

l

(∫
B̃

∣∣b(y) – bB
∣∣lp′

ω(y)–lp
′
 dy

) 
lp′

×
(∫

B̃
ω(y)

lp
s′ – p

p′ dy
) 

lp

≤ CMs,ω(f )(x)ω(B̃)

s |B|– 

l |B̃|


lp′ ‖b‖BMO(ω)ω(x)

×
(
 +

∣∣∣∣ln rθB
rB

∣∣∣∣
)(

ω(B̃)
|B̃|

)– 
(lp′)′

[(


|B̃|
∫
B̃

ω(y)r dy
) 

r
] r

lp |B̃| 
lp

≤ CMs,ω(f )(x)ω(B̃)

s |B|– 

l |B̃| l ‖b‖BMO(ω)ω(x)

×
(
 +

∣∣∣∣ln rθB
rB

∣∣∣∣
)(

ω(B̃)
|B̃|

)– 
(lp′)′

(
ω(B̃)
|B̃|

) r
lp

≤ C‖b‖BMO(ω)ω(x)Ms,ω(f )(x)ω(B̃)

s |B|– 

l |B̃| l

×
(
 + ( – θ ) ln


rB

)(
ω(B̃)
|B̃|

)– 
s
.

The inequality  < s
l
< θ implies that ε := n( θ

s
– 

l
) > . By Lemma ., we have

II ≤ C‖b‖BMO(ω)ω(x)Ms,ω(f )(x)|B|– 
l |B̃| l + 

s

(
 +


ε
r–ε
B

)

≤ C‖b‖BMO(ω)ω(x)Ms,ω(f )(x)r
n( θ

s
– 
l
)–ε

B

= C‖b‖BMO(ω)ω(x)Ms,ω(f )(x).

The fact θ < α implies that ε := δ
α
(α – θ ) > . For any y ∈ B and z ∈ (B̃)c, we have

|y–x|α ≤ rαB ≤ rθB ≤ |z–x| since  < rB ≤ . It follows from () of Definition ., Hölder’s
inequality, Lemma ., and Lemma . that

II ≤ C
|B|

∫
B

∣∣T(
(b – bB)f

)
(y) – T

(
(b – bB)f

)
(x)

∣∣dy
≤ C

|B|
∫
B

∫
(B̃)c

∣∣K (y, z) –K (x, z)
∣∣∣∣b(z) – bB

∣∣∣∣f (z)∣∣dzdy
≤ C

∞∑
j=


|B|

∫
B

∫
j+B̃\j B̃

|y – x|δ
|z – x|n+ δ

α

∣∣b(z) – bB
∣∣∣∣f (z)∣∣dzdy

≤ CrδB
∞∑
j=

(
jrθB

)– δ
α


|j+B̃|

∫
j+B̃\jB̃

∣∣b(z) – bB
∣∣∣∣f (z)∣∣dz

≤ Crδ–
θδ
α

B

∞∑
j=

(
j

)– δ
α


|j+B̃|

(∫
j+B̃

∣∣b(z) – bB
∣∣s′ω(y)–s′ dy) 

s′
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×
(∫

j+B̃

∣∣f (z)∣∣sω(y)dy) 
s

≤ Crδ–
θδ
α

B

∞∑
j=

(
j

)– δ
α


|j+B̃|

∣∣j+B̃∣∣ 
s′ ‖b‖BMO(ω)ω(x)

×
(
j + ( – θ ) ln


rB

)(
ω(j+B̃)
|j+B̃|

)– 
s
Ms,ω(f )(x)ω

(
j+B̃

) 
s

≤ Crδ–
θδ
α

B

∞∑
j=

(
j

)– δ
α ‖b‖BMO(ω)ω(x)Ms,ω(f )(x)

(
j + ( – θ ) ln


rB

)

≤ C‖b‖BMO(ω)ω(x)Ms,ω(f )(x)r
δ– θδ

α
B

∞∑
j=

(
j

)– δ
α

(
j +


ε
r–ε
B

)

≤ C‖b‖BMO(ω)ω(x)Ms,ω(f )(x)r
δ
α (α–θ )–ε
B

∞∑
j=

j
(
j

)– δ
α

≤ C‖b‖BMO(ω)ω(x)Ms,ω(f )(x).

Combining the estimates in both cases, we have

M�
t
(
[b,T]f

)
(x) ∼ sup

rB>
inf
a∈C

(


|B(x, rB)|
∫
B(x,rB)

∣∣∣∣[b,T](f )(y)∣∣t – a
∣∣dy) 

t

≤ C‖b‖BMO(ω)
(
ω(x)Ms,ω(Tf )(x) +ω(x)Ms,ω(f )(x)

)
. �

4 Proof of themain results
Now we are able to prove our main results.

Proof of Theorem . Since n(–α)+β
β < p < ∞ and ω ∈ Aβp/[n(–α)+β], there exists an l

such that  ≤ l < pβ
n(–α)+β and ω ∈ Al . Since n(–α)+β

β < p
l ≤ p, there exists an s such that

n(–α)+β
β < s < p

l ≤ p. It follows from p
s > l that ω ∈ Ap/s. Applying Lemma ., Lemma .,

and Lemma ., we have

∥∥T(f )∥∥Lp,k (ω) ≤ ∥∥Mt(Tf )
∥∥
Lp,k (ω) ≤ C

∥∥M�
t (Tf )

∥∥
Lp,k (ω)

≤ C
∥∥Ms(f )

∥∥
Lp,k (ω) = C

∥∥M(|f |s)∥∥/s
Lp/s,k (ω)

≤ C
∥∥|f |s∥∥/s

Lp/s,k (ω) = C‖f ‖Lp,k (ω).

This completes the proof of Theorem .. �

Proof of Theorem . Since r > (n(–α)+β)(p–)
βp–n(–α)–β , that is p > (n(–α)+β)(r–)

βr–n(–α)–β , there exists an s
such that p > s > (n(–α)+β)(r–)

βr–n(–α)–β > n(–α)+β
β . Since s > (n(–α)+β)(r–)

βr–n(–α)–β , we have r > (n(–α)+β)(s–)
βs–n(–α)–β .

Applying Lemma . and Lemma ., we thus have

∥∥[b,T](f )∥∥Lp,k (ω–p ,ω)

≤ ∥∥Mt
(
[b,T]f

)∥∥
Lp,k (ω–p ,ω)

≤ C
∥∥M�

t
(
[b,T]f

)∥∥
Lp,k (ω–p ,ω)
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≤ C‖b‖BMO(ω)
(∥∥ω(·)Ms,ω(Tf )

∥∥
Lp,k (ω–p ,ω) +

∥∥ω(·)Ms,ω(f )
∥∥
Lp,k (ω–p ,ω)

)
= C‖b‖BMO(ω)

(∥∥Ms,ω(Tf )
∥∥
Lp,k (ω) +

∥∥Ms,ω(f )
∥∥
Lp,k (ω)

)
.

Therefore, by using Lemma . and Theorem ., we obtain

∥∥[b,T](f )∥∥Lp,k (ω–p ,ω) ≤ C‖b‖BMO(ω)
(‖Tf ‖Lp,k (ω) + ‖f ‖Lp,k (ω)

)
≤ C‖b‖BMO(ω)‖f ‖Lp,k (ω).

This completes the proof of Theorem .. �
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