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Abstract
The main purpose of this paper is to study the coincidence point and common fixed
point theorems in the product spaces of mixed-monotonically complete
quasi-ordered metric spaces based on some new types of contractive inequalities. In
order to investigate the existence and chain-uniqueness of solutions for the systems
of integral equations and ordinary differential equations, we shall also study the fixed
point theorems for the functions having mixed monotone property or comparable
property in the product space of quasi-ordered metric space.
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1 Introduction
The existence of coincidence point has been studied in [–] and the references therein.
Also, the existence of common fixed point has been studied in [–] and the refer-
ences therein. In this paper, we shall introduce the concepts of mixed-monotonically
complete quasi-ordered metric space and monotonically complete quasi-ordered metric
space. Based on this completeness, we shall establish some new coincidence point and
common fixed point theorems in the product spaces of mixed-monotonically complete
quasi-ordered metric spaces in which the fixed points of functions having mixed mono-
tone property or mixed comparable property that are defined in the product space of
quasi-ordered metric space can be subsequently obtained. We shall also present the in-
teresting applications to the existence and chain-uniqueness of solutions for the systems
of integral equations and ordinary differential equations according to the fixed points of
functions having mixed monotone property.
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In Section , we shall derive the coincidence point theorems in the product space of
mixed-monotonically complete quasi-ordered metric space. Also, in Section , the coin-
cidence point theorems in the product space of monotonically complete quasi-ordered
metric space will be studied. On the other hand, in Section , we shall study the fixed
point theorems for the functions having mixed monotone property in the product space
of monotonically complete quasi-ordered metric space. Also, in Section , the fixed point
theorems for the functions having mixed comparable property in the product space
of mixed-monotonically complete quasi-ordered metric space will be derived. In Sec-
tion , we shall present the interesting application to investigate the existence and chain-
uniqueness of solutions for the system of integral equations. Finally, in Section , we shall
also present the interesting application to investigate the existence and chain-uniqueness
of solutions for the system of ordinary differential equations.

2 Coincidence point theorems in themixed-monotonically complete
quasi-orderedmetric space

Let X be a nonempty set. We consider the product set

Xm = X × · · · ×X︸ ︷︷ ︸
m times

.

The element ofXm is represented by the vectorial notation x = (x(), . . . ,x(m)), where x(i) ∈ X
for i = , . . . ,m. We also consider the function F : Xm → Xm defined by

F(x) =
(
F(x),F(x), . . . ,Fm(x)

)
,

where Fk : Xm → X for all k = , , . . . ,m. The vectorial element x̂ = (x̂(), x̂(), . . . , x̂(m)) ∈ Xm

is a fixed point of F if and only if F(x̂) = x̂; that is,

Fk
(
x̂(), x̂(), . . . , x̂(m)) = x̂(k)

for all k = , , . . . ,m.

Definition . Let X be a nonempty set. Consider the functions F : Xm → Xm and f :
Xm → Xm by F = (F,F, . . . ,Fk) and f = (f, f, . . . , fk), where Fk : Xm → X and fk : Xm → X
for k = , , . . . ,m.
• The element x̂ ∈ Xm is a coincidence point of F and f if and only if F(x̂) = f(x̂), i.e.,
Fk(x̂) = fk(x̂) for all k = , , . . . ,m.

• The element x̂ is a common fixed point of F and f if and only if F(x̂) = f(x̂) = x̂, i.e.,
Fk(x̂) = fk(x̂) = x̂(k) for all k = , , . . . ,m.

• The functions F and f are said to be commutative if and only if f(F(x)) = F(f(x)) for all
x ∈ Xm.

Let ‘�’ be a binary relation defined on X. We say that the binary relation ‘�’ is a quasi-
order (pre-order or pseudo-order) if and only if it is reflexive and transitive. In this case,
(X,�) is called a quasi-ordered set.
For any x,y ∈ Xm, we say that x and y are �-mixed comparable if and only if, for each

k = , . . . ,m, one has either x(k) � y(k) or y(k) � x(k). Let I be a subset of {, , . . . ,m} and
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J = {, , . . . ,m} \ I . In this case, we say that I and J are the disjoint pair of {, , . . . ,m}. We
can define a binary relation on Xm as follows:

x�I y if and only if x(k) � y(k) for k ∈ I and y(k) � x(k) for k ∈ J . ()

It is obvious that (Xm,�I) is a quasi-ordered set that depends on I . We also have

x�I y if and only if y�J x. ()

We need to mention that I or J is allowed to be an empty set.

Remark . For any x,y ∈ Xm, we have the following observations.
(a) If x�I y for some disjoint pair I and J of {, . . . ,m}, then x and y are �-mixed

comparable.
(b) If x and y are �-mixed comparable, then there exists a disjoint pair I and J of

{, . . . ,m} such that x�I y.

Definition . Let I and J be a disjoint pair of {, , . . . ,m}. Given a quasi-ordered set
(X,�), we consider the quasi-ordered set (Xm,�I) defined in ().
• The sequence {xn}n∈N in X is said to be amixed �-monotone sequence if and only if
xn � xn+ or xn+ � xn (i.e., xn and xn+ are comparable with respect to ‘�’) for all
n ∈N.

• The sequence {xn}n∈N in Xm is said to be amixed �-monotone sequence if and only if
each sequence {x(k)n }n∈N in X is a mixed �-monotone sequence for all k = , . . . ,m.

• The sequence {xn}n∈N in Xm is said to be amixed �I-monotone sequence if and only if
xn �I xn+ or xn+ �I xn (i.e., xn and xn+ are comparable with respect to ‘�I ’) for all
n ∈N.

Remark . Let I and J be a disjoint pair of {, , . . . ,m}. We have the following observa-
tions.
(a) {xn}n∈N in Xm is a mixed �I-monotone sequence if and only if it is a mixed

�J -monotone sequence.
(b) If {xn}n∈N in Xm is a mixed �I-monotone sequence, then it is also a mixed

�-monotone sequence; that is, each sequence {x(k)n }n∈N in X is a mixed �-monotone
sequence for all k = , . . . ,m.

(c) If {xn}n∈N in Xm is a mixed �-monotone sequence, then given any n ∈N, there
exists a disjoint pair of In and Jn (which depends on n) of {, . . . ,m} such that
xn �In xn+ or xn+ �In xn.

(d) {xn}n∈N in Xm is a mixed �-monotone sequence if and only if, for each n ∈N, xn
and xn+ are �-mixed comparable

Definition . Let I and J be a disjoint pair of {, , . . . ,m}. Given a quasi-ordered set
(X,�), we also consider the quasi-ordered set (Xm,�I) defined in () and the function
f : (Xm,d)→ (Xm,d).
• The function f is said to have the sequentially mixed �-monotone property if and only
if, given any mixed �-monotone sequence {xn}n∈N in Xm, {f(xn)}n∈N is also a mixed
�-monotone sequence.

http://www.journalofinequalitiesandapplications.com/content/2014/1/518
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• The function f is said to have the sequentially mixed �I-monotone property if and
only if, given any mixed �I-monotone sequence {xn}n∈N in Xm, {f(xn)}n∈N is also a
mixed �I-monotone sequence.

It is obvious that the identity function on Xm has the sequentially mixed �I-monotone
and �-monotone property.
Let X be a nonempty set. We consider the functions F : Xm → Xm and f : Xm → Xm

satisfying Fp(Xm) ⊆ f(Xm) for some p ∈ N, where Fp(x) = F(Fp–(x)) for any x ∈ Xm.
Therefore, we have Fp

k (x) = Fk(Fp–(x)) for k = , . . . ,m. Given an initial element x =
(x() ,x() , . . . ,x(m)

 ) ∈ Xm, where x(k) ∈ X for k = , . . . ,m, since Fp(Xm) ⊆ f(Xm), there ex-
ists x ∈ Xm such that f(x) = Fp(x). Similarly, there also exists x ∈ Xm such that f(x) =
Fp(x). Continuing this process, we can construct a sequence {xn}n∈N such that

f(xn) = Fp(xn–) ()

for all n ∈N; that is,

fk(xn) = fk
(
x()n , . . . ,x(k)n , . . . ,x(m)

n
)
= Fp

k
(
x()n–, . . . ,x

(k)
n–, . . . ,x

(m)
n–

)
= Fp

k (xn–)

for all k = , . . . ,m. We introduce the concepts of mixed monotone seed element as fol-
lows.
(A) We say that the initial element x is amixed �-monotone seed element of Xm if and

only if the sequence {xn}n∈N constructed from () is a mixed �-monotone
sequence; that is, each sequence {x(k)n }n∈N in X is a mixed �-monotone sequence for
k = , . . . ,m.

(B) Given a disjoint pair I and J of {, , . . . ,m}, we say that the initial element x is a
mixed �I-monotone seed element of Xm if and only if the sequence {xn}n∈N
constructed from () is a mixed �I-monotone sequence.

From observation (b) of Remark ., it follows that if x is a mixed �I-monotone seed
element, then it is also a mixed �-monotone seed element.

Example . Suppose that the initial element x can generate a sequence {xn}n∈N such
that, for each k = , . . . ,m, the generated sequence {x(k)n }n∈N is either �-increasing or
�-decreasing. In this case, we define the disjoint pair I and J of {, , . . . ,m} as follows:

I =
{
k : the sequence

{
x(k)n

}
n∈N is �-increasing

}
and J = {, , . . . ,m} \ I. ()

It means that if k ∈ J , then the sequence {x(k)n }n∈N is�-decreasing. Therefore, the sequence
{xn}n∈N satisfies xn �I xn+ for any n ∈ N. In this case, the initial element x is a mixed
�I-monotone seed element with the disjoint pair I and J defined in ().

Definition . Let (X,d,�) be ametric space endowedwith a quasi-order ‘�’.We say that
(X,d,�) ismixed-monotonically complete if and only if each mixed �-monotone Cauchy
sequence {xn}n∈N in X is convergent.

It is obvious that if the quasi-ordered metric space (X,d,�) is complete, then it is also
mixed-monotonically complete. However, the converse is not necessarily true.

http://www.journalofinequalitiesandapplications.com/content/2014/1/518
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For the metric space (X,d), we can consider a product metric space (Xm,d) in which the
metric d is induced by the original metric d. For example, the following distance functions

d(x,y) = max
k=,...,m

{
d
(
x(k), y(k)

)}
()

and

d(x,y) =
m∑
k=

d
(
x(k), y(k)

)
()

make (Xm,d) to be the product metric spaces. For the general product metric d, we con-
sider the following concepts.
• We say that the metrics d and d are compatible in the sense of preserving convergence
if and only if, given a sequence {xn}n∈N in Xm, the following statement holds:

d(xn, x̂) →  if and only if d
(
x(k)n , x̂(k)

) →  for all k = , . . . ,m.

• We say that the metrics d and d are compatible in the sense of preserving continuity if
and only if, given any ε > , there exists a positive constant k >  (which depends on ε)
such that the following statement holds:

d(x,y) < ε if and only if d
(
x(k), y(k)

)
< k · ε for all k = , . . . ,m.

We can check that the product metric d defined in () or () is compatible with d in the
sense of preserving convergence and continuity.

Proposition . If d and d are compatible in the sense of preserving continuity, then d and
d are compatible in the sense of preserving convergence.

Proof Suppose that d(xn, x̂) → . By definition, given any ε > , there exists n ∈ N such
that d(xn, x̂) < ε/k for all n ≥ n, i.e., d(x(k)n , x̂(k)) < ε for all k = , . . . ,m and n ≥ n. For the
converse, given any ε > , there exist n(k) ∈ N such that d(x(k)n , x̂(k)) < k · ε for all n ≥ n(k) ,
where k = , . . . ,m. Let

n = max
k=,...,m

n(k) .

It follows that d(x(k)n , x̂(k)) < k · ε for all n ≥ n and all k = , . . . ,m, i.e., d(xn, x̂) < ε for all
n≥ n. This completes the proof. �

Mizoguchi and Takahashi [, ] considered the mapping ϕ : [,∞) → [, ) that satis-
fies the following condition:

lim sup
x→c+

ϕ(x) <  for all c ∈ [,∞) ()

in the contractive inequality, and generalized Nadler’s fixed point theorem as shown in
[]. Suzuki [] also gave a simple proof of the theorem obtained by Mizoguchi and
Takahashi []. In this paper, we consider the following definition.

http://www.journalofinequalitiesandapplications.com/content/2014/1/518
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Definition . We say that ϕ : [,∞)→ [, ) is a function of contractive factor if and only
if, for any strictly decreasing sequence {xn}n∈N in [,∞), we have

 ≤ sup
n

ϕ(xn) < . ()

Using the routine arguments, we can show that the function ϕ : [,∞) → [, ) satisfies
() if and only if ϕ is a function of contractive factor. Throughout this paper, we shall as-
sume that the mapping ϕ satisfies () in order to prove the various types of coincidence
point theorems in the product space. The following lemma is obvious and useful for fur-
ther discussion.

Lemma . Let ϕ be a function of contractive factor.We define

κ(t) =
 + ϕ(t)


.

Then, for any strictly decreasing sequence {xn}n∈N in [,∞), we have

 ≤ ϕ(t) < κ(t) <  for all t ∈ [,∞) and  < sup
n

κ(xn) < .

Let (X,d) be ametric space, and let F : (Xm,d)→ (Xm,d) be a function defined on (Xm,d)
into itself. If F is continuous at x̂ ∈ Xm, then, given ε > , there exists δ >  such that x ∈ Xm

with d(x̂,x) < δ implies d(F(x̂),F(x)) < ε.
Suppose that d and d are compatible in the sense of preserving continuity. Then F is

continuous at x̂ ∈ Xm if and only if each Fk is continuous at x̂ for k = , . . . ,m. Indeed,
it is obvious that if F is continuous at x̂ ∈ Xm, then each Fk is continuous at x̂ for k =
, . . . ,m. For the converse, given any ε > , there exists δk >  such that d(x̂,x) < δk implies
d(Fk(x̂),Fk(x)) < k · ε, where k = , . . . ,m. Let

δ = min
k=,...,m

δk .

It follows that d(x̂,x) < δ implies d(Fk(x̂),Fk(x)) < k · ε for all k = , . . . ,m, i.e., d(F(x̂),
F(x)) < ε. Next, we propose another concept of continuity.

Definition . Let (X,d) be ametric space, and let (Xm,d) be the corresponding product
metric space. Let F : (Xm,d) → (Xm,d) and f : (Xm,d) → (Xm,d) be functions defined on
(Xm,d) into itself.We say that F is continuous with respect to f at x̂ ∈ Xm if and only if, given
any ε > , there exists δ >  such that x ∈ Xm with d(x̂, f(x)) < δ implies d(F(x̂),F(x)) < ε.
We say that F is continuous with respect to f on Xm if and only if it is continuous with
respect to f at each x̂ ∈ Xm.

It is obvious that if the function F is continuous at x̂with respect to the identity function,
then it is also continuous at x̂.

Proposition . Let (X,d) be a metric space, and let F : (Xm,d) → (Xm,d) and f :
(Xm,d) → (Xm,d) be functions defined on (Xm,d) into itself. Suppose that d and d are com-
patible in the sense of preserving continuity.Then F is continuous with respect to f at x̂ ∈ Xm

http://www.journalofinequalitiesandapplications.com/content/2014/1/518
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if and only if, given any ε > , there exists δ >  such that x ∈ Xm with d(x̂(k), fk(x)) < δ for
all k = , . . . ,m implies d(Fk(x̂),Fk(x)) < ε for all k = , . . . ,m.

Proof Suppose that F is continuous with respect to f at x̂. By definition, given any ε > ,
there exists δ̂ >  such that x ∈ Xm with d(x̂, f(x)) < δ̂ implies d(F(x̂),F(x)) < ε/k. Let δ = k · δ̂.
It follows that d(x̂(k), fk(x)) < δ for all k = , . . . ,m if and only if d(x̂, f(x)) < δ̂, which implies
d(F(x̂),F(x)) < ε/k, i.e., d(Fk(x̂),Fk(x)) < ε for all k = , . . . ,m. For the converse, given any ε >
, there exists δ∗ >  such that d(x̂(k), fk(x)) < δ∗ for all k = , . . . ,m implies d(Fk(x̂),Fk(x)) <
k · ε for all k = , . . . ,m. Let δ = δ∗/k. It follows that d(x̂, f(x)) < δ if and only if d(x̂(k), fk(x)) <
δ∗ for all k = , . . . ,m, which implies d(Fk(x̂),Fk(x)) < k · ε for all k = , . . . ,m, i.e., d(F(x̂),
F(x)) < ε. This completes the proof. �

Lemma . Let (X,d) be a metric space. If xn → x as n → ∞ with respect to the metric
d, then, given any fixed y ∈ X, d(xn, y) → d(x, y) as n→ ∞.

Theorem . Suppose that the quasi-ordered metric space (X,d,�) is mixed-monoton-
ically complete, and that the metrics d and d are compatible in the sense of preserving
continuity. Consider the functions F : (Xm,d)→ (Xm,d) and f : (Xm,d)→ (Xm,d) satisfying
Fp(Xm) ⊆ f(Xm) for some p ∈N. Let x be amixed�-monotone seed element in Xm.Assume
that the functions F and f satisfy the following conditions:
• F and f are commutative;
• f has the sequentially mixed �-monotone property;
• Fp is continuous with respect to f on Xm;
• each fk is continuous on Xm for k = , . . . ,m.

Suppose that there exist a function ρ : Xm ×Xm →R+ and a function of contractive factor
ϕ : [,∞)→ [, ) such that, for any two �-mixed comparable elements x and y in Xm, the
following inequalities are satisfied:

ρ(x,y)≤
m∑
k=

d
(
x(k), y(k)

)
()

and, for each k = , . . . ,m,

d
(
Fp
k (x),F

p
k (y)

) ≤ 
m

· ϕ(
ρ
(
f(x), f(y)

)) · ρ(
f(x), f(y)

)
. ()

Then Fp has a fixed point x̂ such that each component x̂(k) of x̂ is the limit of the sequence
{fk(xn)}n∈N constructed in () for all k = , . . . ,m.

Proof We consider the sequence {xn}n∈N constructed from (). Since x is a mixed
�-monotone seed element in Xm, i.e., {xn}n∈N is a mixed �-monotone sequence, from
observation (d) of Remark ., it follows that, for each n ∈ N, xn and xn+ are �-mixed
comparable. According to inequalities (), we obtain

d
(
fk(xn+), fk(xn)

)
= d

(
Fp
k (xn),F

P
k (xn–)

)
≤ 

m
ϕ
(
ρ
(
f(xn), f(xn–)

)) · ρ(
f(xn), f(xn–)

)
. ()

http://www.journalofinequalitiesandapplications.com/content/2014/1/518
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Since f has the sequentially mixed�-monotone property, we see that {f(xn)}n∈N is a mixed
�-monotone sequence. Fromobservation (d) of Remark ., it follows that, for each n ∈N,
f(xn) and f(xn+) are �-mixed comparable. Then we have

ρ
(
f(xn+), f(xn)

) ≤
m∑
k=

d
(
fk(xn+), fk(xn)

)
(by ())

≤ ϕ
(
ρ
(
f(xn), f(xn–)

)) · ρ(
f(xn), f(xn–)

)
(by ()). ()

Let

ξn = ρ
(
f(xn), f(xn–)

)
and κ(t) =

 + ϕ(t)


.

Using () and Lemma ., we obtain

d
(
fk(xn+), fk(xn)

) ≤ 
m

ϕ(ξn) · ξn < 
m

κ(ξn) · ξn. ()

Using () and Lemma ., we also obtain

ξn+ ≤ ϕ(ξn) · ξn < κ(ξn) · ξn. ()

Since  < γ = supn κ(ξn) <  by Lemma . again, from () and (), it follows that

d
(
fk(xn+), fk(xn)

)
<

γ

m
· ξn and ξn+ < γ · ξn,

which implies

d
(
fk(xn+), fk(xn)

)
<

γ n

m
ξ. ()

For n,n ∈N with n > n, since  < γ < , from () we have

d
(
fk(xn ), fk(xn )

) ≤
n–∑
j=n

d
(
fk(xj+), fk(xj)

)

<
ξ

m
· γ n ( – γ n–n )

 – γ

<
ξ

m
· γ n

 – γ
→  as n → ∞,

which also says that {fk(xn)} is a Cauchy sequence in X for any fixed k. Since f has the se-
quentially mixed �-monotone property, i.e., {fk(xn)}n∈N is a mixed �-monotone Cauchy
sequence for k = , . . . ,m, by the mixed �-monotone completeness of X, there exists
x̂(k) ∈ X such that fk(xn) → x̂(k) as n → ∞ for k = , . . . ,m. Since the metrics d and d
are compatible in the sense of preserving continuity, by Proposition ., it follows that
f(xn) → x̂ as n→ ∞. Since each fk is continuous on Xm, we also have

fk
(
f(xn)

) → fk(x̂) as n→ ∞.

http://www.journalofinequalitiesandapplications.com/content/2014/1/518
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Since Fp is continuous with respect to f on Xm, by Proposition ., given any ε > ,
there exists δ >  such that x ∈ Xm with d(x̂(k), fk(x)) < δ for all k = , . . . ,m implies

d
(
Fp
k (x̂),F

p
k (x)

)
<

ε


for all k = , . . . ,m. ()

Since fk(xn) → x̂(k) as n → ∞ for all k = , . . . ,m, given ζ = min{ε/, δ} > , there exists
n ∈N such that

d
(
fk(xn), x̂(k)

)
< ζ ≤ δ for all n ∈N with n ≥ n and for all k = , . . . ,m. ()

For each n ≥ n, by () and (), it follows that

d
(
Fp
k (x̂),F

p
k (xn)

)
<

ε


for all k = , . . . ,m. ()

Therefore, we obtain

d
(
Fp
k (x̂), x̂

(k)) ≤ d
(
Fp
k (x̂), fk(xn+)

)
+ d

(
fk(xn+), x̂

(k))
= d

(
Fp
k (x̂),F

p
k (xn )

)
+ d

(
fk(xn+), x̂

(k))
<

ε


+ ζ (by () and ())

≤ ε for all k = , . . . ,m.

Since ε is any positive number, we conclude that d(Fp
k (x̂), x̂(k)) =  for all k = , . . . ,m, which

also says that Fp
k (x̂) = x̂(k) for all k = , . . . ,m, i.e., Fp(x̂) = x̂. This completes the proof. �

Remark . We have the following observations.
• In Theorem ., if we assume that the quasi-ordered metric space (X,d,�) is
complete (not mixed-monotonically complete), then the assumption for f having the
sequentially mixed �-monotone property can be dropped, since the proof is still valid
in this case.

• The assumption for inequalities () and () is weak since we just assume that it is
satisfied for �-mixed comparable elements. In other words, if x and y are not
�-mixed comparable, we do not need to check inequalities () and ().

By considering the mixed �I-monotone seed element instead of mixed �-monotone
seed element, the assumptions for inequalities () and () can be weakened, which is
shown below.

Theorem . Suppose that the quasi-ordered metric space (X,d,�) is mixed-monoton-
ically complete, and that the metrics d and d are compatible in the sense of preserv-
ing continuity. Let I and J be any disjoint pair of {, , . . . ,m}. Consider the functions
F : (Xm,d,�I) → (Xm,d,�I) and f : (Xm,d,�I)→ (Xm,d,�I) satisfying Fp(Xm) ⊆ f(Xm) for
some p ∈ N. Let x be amixed�I -monotone seed element in Xm.Assume that the functions
F and f satisfy the following conditions:
• F and f are commutative;
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• f has the sequentially mixed �I-monotone property or the sequentially mixed
�-monotone property;

• Fp is continuous with respect to f on Xm;
• each fk is continuous on Xm for k = , . . . ,m.

Suppose that there exist a function ρ : Xm ×Xm →R+ and a function of contractive factor
ϕ : [,∞)→ [, ) such that, for any x,y ∈ Xm with y�I x or x�I y, the following inequal-
ities are satisfied:

ρ(x,y)≤
m∑
k=

d
(
x(k), y(k)

)
()

and, for each k = , . . . ,m,

d
(
Fp
k (x),F

p
k (y)

) ≤ 
m

· ϕ(
ρ
(
f(x), f(y)

)) · ρ(
f(x), f(y)

)
. ()

Then Fp has a fixed point x̂ such that each component x̂(k) of x̂ is the limit of the sequence
{fk(xn)}n∈N constructed in () for all k = , . . . ,m.

Proof We consider the sequence {xn}n∈N constructed from (). Since x is a mixed
�I-monotone seed element in Xm, it follows that {xn}n∈N is a mixed �I-monotone se-
quence, i.e., for each n ∈ N, xn– �I xn or xn �I xn–. According to inequalities (), we
obtain

d
(
fk(xn+), fk(xn)

)
= d

(
Fp
k (xn),F

P
k (xn–)

)
≤ 

m
ϕ
(
ρ
(
f(xn), f(xn–)

)) · ρ(
f(xn), f(xn–)

)
.

Using the argument in the proof of Theorem ., we can show that {fk(xn)}n∈N is a Cauchy
sequence in X for any fixed k. Now, we consider the following cases.
• Suppose that f has the sequentially mixed �I-monotone property. We see that

{f(xn)}n∈N is a mixed �I-monotone sequence; that is, for each n ∈N, f(xn)�I f(xn+)
or f(xn+)�I f(xn). Since {fk(xn)}n∈N is a Cauchy sequence in X for any fixed k, from
observation (b) of Remark ., we also see that {fk(xn)}n∈N is a mixed �-monotone
Cauchy sequence for k = , . . . ,m.

• Suppose that f has the sequentially mixed �-monotone property. Since {xn}n∈N is a
mixed �I-monotone sequence, by part (b) of Remark ., it follows that {x(k)n }n∈N in X
is a mixed �-monotone sequence for all k = , . . . ,m. Therefore, we obtain that
{fk(xn)}n∈N is a mixed �-monotone Cauchy sequence for k = , . . . ,m.

By the mixed �-monotone completeness of X, there exists x̂(k) ∈ X such that fk(xn)→ x̂(k)

as n → ∞ for k = , . . . ,m. The remaining proof follows from the same argument in the
proof of Theorem .. This completes the proof. �

Remark . We have the following observations.
• In Theorem ., if we assume that the quasi-ordered metric space (X,d,�) is
complete (not mixed-monotonically complete), then the assumption for f having the
sequentially mixed �I-monotone or �-monotone property can be dropped, since the
proof is still valid in this case.
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• From observation (a) of Remark ., we see that the assumption for inequalities ()
and () are indeed weakened by comparing to inequalities () and ().

Next, we shall study the coincidence point without considering the continuity of Fp.
However, we need to introduce the concept ofmixed-monotone convergence given below.

Definition . Let (X,d,�) be a metric space endowed with a quasi-order ‘�’. We say
that (X,d,�) preserves the mixed-monotone convergence if and only if, for each mixed
�-monotone sequence {xn}n∈N that converges to x̂, we have xn � x̂ or x̂ � xn for each
n ∈N.

Remark . Let (X,d,�) be a metric space endowed with a quasi-order ‘�’ and pre-
serve themixed-monotone convergence. Suppose that {xn}n∈N is a sequence in the product
spaceXm such that each sequence {x(k)n }n∈N is amixed�-monotone convergence sequence
with limit point x̂(k) for k = , . . . ,m. Then we have the following observations.
(a) For each n ∈ N, xn and x̂ are �-mixed comparable.
(b) For each n ∈ N, there exists a disjoint pair In and Jn (that depend on n) of {, . . . ,m}

such that xn �In x̂ or x̂�In xn, where In or Jn is allowed to be an empty set.

Definition . Let I and J be a disjoint pair of {, , . . . ,m}. Given a quasi-ordered set
(X,�), we also consider the quasi-ordered set (Xm,�I) defined in (), and the function
f : (Xm,�I)→ (Xm,�I).
• We say that the function f has the �-comparable property if and only if, given any two

�-comparable elements x and y in Xm, the function values f(x) and f(y) are
�-comparable.

• We say that the function f has the �I-comparable property if and only if, given any
two �I-comparable elements x and y in Xm, the function values f(x) and f(y) are
�I-comparable.

Since we shall study the coincidence point without considering the continuity of Fp, we
can also consider the assumption that the metrics d and d are compatible in the sense of
preserving convergence, which is weaker than that of preserving continuity considered in
the previous theorems.

Theorem . Suppose that the quasi-ordered metric space (X,d,�) is mixed-monoton-
ically complete and preserves the mixed-monotone convergence. Assume that the metrics
d and d are compatible in the sense of preserving convergence. Consider the functions F :
(Xm,d) → (Xm,d) and f : (Xm,d) → (Xm,d) satisfying Fp(Xm) ⊆ f(Xm) for some p ∈ N. Let
x be a mixed �-monotone seed element in Xm. Assume that the functions F and f satisfy
the following conditions:
• F and f are commutative;
• f has the �-comparable property and the sequentially mixed �-monotone property;
• each fk is continuous on Xm for k = , . . . ,m.

Suppose that there exist a function ρ : Xm ×Xm →R+ and a function of contractive factor
ϕ : [,∞)→ [, ) such that, for any two �-mixed comparable elements x and y in Xm, the
following inequalities are satisfied:

ρ(x,y)≤
m∑
k=

d
(
x(k), y(k)

)
()

http://www.journalofinequalitiesandapplications.com/content/2014/1/518
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and, for each k = , . . . ,m,

d
(
Fp
k (x),F

p
k (y)

) ≤ 
m

· ϕ(
ρ
(
f(x), f(y)

)) · ρ(
f(x), f(y)

)
. ()

Then the following statements hold true.
(i) There exists x̂ ∈ Xm of F such that Fp(x̂) = f(x̂). If p = , then x̂ is a coincidence point

of F and f .
(ii) If there exists ŷ ∈ Xm such that x̂ and ŷ are �-mixed comparable satisfying

Fp(ŷ) = f(ŷ), then f(x̂) = f(ŷ).
(iii) Suppose that x̂ is obtained from part (i). If x̂ and F(x̂) are �-mixed comparable,

then fq(x̂) is a fixed point of F for any q ∈N.
Moreover, each component x̂(k) of x̂ is the limit of the sequence {fk(xn)}n∈N constructed in
() for all k = , . . . ,m.

Proof From the proof of Theorem ., we can construct a sequence {xn}n∈N in Xm

such that fk(xn) → x̂(k) and fk(f(xn)) → fk(x̂) as n → ∞, where {fk(xn)}n∈N is a mixed
�-monotone sequence for all k = , . . . ,m. Since fk(f(xn)) → fk(x̂) as n → ∞, given any
ε > , there exists n ∈N such that

d
(
fk

(
f(xn)

)
, fk(x̂)

)
<

ε


()

for all n ∈ N with n ≥ n and for all k = , . . . ,m. Since {fk(xn)}n∈N is a mixed �-monotone
convergent sequence for all k = , . . . ,m, from observation (a) of Remark ., we see that,
for each n ∈N, f(xn) and x̂ are �-mixed comparable. Since f has the �-comparable prop-
erty, it follows that f(f(xn)) and f(x̂) are �-mixed comparable. For each n ≥ n, it follows
that

d
(
Fp
k (x̂),F

p
k
(
f(xn)

)) ≤ 
m

· ϕ(
ρ
(
f(x̂), f

(
f(xn)

))) · ρ(
f(x̂), f

(
f(xn)

))
(by ())

<

m

· ρ(
f(x̂), f

(
f(xn)

)) ≤ 
m

·
m∑
k=

d
(
fk(x̂), fk

(
f(xn)

))
(by ())

<
ε


(by ()). ()

Since F and f are commutative, we have f(Fp(x)) = Fp(f(x)) for all x ∈ Xm, which also im-
plies

fk
(
f(xn)

)
= fk

(
Fp(xn–)

)
= Fp

k
(
f(xn–)

)
.

Now, we obtain

d
(
Fp
k (x̂), fk(x̂)

) ≤ d
(
Fp
k (x̂),F

p
k
(
f(xn )

))
+ d

(
Fp
k
(
f(xn )

)
, fk(x̂)

)
= d

(
Fp
k (x̂),F

p
k
(
f(xn )

))
+ d

(
fk

(
f(xn+)

)
, fk(x̂)

)
<

ε


+

ε


(by () and ())

= ε.
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Since ε is any positive number, we conclude that d(Fp
k (x̂), fk(x̂)) = , which says that Fp

k (x̂) =
fk(x̂) for all k = , . . . ,m, i.e., Fp(x̂) = f(x̂). This proves part (i).
To prove part (ii), since f has the �-comparable property, it follows that f(x̂) and f(ŷ)

are �-mixed comparable. If fk(x̂) 
= fk(ŷ), i.e., d(fk(x̂), fk(ŷ)) 
=  for some k, then we obtain

 
=
m∑
k=

d
(
fk(x̂), fk(ŷ)

)
=

m∑
k=

d
(
Fp
k (x̂),F

p
k (ŷ)

)

≤ 
m

·
m∑
k=

ϕ
(
ρ
(
f(x̂), f(ŷ)

)) · ρ(
f(x̂), f(ŷ)

)
(by ())

< ρ
(
f(x̂), f(ŷ)

) ≤
m∑
k=

d
(
fk(x̂), fk(ŷ)

)
(by ()).

This contradiction says that fk(x̂) = fk(ŷ) for all k = , . . . ,m, i.e., f(x̂) = f(ŷ).
To prove part (iii), using the commutativity of F and f , we have

f
(
F(x̂)

)
= F

(
f(x̂)

)
= F

(
Fp(x̂)

)
= Fp(F(x̂)). ()

By taking ŷ = F(x̂), equalities () say that f(ŷ) = Fp(ŷ). Since x̂ and ŷ = F(x̂) are �-mixed
comparable by the assumption, part (ii) says that

f(x̂) = f(ŷ) = f
(
F(x̂)

)
= F

(
f(x̂)

)
,

which says that f(x̂) is a fixed point of F. Given any q ∈N, we have

F
(
fq(x̂)

)
= fq–

(
F
(
f(x̂)

))
(by the commutativity of F and f)

= fq–
(
f(x̂)

)
= fq(x̂),

which says that fq(x̂) is a fixed point of F. This completes the proof. �

Theorem . Suppose that the quasi-ordered metric space (X,d,�) is mixed-monoton-
ically complete and preserves the mixed-monotone convergence. Assume that the metrics d
and d are compatible in the sense of preserving convergence. Let I and J be any disjoint pair
of {, , . . . ,m}. Consider the functions F : (Xm,d,�I) → (Xm,d,�I) and f : (Xm,d,�I) →
(Xm,d,�I) satisfying Fp(Xm) ⊆ f(Xm) for some p ∈N. Let x be a mixed�I -monotone seed
element in Xm. Assume that the functions F and f satisfy the following conditions:
• F and f are commutative;
• f has the sequentially mixed �I-monotone property or the sequentially mixed

�-monotone property;
• f has the �I◦ -comparable property for any disjoint pair I◦ and J◦ of {, . . . ,m};
• each fk is continuous on Xm for k = , . . . ,m.

Suppose that there exist a function ρ : Xm ×Xm →R+ and a function of contractive factor
ϕ : [,∞) → [, ) such that, for any x,y ∈ Xm and any disjoint pair I◦ and J◦ of {, . . . ,m}
with y�I◦ x or x�I◦ y, the following inequalities are satisfied:

ρ(x,y)≤
m∑
k=

d
(
x(k), y(k)

)
()
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and, for each k = , . . . ,m,

d
(
Fp
k (x),F

p
k (y)

) ≤ 
m

· ϕ(
ρ
(
f(x), f(y)

)) · ρ(
f(x), f(y)

)
. ()

Then the following statements hold true.
(i) There exists x̂ ∈ Xm of F such that Fp(x̂) = f(x̂). If p = , then x̂ is a coincidence point

of F and f .
(ii) If there exist a disjoint pair I◦ and J◦ of {, . . . ,m} and ŷ ∈ Xm such that Fp(ŷ) = f(ŷ)

and that x̂ and ŷ are comparable with respect to the quasi-order ‘�I◦ ’, then
f(x̂) = f(ŷ).

(iii) Suppose that x̂ is obtained from part (i). If there exists a disjoint pair I◦ and J◦ of
{, . . . ,m} such that x̂ and F(x̂) are comparable with respect to the quasi-order ‘�I◦ ’,
then fq(x̂) is a fixed point of F for any q ∈N.

Moreover, each component x̂(k) of x̂ is the limit of the sequence {fk(xn)}n∈N constructed in
() for all k = , . . . ,m.

Proof From the proof of Theorem ., we can construct a sequence {xn}n∈N in Xm

such that fk(xn) → x̂(k) and fk(f(xn)) → fk(x̂) as n → ∞, where {fk(xn)}n∈N is a mixed
�-monotone sequence for all k = , . . . ,m. Since fk(f(xn)) → fk(x̂) as n → ∞, given any
ε > , there exists n ∈N such that

d
(
fk

(
f(xn)

)
, fk(x̂)

)
<

ε


()

for all n ∈ N with n ≥ n and for all k = , . . . ,m. Since {fk(xn)}n∈N is a mixed �-monotone
convergent sequence for all k = , . . . ,m, from observation (b) of Remark ., we see that,
for each n ∈ N, there exists a subset In of {, . . . ,m} such that

f(xn)�In x̂ or x̂�In f(xn). ()

Since f has the �I◦ -comparable property for any subset I◦ of {, . . . ,m}, it follows that

f
(
f(xn)

)
�In f(x̂) or f(x̂)�In f

(
f(xn)

)
. ()

For each n ≥ n, we obtain

d
(
Fp
k (x̂),F

p
k
(
f(xn)

))
≤ 

m
· ϕ(

ρ
(
f(x̂), f

(
f(xn)

))) · ρ(
f(x̂), f

(
f(xn)

))
(by () and ())

<

m

· ρ(
f(x̂), f

(
f(xn)

)) ≤ 
m

·
m∑
k=

d
(
fk(x̂), fk

(
f(xn)

))
(by () and ())

<
ε


(by ()).

The remaining proof follows from a similar argument in the proof of Theorem ., and
the proof is complete. �
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Remark . Suppose that inequalities () and () in Theorem ., and that inequal-
ities () and () in Theorem . are satisfied for any x,y ∈ Xm. Then, from the proofs
of Theorems . and ., we can see that parts (ii) and (iii) can be changed as follows.

(ii)′ If there exists ŷ ∈ Xm such that Fp(ŷ) = f(ŷ), then f(x̂) = f(ŷ).
(iii)′ Suppose that x̂ is obtained from part (i). Then fq(x̂) is a fixed point of F for any q ∈N.

The assumption that f has the �I◦ -comparable property for any disjoint pair I◦ and J◦

of {, . . . ,m} in Theorem . can be dropped by strengthening inequalities () as shown
below.

Theorem . Suppose that the quasi-ordered metric space (X,d,�) is mixed-monoton-
ically complete and preserves the mixed-monotone convergence. Assume that the metrics
d and d are compatible in the sense of preserving convergence. Consider the functions F :
(Xm,d,�I) → (Xm,d,�I) and f : (Xm,d,�I) → (Xm,d,�I) satisfying Fp(Xm) ⊆ f(Xm) for
some p ∈ N. Let x be amixed�I -monotone seed element in Xm.Assume that the functions
F and f satisfy the following conditions:
• F and f are commutative;
• f has the sequentially mixed �I-monotone property or the sequentially mixed

�-monotone property;
• each fk is continuous on Xm for k = , . . . ,m.

Suppose that there exists a function ρ : Xm × Xm → R+ such that, for any x,y ∈ Xm, the
following inequality is satisfied:

ρ(x,y)≤
m∑
k=

d
(
x(k), y(k)

)
, ()

and that there exists a function of contractive factor ϕ : [,∞) → [, ) such that, for any
x,y ∈ Xm and any disjoint pair I◦ and J◦ of {, . . . ,m} with y�I◦ x or x�I◦ y, the following
inequality is satisfied:

d
(
Fp
k (x),F

p
k (y)

) ≤ 
m

· ϕ(
ρ
(
f(x), f(y)

)) · ρ(
f(x), f(y)

)
for each k = , . . . ,m.

Then the following statements hold true.
(i) There exists x̂ ∈ Xm of F such that Fp(x̂) = f(x̂). If p = , then x̂ is a coincidence point

of F and f .
(ii) If there exist a disjoint pair I◦ and J◦ of {, . . . ,m} and ŷ ∈ Xm such that Fp(ŷ) = f(ŷ)

and that x̂ and ŷ are comparable with respect to the quasi-order ‘�I◦ ’, then
f(x̂) = f(ŷ).

(iii) Suppose that x̂ is obtained from part (i). If there exists a disjoint pair I◦ and J◦ of
{, . . . ,m} such that x̂ and F(x̂) are comparable with respect to the quasi-order ‘�I◦ ’,
then fq(x̂) is a fixed point of F for any q ∈N.

Moreover, each component x̂(k) of x̂ is the limit of the sequence {fk(xn)}n∈N constructed in
() for all k = , . . . ,m.

Proof Since inequalities () are satisfied for any x and y, the arguments in the proof of
Theorem . are still valid without considering (). This completes the proof. �
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Next, we shall consider the uniqueness for a common fixed point in the �-mixed com-
parable sense.

Definition . Let (X,�) be a quasi-ordered set. Consider the functions F : Xm → Xm

and f : Xm → Xm defined on the product set Xm into itself. The common fixed point x̂ ∈
Xm of F and f is unique in the �-mixed comparable sense if and only if, for any other
common fixed point x of F and f , if x and x̂ are �-mixed comparable, then x = x̂.

Theorem . Suppose that the quasi-ordered metric space (X,d,�) is mixed-monoton-
ically complete and preserves the mixed-monotone convergence. Assume that the metrics
d and d are compatible in the sense of preserving continuity. Consider the functions F :
(Xm,d) → (Xm,d) and f : (Xm,d) → (Xm,d) satisfying Fp(Xm) ⊆ f(Xm) for some p ∈ N. Let
x be a mixed �-monotone seed element in Xm. Assume that the functions F and f satisfy
the following conditions:
• F and f are commutative;
• f has the �-comparable property and the sequentially mixed �-monotone property;
• Fp is continuous with respect to f on Xm;
• each fk is continuous on Xm for k = , . . . ,m.

Suppose that there exist a function ρ : Xm ×Xm →R+ and a function of contractive factor
ϕ : [,∞)→ [, ) such that, for any two �-mixed comparable elements x and y in Xm, the
following inequalities are satisfied:

ρ(x,y)≤
m∑
k=

d
(
x(k), y(k)

)
()

and, for each k = , . . . ,m,

d
(
Fp
k (x),F

p
k (y)

) ≤ 
m

· ϕ(
ρ
(
f(x), f(y)

)) · ρ(
f(x), f(y)

)
. ()

Then the following statements hold true.
(i) Fp and f have a unique common fixed point x̂ in the �-mixed comparable sense.

Equivalently, if ŷ is another common fixed point of Fp and f , and is �-mixed
comparable with x̂, then ŷ = x̂.

(ii) For p 
= , suppose that F(x̂) and x̂ obtained in (i) are �-mixed comparable. Then F
and f have a unique common fixed point x̂ in the �-mixed comparable sense.

Moreover, each component x̂(k) of x̂ is the limit of the sequence {fk(xn)}n∈N constructed in
() for all k = , . . . ,m.

Proof To prove part (i), from Proposition . and part (i) of Theorem ., we have f(x̂) =
Fp(x̂). From Theorem ., we also have Fp(x̂) = x̂. Therefore, we obtain

x̂ = f(x̂) = Fp(x̂).

This shows that x̂ is a common fixed point of Fp and f . For the uniqueness in the �-mixed
comparable sense, let ŷ be another common fixed point of Fp and f such that ŷ and x̂ are

http://www.journalofinequalitiesandapplications.com/content/2014/1/518


Wu Journal of Inequalities and Applications 2014, 2014:518 Page 17 of 49
http://www.journalofinequalitiesandapplications.com/content/2014/1/518

�-mixed comparable, i.e., ŷ = f(ŷ) = Fp(ŷ). By part (ii) of Theorem., we have f(x̂) = f(ŷ).
Therefore, by the triangle inequality, we obtain

d(x̂, ŷ) ≤ d
(
x̂, f(x̂)

)
+ d

(
f(x̂), f(ŷ)

)
+ d

(
f(ŷ), ŷ

)
= , ()

which says that x̂ = ŷ. This proves part (i).
To prove part (ii), since F(x̂) and x̂ are �-mixed comparable, part (iii) of Theorem .

says that f(x̂) is a fixed point of F, i.e., f(x̂) = F(f(x̂)), which implies x̂ = F(x̂), since x̂ = f(x̂).
This shows that x̂ is a common fixed point of F and f . For the uniqueness in the �-mixed
comparable sense, let ŷ be another common fixed point of F and f such that ŷ and x̂ are
�-mixed comparable, i.e., ŷ = f(ŷ) = F(ŷ). Then we have

ŷ = f(ŷ) = F(ŷ) = F
(
f(ŷ)

)
= F(ŷ) = · · · = Fp(ŷ).

By part (ii) of Theorem ., we have f(x̂) = f(ŷ). From (), we can similarly obtain x̂ = ŷ.
This completes the proof. �

Since we consider a metric space (X,d,�) endowed with a quasi-order ‘�’, given any
disjoint pair I and J of {, . . . ,p}, we can define a quasi-order ‘�I ’ on Xm as given in ().
Now, given any x ∈ Xm, we define the chain C(�I ,x) containing x as follows:

C(�I ,x) =
{
y ∈ Xm : y�I x or x�I y

}
=

{
y ∈ Xm : x and y are comparable with respect to ‘�I ’

}
.

Next, we shall introduce the concept of chain-uniqueness for a common fixed point.

Definition . Let (X,�) be a quasi-ordered set. Consider the functions F : Xm → Xm

and f : Xm → Xm defined on the product set Xm into itself. The common fixed point x̂ ∈
Xm of F and f is called chain-unique if and only if, given any other common fixed point x
of F and f , if x ∈ C(�I◦ , x̂) for some disjoint pair I◦ and J◦ of {, . . . ,m}, then x = x̂.

Theorem . Suppose that the quasi-ordered metric space (X,d,�) is mixed-monoton-
ically complete and preserves the mixed-monotone convergence. Assume that the metrics
d and d are compatible in the sense of preserving continuity. Consider the functions F :
(Xm,d,�I) → (Xm,d,�I) and f : (Xm,d,�I) → (Xm,d,�I) satisfying Fp(Xm) ⊆ f(Xm) for
some p ∈ N. Let x be amixed�I -monotone seed element in Xm.Assume that the functions
F and f satisfy the following conditions:
• F and f are commutative;
• f has the sequentially mixed �I-monotone property or the sequentially mixed

�-monotone property;
• Fp is continuous with respect to f on Xm;
• each fk is continuous on Xm for k = , . . . ,m.

Suppose that there exist a function ρ : Xm ×Xm →R+ and a function of contractive factor
ϕ : [,∞) → [, ) such that, for any x,y ∈ Xm and any disjoint pair I◦ and J◦ of {, . . . ,m}
with y�I◦ x or x�I◦ y, the following inequalities are satisfied:

ρ(x,y)≤
m∑
k=

d
(
x(k), y(k)

)
()
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and, for each k = , . . . ,m,

d
(
Fp
k (x),F

p
k (y)

) ≤ 
m

· ϕ(
ρ
(
f(x), f(y)

)) · ρ(
f(x), f(y)

)
. ()

Then the following statements hold true.
(i) Fp and f have a chain-unique common fixed point x̂. Equivalently, if ŷ ∈ C(�I◦ , x̂) is

another common fixed point of Fp and f for some disjoint pair I◦ and J◦ of {, . . . ,m},
then ŷ = x̂.

(ii) For p 
= , suppose that F(x̂) and x̂ obtained in (i) are comparable with respect to the
quasi-order ‘�I◦ ’ for some disjoint pair I◦ and J◦ of {, . . . ,m}. Then F and f have a
chain-unique common fixed point x̂.

Moreover, each component x̂(k) of x̂ is the limit of the sequence {fk(xn)}n∈N constructed in
() for all k = , . . . ,m.

Proof To prove part (i), from Proposition . and part (i) of Theorem ., we can show
that x̂ is a common fixed point of Fp and f . For the chain-uniqueness, let ŷ be another
common fixed point of Fp and f with ŷ�I◦ x̂ or x̂�I◦ ŷ for some disjoint pair I◦ and J◦ of
{, . . . ,m}, i.e., ŷ = f(ŷ) = Fp(ŷ). By part (ii) of Theorem ., we have f(x̂) = f(ŷ). Therefore,
according to (), we can obtain x̂ = ŷ. This proves part (i). Part (ii) can be similarly ob-
tained by applying Theorem . to the argument in the proof of part (ii) of Theorem ..
This completes the proof. �

Remark . We strongly assume that inequalities () and () in Theorem ., and
that inequalities () and () in Theorem . are satisfied for any x,y ∈ Xm. Then, from
Remark . and the proofs of Theorems . and ., it follows that parts (i) and (ii) can
be combined together to conclude that F and f have a unique common fixed point x̂.

3 Coincidence point theorems in themonotonically complete quasi-ordered
metric space

Now, we are going to weaken the concept of mixed-monotone completeness for the quasi-
ordered metric space. Let (X,d,�) be a metric space endowed with a quasi-order ‘�’. We
say that the sequence {xn}n∈N in (X,�) is �-increasing if and only if xk � xk+ for all k ∈N.
The concept of �-decreasing sequence can be similarly defined. The sequence {xn}n∈N in
(X,�) is called �-monotone if and only if {xn}n∈N is either �-increasing or �-decreasing.
Let I and J be a disjoint pair of {, , . . . ,m}. We say that the sequence {xn}n∈N in (Xm,�I)

is �I-increasing if and only if xn �I xn+ for all n ∈ N. The concept of �I-decreasing se-
quence can be similarly defined. The sequence {xn}n∈N in (Xm,�I) is called �I-monotone
if and only if {xn}n∈N is either �I-increasing or �I-decreasing.
Given a disjoint pair I and J of {, , . . . ,m}, let f : (Xm,�I) → (Xm,�I) be a function

defined on (Xm,�I) into itself. We say that f is �I-increasing if and only if x�I y implies
f(x)�I f(y). The concept of�I-decreasing function can be similarly defined. The function
f is called �I-monotone if and only if f is either �I-increasing or �I-decreasing.
In the previous section, we consider the mixed �I-monotone seed element. Now, we

shall consider another concept of seed element. Given a disjoint pair I and J of {, , . . . ,m},
we say that the initial element x is a �I-monotone seed element of Xm if and only if the
sequence {xn}n∈N constructed from () is a�I-monotone sequence. It is obvious that if x
is a �I-monotone seed element, then it is also a mixed �I-monotone seed element.
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Definition . Let (X,d,�) be a metric space endowed with a quasi-order ‘�’. We say
that (X,d,�) ismonotonically complete if and only if each �-monotone Cauchy sequence
{xn}n∈N in X is convergent.

It is obvious that if (X,d,�) is a mixed-monotonically complete quasi-ordered metric
space, then it is also a monotonically complete quasi-ordered metric space. However, the
converse is not true. In other words, the concept of monotone completeness is weaker
than that of mixed-monotone completeness.

Theorem. Suppose that the quasi-orderedmetric space (X,d,�) is monotonically com-
plete, and that the metrics d and d are compatible in the sense of preserving continuity.
Consider the functions F : (Xm,d,�I) → (Xm,d,�I) and f : (Xm,d,�I) → (Xm,d,�I) satis-
fying Fp(Xm) ⊆ f(Xm) for some p ∈N. Let x be a�I -monotone seed element in Xm.Assume
that the functions F and f satisfy the following conditions:
• F and f are commutative;
• f is �I-monotone;
• Fp is continuous with respect to f on Xm;
• each fk is continuous on Xm for k = , . . . ,m.

Suppose that there exist a function ρ : Xm ×Xm →R+ and a function of contractive factor
ϕ : [,∞)→ [, ) such that, for any x,y ∈ Xm with y�I x or x�I y, the following inequal-
ities

ρ(x,y)≤
m∑
k=

d
(
x(k), y(k)

)
()

and

d
(
Fp
k (x),F

p
k (y)

) ≤ 
m

· ϕ(
ρ
(
f(x), f(y)

)) · ρ(
f(x), f(y)

)
()

are satisfied for all k = , . . . ,m. Then Fp has a fixed point x̂ such that each component x̂(k)

of x̂ is the limit of the sequence {fk(xn)}n∈N constructed in () for all k = , . . . ,m.

Proof We consider the sequence {xn}n∈N constructed from (). Since x is a�I-monotone
seed element in Xm, i.e., xn �I xn+ for all n ∈ N or xn+ �I xn for all n ∈ N, according to
inequalities (), we obtain

d
(
fk(xn+), fk(xn)

)
= d

(
Fp
k (xn),F

P
k (xn–)

)
≤ 

m
ϕ
(
ρ
(
f(xn), f(xn–)

)) · ρ(
f(xn), f(xn–)

)
. ()

Since f is �I-monotone, it follows that f(xn)�I f(xn+) for all n ∈ N or f(xn+)�I f(xn) for
all n ∈N. Then we have

ρ
(
f(xn+), f(xn)

) ≤
m∑
k=

d
(
fk(xn+), fk(xn)

)
(by ())

≤ ϕ
(
ρ
(
f(xn), f(xn–)

)) · ρ(
f(xn), f(xn–)

)
(by ()).
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According to the proof of Theorem., we can show that {fk(xn)}n∈N is a Cauchy sequence
in X for any fixed k = , . . . ,n. Since f is �I-monotone and {xn}n∈N is a �I-monotone se-
quence, it follows that {f(xn)}n∈N is a �I-monotone sequence.
• If {f(xn)}n∈N is a �I-increasing sequence, then {fk(xn)}n∈N is a �-increasing Cauchy
sequence for k ∈ I , and is a �-decreasing Cauchy sequence for k ∈ J .

• If {f(xn)}n∈N is a �I-decreasing sequence, then {fk(xn)}n∈N is a �-decreasing Cauchy
sequence for k ∈ I , and is a �-increasing Cauchy sequence for k ∈ J .

By the monotone completeness of X, there exists x̂(k) ∈ X such that fk(xn) → x̂(k) as n →
∞ for k = , . . . ,m. The remaining proof follows from the same argument in the proof of
Theorem .. This completes the proof. �

Next, we shall study the coincidence point without considering the continuity of Fp.
However, we need to introduce the concept of monotone convergence given below.

Definition . Let (X,d,�) be ametric space endowedwith a quasi-order ‘�’.We say that
(X,d,�) preserves themonotone convergence if and only if, for each�-monotone sequence
{xn}n∈N that converges to x̂, either one of the following conditions is satisfied:
• if {xn}n∈N is a �-increasing sequence, then xn � x̂ for each n ∈ N;
• if {xn}n∈N is a �-decreasing sequence, then x̂� xn for each n ∈N.

Remark . Let (X,d,�) be a metric space endowed with a quasi-order ‘�’ and preserve
themonotone convergence. Given a disjoint pair I and J of {, . . . ,m}, suppose that {xn}n∈N
is a �I-monotone sequence such that each sequence {x(k)n }n∈N converges to x̂(k) for k =
, . . . ,m. We consider the following situation.
• If {xn}n∈N is a �I-increasing sequence, then {x(k)n }n∈N is a �-increasing sequence for
k ∈ I , and is a �-decreasing sequence for k ∈ J . By the monotone convergence, we see
that, for each n ∈N, x(k)n � x̂(k) for k ∈ I and x(k)n  x̂(k) for k ∈ J , which shows that
xn �I x̂ for all n ∈ N.

• If {xn}n∈N is a �I-decreasing sequence, then {x(k)n }n∈N is a �-decreasing sequence for
k ∈ I , and is a �-increasing sequence for k ∈ J . By the monotone convergence, we see
that, for each n ∈N, x(k)n  x̂(k) for k ∈ I and x(k)n � x̂(k) for k ∈ J , which shows that
xn �I x̂ for all n ∈ N.

Therefore, we conclude that xn and x̂ are comparable with respect to ‘�I ’ for all n ∈ N.

Theorem. Suppose that the quasi-orderedmetric space (X,d,�) is monotonically com-
plete and preserves the monotone convergence. Assume that the metrics d and d are com-
patible in the sense of preserving convergence. Consider the functions F : (Xm,d,�I) →
(Xm,d,�I) and f : (Xm,d,�I) → (Xm,d,�I) satisfying Fp(Xm) ⊆ f(Xm) for some p ∈ N. Let
x be a �I -monotone seed element in Xm. Assume that the functions F and f satisfy the
following conditions:
• F and f are commutative;
• f is �I-monotone;
• each fk is continuous on Xm for k = , . . . ,m.

Suppose that there exist a function ρ : Xm ×Xm →R+ and a function of contractive factor
ϕ : [,∞)→ [, ) such that, for any x,y ∈ Xm with y�I x or x�I y, the following inequal-
ities

ρ(x,y)≤
m∑
k=

d
(
x(k), y(k)

)
()
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and

d
(
Fp
k (x),F

p
k (y)

) ≤ 
m

· ϕ(
ρ
(
f(x), f(y)

)) · ρ(
f(x), f(y)

)
()

are satisfied for all k = , . . . ,m. Then the following statements hold true.
(i) There exists x̂ ∈ Xm of F such that Fp(x̂) = f(x̂). If p = , then x̂ is a coincidence point

of F and f .
(ii) If there exists ŷ ∈ Xm such that Fp(ŷ) = f(ŷ) with x̂�I ŷ or ŷ�I x̂, then f(x̂) = f(ŷ).
(iii) Suppose that x̂ is obtained from part (i). If x̂ and F(x̂) are comparable with respect

to ‘�I ’, then fq(x̂) is a fixed point of F for any q ∈N.
Moreover, each component x̂(k) of x̂ is the limit of the sequence {fk(xn)}n∈N constructed in
() for all k = , . . . ,m.

Proof From the proof of Theorem ., we can construct a sequence {xn}n∈N in Xm such
that fk(xn) → x̂(k) and fk(f(xn)) → fk(x̂) as n → ∞ for all k = , . . . ,m, where {f(xn)}n∈N is
a �I-monotone sequence. From Remark ., it follows that, for each n ∈ N, f(xn)�I x̂ or
f(xn)�I x̂. Since fk(f(xn))→ fk(x̂) as n→ ∞, given any ε > , there exists n ∈N such that

d
(
fk

(
f(xn)

)
, fk(x̂)

)
<

ε


()

for all n ∈ N with n ≥ n and for all k = , . . . ,m. Since f is �I-monotone, it follows that
f(f(xn))�I f(x̂) or f(f(xn))�I f(x̂). For each n ≥ n, it follows that

d
(
Fp
k (x̂),F

p
k
(
f(xn)

)) ≤ 
m

· ϕ(
ρ
(
f(x̂), f

(
f(xn)

))) · ρ(
f(x̂), f

(
f(xn)

))
(by ())

<

m

· ρ(
f(x̂), f

(
f(xn)

)) ≤ 
m

·
m∑
k=

d
(
fk(x̂), fk

(
f(xn)

))
(by ())

<
ε


(by ()).

Using the same argument in the proof of part (i) of Theorem ., part (i) of this theorem
follows immediately.
To prove part (ii), since f is �I-monotone, we immediately have f(y)�I f(x) or f(x)�I

f(y). If fk(x̂) 
= fk(ŷ), i.e., d(fk(x̂), fk(ŷ)) 
= , then we obtain

 
=
m∑
k=

d
(
fk(x̂), fk(ŷ)

)
=

m∑
k=

d
(
Fp
k (x̂),F

p
k (ŷ)

)

≤ 
m

·
m∑
k=

ϕ
(
ρ
(
f(x̂), f(ŷ)

)) · ρ(
f(x̂), f(ŷ)

)
(by ())

< ρ
(
f(x̂), f(ŷ)

) ≤
m∑
k=

d
(
fk(x̂), fk(ŷ)

)
(by ()).

This contradiction says that fk(x̂) = fk(ŷ) for all k = , . . . ,m, i.e., f(x̂) = f(ŷ). Finally, part (iii)
follows from the same argument in the proof of part (iii) of Theorem . immediately.
This completes the proof. �
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Remark . Suppose that inequalities () and () in Theorem . are satisfied for any
x,y ∈ Xm. Then, from the proof of Theorem ., we can see that parts (ii) and (iii) can be
changed as follows.

(ii)′ If there exists ŷ ∈ Xm satisfying Fp(ŷ) = f(ŷ), then f(x̂) = f(ŷ).
(iii)′ Suppose that x̂ is obtained from part (i). Then fq(x̂) is a fixed point of F for any q ∈N.

Next, we shall study the�I-chain-uniqueness for the common fixed point, which is dif-
ferent from the chain-uniqueness in Definition ..

Definition . Let (X,�) be a quasi-ordered set. Consider the functions F : Xm → Xm

and f : Xm → Xm defined on the product set Xm into itself. Given a disjoint pair I and J of
{, . . . ,m}, we recall that the chain C(�I ,x) containing x is given by

C(�I ,x) =
{
y ∈ Xm : y�I x or x�I y

}
.

The common fixed point x̂ ∈ Xm of F and f is called�I-chain-unique if and only if, for any
other common fixed point x of F and f , if x ∈ C(�I , x̂), then x = x̂.

Theorem. Suppose that the quasi-orderedmetric space (X,d,�) is monotonically com-
plete and preserves themonotone convergence.Assume that themetrics d and d are compat-
ible in the sense of preserving continuity.Consider the functions F : (Xm,d,�I) → (Xm,d,�I)
and f : (Xm,d,�I) → (Xm,d,�I) satisfying Fp(Xm) ⊆ f(Xm) for some p ∈ N. Let x be a
�I -monotone seed element in Xm. Assume that the functions F and f satisfy the following
conditions:
• F and f are commutative;
• f is �I-monotone;
• Fp is continuous with respect to f on Xm;
• each fk is continuous on Xm for k = , . . . ,m.

Suppose that there exist a function ρ : Xm ×Xm →R+ and a function of contractive factor
ϕ : [,∞)→ [, ) such that, for any x,y ∈ Xm with y�I x or x�I y, the following inequal-
ities

ρ(x,y)≤
m∑
k=

d
(
x(k), y(k)

)
()

and

d
(
Fp
k (x),F

p
k (y)

) ≤ 
m

· ϕ(
ρ
(
f(x), f(y)

)) · ρ(
f(x), f(y)

)
()

are satisfied for all k = , . . . ,m. Then the following statements hold true.
(i) Fp and f have a �I-chain-unique common fixed point x̂.
(ii) For p 
= , suppose that F(x̂) and x̂ obtained in (i) are comparable with respect to ‘�I ’.

Then F and f have a �I-chain-unique common fixed point x̂.
Moreover, each component x̂(k) of x̂ is the limit of the sequence {fk(xn)}n∈N constructed in
() for all k = , . . . ,m.
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Proof To prove part (i), from Proposition . and part (i) of Theorem ., we have f(x̂) =
Fp(x̂). From Theorem ., we also have Fp(x̂) = x̂. Therefore, we obtain

x̂ = f(x̂) = Fp(x̂).

This shows that x̂ is a common fixed point of Fp and f . For the�I-chain-uniqueness, let ŷ
be another common fixed point of Fp and f such that ŷ and x̂ are comparable with respect
to ‘�I ’, i.e., ŷ = f(ŷ) = Fp(ŷ). By part (ii) of Theorem ., we have f(x̂) = f(ŷ). Therefore, by
the triangle inequality, we have

d(x̂, ŷ) ≤ d
(
x̂, f(x̂)

)
+ d

(
f(x̂), f(ŷ)

)
+ d

(
f(ŷ), ŷ

)
= , ()

which says that x̂ = ŷ. This proves part (i). Part (ii) can be obtained by applying part (iii)
of Theorem . to a similar argument in the proof of Theorem .. This completes the
proof. �

Theorem. Suppose that the quasi-orderedmetric space (X,d,�) is monotonically com-
plete and preserves themonotone convergence.Assume that themetrics d and d are compat-
ible in the sense of preserving continuity.Consider the functions F : (Xm,d,�I) → (Xm,d,�I)
and f : (Xm,d,�I) → (Xm,d,�I) satisfying Fp(Xm) ⊆ f(Xm) for some p ∈ N. Let x be a
�I -monotone seed element in Xm. Assume that the functions F and f satisfy the following
conditions:
• F and f are commutative;
• f is �I◦ -monotone for any disjoint pair I◦ and J◦ of {, . . . ,m};
• Fp is continuous with respect to f on Xm;
• each fk is continuous on Xm for k = , . . . ,m.

Suppose that there exist a function ρ : Xm ×Xm →R+ and a function of contractive factor
ϕ : [,∞) → [, ) such that, for any x,y ∈ Xm and any disjoint pair I◦ and J◦ of {, . . . ,m}
with y�I◦ x or x�I◦ y, the following inequalities

ρ(x,y)≤
m∑
k=

d
(
x(k), y(k)

)
()

and

d
(
Fp
k (x),F

p
k (y)

) ≤ 
m

· ϕ(
ρ
(
f(x), f(y)

)) · ρ(
f(x), f(y)

)
()

are satisfied for all k = , . . . ,m. Then the following statements hold true.
(i) Fp and f have a chain-unique common fixed point x̂.
(ii) For p 
= , suppose that F(x̂) and x̂ obtained in (i) are comparable with respect to the

quasi-order ‘�I◦ ’ for some disjoint pair I◦ and J◦ of {, . . . ,m}. Then F and f have a
chain-unique common fixed point x̂.

Moreover, each component x̂(k) of x̂ is the limit of the sequence {fk(xn)}n∈N constructed in
() for all k = , . . . ,m.

Proof To prove part (i), from the proof of Theorem ., we can show that x̂ is a common
fixed point of Fp and f . For the chain-uniqueness, let ŷ be another common fixed point of

http://www.journalofinequalitiesandapplications.com/content/2014/1/518


Wu Journal of Inequalities and Applications 2014, 2014:518 Page 24 of 49
http://www.journalofinequalitiesandapplications.com/content/2014/1/518

Fp and f with ŷ�I◦ x̂ or x̂�I◦ ŷ for some disjoint pair I◦ and J◦ of {, . . . ,m}, i.e., ŷ = f(ŷ) =
Fp(ŷ). Since f is �I◦ -monotone for any disjoint pair I◦ and J◦ of {, . . . ,m}, we also have
f(ŷ)�I◦ f(x̂) or f(x̂)�I◦ f(ŷ). If fk(x̂) 
= fk(ŷ), i.e., d(fk(x̂), fk(ŷ)) 
= , then we obtain

 
=
m∑
k=

d
(
fk(x̂), fk(ŷ)

)
=

m∑
k=

d
(
Fp
k (x̂),F

p
k (ŷ)

)

≤ 
m

·
m∑
k=

ϕ
(
ρ
(
f(x̂), f(ŷ)

)) · ρ(
f(x̂), f(ŷ)

)
(by ())

< ρ
(
f(x̂), f(ŷ)

) ≤
m∑
k=

d
(
fk(x̂), fk(ŷ)

)
(by ()).

This contradiction says that fk(x̂) = fk(ŷ) for all k = , . . . ,m, i.e., f(x̂) = f(ŷ). Therefore, ac-
cording to (), we also have x̂ = ŷ. This proves part (i). Part (ii) can be similarly obtained
by applying Theorem . to the argument in the proof of part (ii) of Theorem .. This
completes the proof. �

Remark . We strongly assume that inequalities () and () in Theorem . and
inequalities () and () in Theorem . are satisfied for any x,y ∈ Xm. Then, from Re-
mark . and the proofs of Theorems . and ., we can see that parts (i) and (ii) can be
combined as F and f have a unique common fixed point x̂.

4 Fixed points of functions havingmixedmonotone property in the product
spaces

We shall study the fixed points of functions havingmixedmonotone property in the prod-
uct space. The concept of mixed monotone property for functions was adopted for pre-
senting the coupled fixed point theorems.
Let (X,�) be a quasi-ordered set, and let I and J be the disjoint pair of {, , . . . ,m}.

Consider the function F : Xm → X.
• We say that F is (�I ,�)-increasing if and only if x�I y implies F(x)� F(y).
• We say that F is (�I ,�)-decreasing if and only if x�I y implies F(x) F(y).

From (), we see that F is (�I ,�)-decreasing if and only if it is (�J ,�)-increasing, and F is
(�I ,�)-increasing if and only if it is (�J ,�)-decreasing.

Example . For m = , we take the disjoint pair I = {, , } and J = {, } of {, , , , }.
We say that the function F : X → X has the I-mixed monotone property if and only if the
following conditions are satisfied:
• F(x,x,x,x,x) is increasing in the corresponding variables x, x, x;
• F(x,x,x,x,x) is decreasing in the corresponding variables x, x.

According to (), it follows that x �I y implies F(x) � F(y), i.e., F is I-increasing. Now,
we assume that the function F : Xm → X has the J-mixed monotone property, i.e., the
following conditions are satisfied:
• F(x,x,x,x,x) is increasing in the corresponding variables x, x.
• F(x,x,x,x,x) is decreasing in the corresponding variables x, x, x.

It follows that x�J y implies F(x)  F(y), i.e., F is J-decreasing on Xm.

Based on Example ., the general definition is given below.
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Definition . Let (X,�) be a quasi-ordered set, and let I = {r, . . . , ru} and J = {s, . . . , sv}
be the disjoint pair of {, . . . ,m}. We say that the function F : Xm → X has the I-mixed
monotone property if and only if the following conditions are satisfied:
• F is increasing in the rth, rth, . . . , ruth positions, respectively; that is, if x(rj) � x(rj) for
j = , . . . ,u, then

F
(
y(), . . . , y(rj–),x(rj) , y(rj+), . . . , y(m)) � F

(
y(), . . . , y(rj–),x(rj) , y(rj+), . . . , y(m))

for all fixed y(k) with k 
= rj and k = , . . . ,m;
• F is decreasing in the sth, sth, . . . , svth positions, respectively; that is, if x(si) � x(si) for
i = , . . . , v, then

F
(
y(), . . . , y(si–),x(si) , y(si+), . . . , y(m)) � F

(
y(), . . . , y(si–),x(si) , y(si+), . . . , y(m))

for all fixed y(k) with k 
= si and k = , . . . ,m.

It can be realized that the function F : Xm → X has the J-mixed monotone property if
and only if the following conditions are satisfied:
• F is increasing in the sth, sth, . . . , svth positions, respectively; that is, if y(si) � y(si) ,
then

F
(
x(), . . . ,x(si–), y(si) ,x(si+), . . . ,x(m)) � F

(
x(), . . . ,x(si–), y(si) ,x(si+), . . . ,x(m))

for each i = , . . . , v;
• F is decreasing in the rth, rth, . . . , ruth positions, respectively; that is, if y(rj) � y(rj) ,
then

F
(
x(), . . . ,x(rj–), y(rj) ,x(rj+), . . . ,x(m)) � F

(
x(), . . . ,x(rj–), y(rj) ,x(rj+), . . . ,x(m))

for each j = , . . . ,u.

Remark. According to (), if the function F : Xm → X has the I-mixedmonotone prop-
erty, then F is (�I ,�)-increasing. Also, if the function F : Xm → X has the J-mixed mono-
tone property, then F is (�J ,�)-increasing (i.e., (�I ,�)-decreasing) on Xm.

Now, considering the function F : Xm → Xm, we are going to define many monotonic
concepts of F on Xm as follows.

Definition . Let (X,�) be a quasi-ordered set, and let I and J be the disjoint pair
of {, , . . . ,m}. Consider the quasi-ordered set (Xm,�I) and the function F : (Xm,�I) →
(Xm,�I).
• We say that F is (�I ,�I)-increasing if and only if x�I y implies F(x)�I F(y).
• We say that F is (�I ,�J )-increasing if and only if x�I y implies F(x)�J F(y).
• We say that F is (�J ,�I)-increasing if and only if x�J y implies F(x)�I F(y).
• We say that F is (�J ,�J )-increasing if and only if x�J y implies F(x)�J F(y).
• We say that F is (�I ,�I)-decreasing if and only if x�I y implies F(x)�I F(y).
• We say that F is (�I ,�J )-decreasing if and only if x�I y implies F(x)�J F(y).
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• We say that F is (�J ,�I)-decreasing if and only if x�J y implies F(x)�I F(y).
• We say that F is (�J ,�J )-decreasing if and only if x�J y implies F(x)�J F(y).

Remark . From (), we see that it suffices to consider the increasing cases. On the other
hand, we also see that F is (�I ,�I)-increasing if and only if it is (�J ,�J )-increasing, and F
is (�I ,�J )-increasing if and only if it is (�J ,�I)-increasing. Therefore, the cases in Defi-
nition . can be reduced to only consider the (�I ,�I)-increasing and (�I ,�J )-increasing
cases. Since the (�I ,�J )-increasing case is equivalent to the (�I ,�I)-decreasing case, it
follows that the cases in Definition . can be reduced to only consider the (�I ,�I)-
increasing and (�I ,�I)-decreasing cases.

Definition . Let (X,�) be a quasi-ordered set, and let I = {r, . . . , ru} and J = {v, . . . , vs}
be the disjoint pair of {, , . . . ,m}. We say that the function F : Xm → Xm has the I-mixed
monotone property on Xm if and only if its kth component function Fk satisfies the follow-
ing conditions:
• Fk has the I-mixed monotone property for k ∈ I ; in other words, Fk is increasing in
the rth, rth, . . . , ruth positions and is decreasing in the sth, sth, . . . , svth positions,
respectively;

• Fk has the J-mixed monotone property for k ∈ J ; in other words, Fk is decreasing in
the rth, rth, . . . , ruth positions and is increasing in the sth, sth, . . . , svth positions,
respectively.

The meaning of the J-mixed monotone property for F can be similarly realized.

Remark . According to (), if the function F : Xm → Xm has the I-mixed monotone
property, then F is (�I ,�I)-increasing. Also, if the function F : Xm → Xm has the J-mixed
monotone property, then F is (�I ,�J )-increasing, i.e., (�I ,�I)-decreasing.

Example . Continued from Example ., the function F : X → X has the I-mixed
monotone property if and only if the component functions Fk of F for k = , . . . ,  satisfy
the following conditions:
• the component functions Fk have the I-mixed monotone property for k ∈ I ;
• the component functions Fk have the J-mixed monotone property for k ∈ J .

Example . Continued from Example ., given the initial element x ∈ X, we consider
the iteration xn = F(xn–). Then, according to (), we can define two quasi-ordered sets
(Xm,�I) and (Xm,�J ) as follows.

(i) Assume that x �I x, i.e., x(k) � x(k) for k ∈ I and x(k) � x(k) for k ∈ J .
• For k ∈ I , we are going to claim x(k) � x(k) . This can be realized by simply
checking the case of k = . By definition, we see that F(x,x,x,x,x) is
increasing in the corresponding variables x, x, x, and is decreasing in the
corresponding variables x, x. Therefore, we obtain

x() = F
(
x() ,x() ,x() ,x() ,x()

) � F
(
x() ,x() ,x() ,x() ,x()

)
� F

(
x() ,x() ,x() ,x() ,x()

)
= x() .

• For k ∈ J , we are going to claim x(k)  x(k) . This can be realized by simply
checking the case of k = . By definition, we see that F(x,x,x,x,x) is
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increasing in the corresponding variables x, x, and is decreasing in the
corresponding variables x, x, x. Therefore, we obtain

x() = F
(
x() ,x() ,x() ,x() ,x()

)  F
(
x() ,x() ,x() ,x() ,x()

)
 F

(
x() ,x() ,x() ,x() ,x()

)
= x() .

By induction, we can show that the sequences {x(k)n } are �-increasing for k ∈ I , and
are �-decreasing for k ∈ J . Therefore, according to (), we can induce a
quasi-ordered set (Xm,�I).

(ii) Assume that x �I x, i.e., x(k)  x(k) for k ∈ I and x(k)  x(k) for k ∈ J . Equivalently,
we have x �J x by (). We can similarly show that the sequences {x(k)n } are
�-decreasing for k ∈ I , and are �-increasing for k ∈ J . Therefore, according to (),
we can induce a quasi-ordered set (Xm,�J ).

By referring to Example ., we have the following general result.

Lemma . Let (X,�) be a quasi-ordered set, and let I and J be the disjoint pair of
{, , . . . ,m}. Assume that the function F : (Xm,�I) → (Xm,�I) has the I-mixed mono-
tone property on Xm. Given the initial element x ∈ Xm, we define the sequence {xn}n∈N
by xn = F(xn–). Then the following statements hold true.

(i) Suppose that x �I x. Then the sequences {x(k)n }n∈N are �-increasing for each k ∈ I
and are �-decreasing for each k ∈ J . In other words, {xn}n∈N is a �I-increasing
sequence.

(ii) Suppose that x �I x. Then the sequences {x(k)n }n∈N are �-decreasing for each k ∈ I
and are �-increasing for each k ∈ J . In other words, {xn}n∈N is a �I-decreasing
sequence.

Moreover, the initial element x is a �I -monotone seed element in Xm.

Proof To prove part (i), we have the following cases:
• If k ∈ I , then Fk has the I-mixed monotone property. Therefore, we have

x(k) = Fk
(
x() , . . . ,x(k) , . . . ,x(m)


) � · · · � Fk

(
x() , . . . ,x(k) , . . . ,x(m)


)
= x(k)

by checking one component at each time.
• If k ∈ J , then Fk has the J-mixed monotone property. Therefore, we have

x(k) = Fk
(
x() , . . . ,x(k) , . . . ,x(m)


)  · · ·  Fk

(
x() , . . . ,x(k) , . . . ,x(m)


)
= x(k)

by checking one component at each time.
Therefore, by induction, part (i) follows immediately. A similar argument can also apply
to part (ii), and the proof is complete. �

Theorem . Suppose that the quasi-ordered metric space (X,d,�) is monotonically
complete, and that the metrics d and d are compatible in the sense of preserving continu-
ity. Given a disjoint pair I and J of {, , . . . ,m}, assume that the function F : (Xm,d,�I) →
(Xm,d,�I) is continuous on Xm and has the I-mixed monotone property, and that there
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exist a function ρ : Xm × Xm → R+ and a function of contractive factor ϕ : [,∞) → [, )
such that, for any x,y ∈ Xm with y�I x or x�I y, the following inequalities are satisfied:

ρ(x,y)≤
m∑
k=

d
(
x(k), y(k)

)

and

d
(
Fp
k (x),F

p
k (y)

) ≤ 
m

· ϕ(
ρ
(
f(x), f(y)

)) · ρ(
f(x), f(y)

)
for all k = , . . . ,m and for some p ∈ N. If there exists x ∈ Xm such that x �I Fp(x) or
x �I Fp(x), then the function Fp has a fixed point x̂ ∈ Xm, where each component x̂(k) of
x̂ is the limit of the sequence {x(k)n }n∈N constructed below

xn = Fp(xn–) ()

for all k = , . . . ,m.

Proof According to (), we have x �I x or x �I x. From Lemma ., the initial ele-
ment x is a �I-monotone seed element in Xm. Therefore, the results follow immediately
from Theorem . by taking f as the identity function. This completes the proof. �

Next, we can consider the chain-uniqueness and drop the assumption of continuity of
F by assuming that (X,d,�) preserves the monotone convergence.

Theorem . Suppose that the quasi-ordered metric space (X,d,�) is monotonically
complete and preserves the monotone convergence, and that the metrics d and d are com-
patible in the sense of preserving convergence. Given a disjoint pair I and J of {, , . . . ,m},
assume that the function F : (Xm,d,�I) → (Xm,d,�I) has the I-mixed monotone property,
and that there exist a function ρ : Xm × Xm → R+ and a function of contractive factor
ϕ : [,∞)→ [, ) such that, for any x,y ∈ Xm with y�I x or x�I y, the following inequal-
ities are satisfied:

ρ(x,y)≤
m∑
k=

d
(
x(k), y(k)

)

and

d
(
Fp
k (x),F

p
k (y)

) ≤ 
m

· ϕ(
ρ
(
f(x), f(y)

)) · ρ(
f(x), f(y)

)
for all k = , . . . ,m and for some p ∈ N. If there exists x ∈ Xm such that x �I Fp(x) or
x �I Fp(x), then the function Fp has a �I -chain-unique fixed point x̂ ∈ Xm, where each
component x̂(k) of x̂ is the limit of the sequence {x(k)n }n∈N constructed from () for all k =
, . . . ,m.

Proof According to (), we have x �I x or x �I x. From Lemma ., the initial ele-
ment x is a �I-monotone seed element in Xm. Therefore, the results follow immediately
from Theorem . by taking f as the identity function. This completes the proof. �
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The following fixed point theorem considers the different monotone conditions for F.

Theorem . Suppose that the quasi-ordered metric space (X,d,�) is monotonically
complete, and that the metrics d and d are compatible in the sense of preserving continu-
ity. Given a disjoint pair I and J of {, , . . . ,m}, assume that the function F : (Xm,d,�I) →
(Xm,d,�I) is continuous on Xm and satisfies any one of the following conditions:
(a) F is (�I ,�I)-increasing;
(b) p is an even integer and F is (�I ,�I)-decreasing.

Assume that there exist a function ρ : Xm×Xm →R+ anda function of contractive factor ϕ :
[,∞)→ [, ) such that, for any x,y ∈ Xm with y�I x or x�I y, the following inequalities

ρ(x,y)≤
m∑
k=

d
(
x(k), y(k)

)

and

d
(
Fp
k (x),F

p
k (y)

) ≤ 
m

· ϕ(
ρ
(
f(x), f(y)

)) · ρ(
f(x), f(y)

)
are satisfied for all k = , . . . ,m and for some p ∈ N. If there exists x ∈ Xm such that x �I

Fp(x) or x �I Fp(x), then the function Fp has a fixed point x̂ ∈ Xm,where each component
x̂(k) of x̂ is the limit of the sequence {x(k)n }n∈N constructed from () for all k = , . . . ,m.

Proof We consider the following cases.
• If F is (�I ,�I)-increasing, then it follows that Fp is (�I ,�I)-increasing.
• If F is (�I ,�I)-decreasing and p is an even integer, then Fp is also (�I ,�I)-increasing.

According to (), we have x �I x or x �I x. Since x = Fp(x) and x = Fp(x), it fol-
lows that x �I x implies x �I x, and x �I x implies x �I x. Therefore, if x �I x,
then we can generate a �I-increasing sequence {xn}n∈N, and if x �I x, then we can gen-
erate a �I-decreasing sequence {xn}n∈N, which also says that the initial element x is a
�I-monotone seed element in Xm. Therefore, the results follow immediately from Theo-
rem . by taking f as the identity function. This completes the proof. �

Next, we can consider the chain-uniqueness and drop the assumption of continuity of
F by assuming that (X,d,�) preserves the monotone convergence.

Theorem . Suppose that the quasi-ordered metric space (X,d,�) is monotonically
complete and preserves the monotone convergence, and that the metrics d and d are com-
patible in the sense of preserving convergence. Given a disjoint pair I and J of {, , . . . ,m},
assume that the function F : (Xm,d,�I) → (Xm,d,�I) satisfies any one of the following con-
ditions:
(a) F is (�I ,�I)-increasing;
(b) p is an even integer and F is (�I ,�I)-decreasing.

Assume that there exist a function ρ : Xm×Xm →R+ anda function of contractive factor ϕ :
[,∞)→ [, ) such that, for any x,y ∈ Xm with y�I x or x�I y, the following inequalities

ρ(x,y)≤
m∑
k=

d
(
x(k), y(k)

)
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and

d
(
Fp
k (x),F

p
k (y)

) ≤ 
m

· ϕ(
ρ
(
f(x), f(y)

)) · ρ(
f(x), f(y)

)
are satisfied for all k = , . . . ,m and for some p ∈ N. If there exists x ∈ Xm such that x �I

Fp(x) or x �I Fp(x), then the function Fp has a �I -chain-unique fixed point x̂ ∈ Xm,
where each component x̂(k) of x̂ is the limit of the sequence {x(k)n }n∈N constructed from ()
for all k = , . . . ,m.

Proof From the proof of Theorem., we see that the initial element x is a�I-monotone
seed element inXm. Therefore, the results follow immediately fromTheorem . by taking
f as the identity function. This completes the proof. �

The following fixed point theorem considers the odd integer p ∈ N and the different
monotone conditions for F.

Theorem . Suppose that the quasi-ordered metric space (X,d,�) is mixed-monoton-
ically complete, and that the metrics d and d are compatible in the sense of preserv-
ing continuity. Given a disjoint pair I and J of {, , . . . ,m}, assume that the function
F : (Xm,d,�I) → (Xm,d,�I) is continuous on Xm and (�I ,�I)-decreasing, and that there
exist a function ρ : Xm × Xm → R+ and a function of contractive factor ϕ : [,∞) → [, )
such that, for any x,y ∈ Xm with y�I x or x�I y, the following inequalities are satisfied:

ρ(x,y)≤
m∑
k=

d
(
x(k), y(k)

)

and

d
(
Fp
k (x),F

p
k (y)

) ≤ 
m

· ϕ(
ρ
(
f(x), f(y)

)) · ρ(
f(x), f(y)

)
for all k = , . . . ,m and for some odd integer p ∈ N. If there exists x ∈ Xm such that x �I

Fp(x) or x �I Fp(x), then the function Fp has a fixed point x̂ ∈ Xm,where each component
x̂(k) of x̂ is the limit of the sequence {x(k)n }n∈N constructed from () for all k = , . . . ,m.

Proof Since F is (�I ,�I)-decreasing and p is an odd integer, we see that Fp is (�I ,�I)-
decreasing. It follows that x �I x implies x �I x, and x �I x implies x �I x. There-
fore, we can generate a �I-mixed monotone sequence {xn}n∈N, which also says that the
initial element x is a mixed�I-monotone seed element in Xm. Therefore, the results fol-
low immediately from Theorem . by taking f as the identity function. This completes
the proof. �

Next, we can consider the chain-uniqueness and drop the assumption of continuity of
F by assuming that (X,d,�) preserves the mixed-monotone convergence.

Theorem . Suppose that the quasi-ordered metric space (X,d,�) is mixed-monoton-
ically complete and preserves the mixed-monotone convergence, and that the metrics d and
d are compatible in the sense of preserving convergence. Given a disjoint pair I and J of
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{, , . . . ,m}, suppose that there exists x ∈ Xm such that the following conditions are satis-
fied:
• the function F : (Xm,d,�I)→ (Xm,d,�I) is (�I ,�I)-decreasing;
• x �I Fp(x) or x �I Fp(x).

Assume that there exist a function ρ : Xm × Xm → R+ and a function of contractive factor
ϕ : [,∞) → [, ) such that, for any x,y ∈ Xm and any disjoint pair I◦ and J◦ of {, . . . ,m}
with y�I◦ x or x�I◦ y, the following inequalities

ρ(x,y)≤
m∑
k=

d
(
x(k), y(k)

)

and

d
(
Fp
k (x),F

p
k (y)

) ≤ 
m

· ϕ(
ρ
(
f(x), f(y)

)) · ρ(
f(x), f(y)

)
are satisfied for all k = , . . . ,m and for some odd integer p ∈N. Then the function Fp has a
chain-unique fixed point x̂ ∈ Xm,where each component x̂(k) of x̂ is the limit of the sequence
{x(k)n }n∈N constructed from () for all k = , . . . ,m.

Proof From the proof of Theorem ., we see that the initial element x is a mixed
�I-monotone seed element in Xm. Therefore, the results follow immediately from Theo-
rem . by taking f as the identity function. This completes the proof. �

5 Fixed points of functions havingmixed comparable property in the product
spaces

We shall study the fixed points of functions having mixed comparable property in the
product space. Here, we shall consider the mixed-monotonically complete quasi-ordered
metric space.

Definition . Let I and J be a disjoint pair of {, , . . . ,m}. Given a quasi-ordered set
(X,�), we consider the corresponding quasi-ordered set (Xm,�I).
• We say that the function F : Xm → Xm has the �-mixed comparable property if and
only if, for any two �-mixed comparable elements x and y in Xm, the function values
F(x) and F(y) in Xm are �-mixed comparable.

• We say that the function F : (Xm,�I) → (Xm,�I) has the �I-comparable property if
and only if, for any two elements x,y ∈ Xm with x�I y or y�I x (i.e., x and y are
comparable with respect to ‘�I ’), one has either F(x)�I F(y) or F(y)�I F(x) (i.e., the
function values F(x) and F(y) in Xm are comparable with respect to ‘�I ’).

It is obvious that if F is (�I ,�I)-increasing or (�I ,�I)-decreasing, then it also has the
�I-comparable property.

Theorem . Suppose that the quasi-ordered metric space (X,d,�) is mixed-monoton-
ically complete, and that the metrics d and d are compatible in the sense of preserving
continuity. Assume that the function F : (Xm,d)→ (Xm,d) is continuous on Xm and has the
�-mixed comparable property, and that there exist a function ρ : Xm × Xm → R+ and a
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function of contractive factor ϕ : [,∞)→ [, ) such that, for any two�-mixed comparable
elements x and y in Xm, the following inequalities

ρ(x,y)≤
m∑
k=

d
(
x(k), y(k)

)

and

d
(
Fp
k (x),F

p
k (y)

) ≤ 
m

· ϕ(
ρ
(
f(x), f(y)

)) · ρ(
f(x), f(y)

)
are satisfied for all k = , . . . ,m and for some p ∈N. If there exists x ∈ Xm such that x and
Fp(x) are �-mixed comparable, then Fp has a fixed point x̂ such that each component x̂(k)

of x̂ is the limit of the sequence {x(k)n }n∈N constructed from () for all k = , . . . ,m.

Proof According to (), we see that x and x are �-mixed comparable. Since F has the
�-mixed comparable property, we see that Fp has also the �-mixed comparable property.
It follows that x = Fp(x) and x = Fp(x) are also �-mixed comparable. Therefore, we
can generate a mixed �-monotone sequence {xn}n∈N by observation (d) of Remark .,
which also says that the initial element x is a mixed �-monotone seed element in Xm.
Since F is continuous on Xm, it follows that Fp is also continuous on Xm. Therefore, the
result follows from Theorem . immediately by taking f as the identity function. This
completes the proof. �

Next, we can drop the assumption of continuity of F by assuming that (X,d,�) preserves
the mixed-monotone convergence.

Theorem . Suppose that the quasi-ordered metric space (X,d,�) is mixed-monoton-
ically complete and preserves the mixed-monotone convergence, and that the metrics d
and d are compatible in the sense of preserving convergence. Assume that the function
F : (Xm,d)→ (Xm,d) has the�-mixed comparable property, and that there exist a function
ρ : Xm ×Xm → R+ and a function of contractive factor ϕ : [,∞) → [, ) such that, for any
two �-mixed comparable elements x and y in Xm, the following inequalities

ρ(x,y)≤
m∑
k=

d
(
x(k), y(k)

)

and

d
(
Fp
k (x),F

p
k (y)

) ≤ 
m

· ϕ(
ρ
(
f(x), f(y)

)) · ρ(
f(x), f(y)

)
are satisfied for all k = , . . . ,m and for some p ∈N. Suppose that there exists x ∈ Xm such
that x and Fp(x) are �-mixed comparable. Then the following statements hold true.

(i) There exists a unique fixed point x̂ of Fp in the �-mixed comparable sense.
(ii) For p 
= , we further assume that the metrics d and d are compatible in the sense of

preserving continuity, that the function Fp is continuous on Xm, and that F(x̂) and x̂
obtained in (i) are �-mixed comparable. Then x̂ is a unique fixed point of F in the
�-mixed monotone sense.
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Moreover, each component x̂(k) of x̂ is the limit of the sequence {x(k)n }n∈N constructed from
() for all k = , . . . ,m for all k = , . . . ,m.

Proof According to argument in the proof of Theorem ., we see that the initial element
x is a mixed �-monotone seed element in Xm. Therefore, part (i) follows from Theo-
rem . immediately by taking f as the identity function. Also, part (ii) follows from The-
orem . immediately by taking f as the identity function. This completes the proof. �

Theorem . Suppose that the quasi-ordered metric space (X,d,�) is mixed-monoton-
ically complete, and that the metrics d and d are compatible in the sense of preserving
continuity. Given a disjoint pair I and J of {, . . . ,m}, assume that the following conditions
are satisfied:
• the function F : (Xm,d,�I)→ (Xm,d,�I) is continuous on Xm and has the
�I -comparable property;

• there exists x ∈ Xm such that x and Fp(x) are comparable with respect to the
quasi-order ‘�I ’ for some p ∈N.

Assume that there exist a function ρ : Xm×Xm →R+ anda function of contractive factor ϕ :
[,∞)→ [, ) such that, for any x,y ∈ Xm with y�I x or x�I y, the following inequalities

ρ(x,y)≤
m∑
k=

d
(
x(k), y(k)

)

and

d
(
Fp
k (x),F

p
k (y)

) ≤ 
m

· ϕ(
ρ
(
f(x), f(y)

)) · ρ(
f(x), f(y)

)
are satisfied for all k = , . . . ,m. Then Fp has a fixed point x̂ such that each component x̂(k)

of x̂ is the limit of the sequence {x(k)n }n∈N constructed from () for all k = , . . . ,m.

Proof According to (), we see that x and x are comparable with respect to ‘�I ’. Since
F has the�I-comparable property, we see that Fp has also the�I-comparable property. It
follows that x = Fp(x) and x = Fp(x) are also comparablewith respect to ‘�I ’. Therefore,
we can generate a mixed �I-monotone sequence {xn}n∈N, which also says that the initial
element x is a mixed �I-monotone seed element in Xm. Since F is continuous on Xm, it
follows that Fp is also continuous on Xm. Therefore, the result follows from Theorem .
immediately by taking f as the identity function. This completes the proof. �

Next, we can drop the assumption of continuity of F by assuming that (X,d,�) preserves
the mixed-monotone convergence.

Theorem . Suppose that the quasi-ordered metric space (X,d,�) is mixed-monoton-
ically complete and preserves the mixed-monotone convergence, and that the metrics d and
d are compatible in the sense of preserving convergence. Given a disjoint pair I and J of
{, . . . ,m}, assume that the following conditions are satisfied:
• the function F : (Xm,d,�I)→ (Xm,d,�I) has the �I-comparable property;
• there exists x ∈ Xm such that x and Fp(x) are comparable with respect to the
quasi-order ‘�I ’ for some p ∈N.
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Suppose that there exist a function ρ : Xm ×Xm →R+ and a function of contractive factor
ϕ : [,∞) → [, ) such that, for any x,y ∈ Xm and any disjoint pair I◦ and J◦ of {, . . . ,m}
with y�I◦ x or x�I◦ y, the following inequalities

ρ(x,y)≤
m∑
k=

d
(
x(k), y(k)

)

and

d
(
Fp
k (x),F

p
k (y)

) ≤ 
m

· ϕ(
ρ
(
f(x), f(y)

)) · ρ(
f(x), f(y)

)
are satisfied for all k = , . . . ,m. Then the following statements hold true.

(i) There exists a chain-unique fixed point x̂ of Fp.
(ii) For p 
= , we further assume that the metrics d and d are compatible in the sense of

preserving continuity, that the function Fp is continuous on Xm, and that F(x̂) and x̂
obtained in (i) are comparable with respect to ‘�I◦ ’ for some disjoint pair I◦ and J◦ of
{, . . . ,m}. Then x̂ is a chain-unique fixed point of F.

Moreover, each component x̂(k) of x̂ is the limit of the sequence {x(k)n }n∈N constructed from
() for all k = , . . . ,m.

Proof According to the argument in the proof of Theorem ., we see that the initial ele-
ment x is a mixed �I-monotone seed element in Xm. Therefore, part (i) follows from
Theorem . immediately by taking f as the identity function. Also, part (ii) follows
from Theorem . immediately by taking f as the identity function. This completes the
proof. �

6 Applications to the system of integral equations
Let C([,T],R) be the space of all continuous functions from [,T] into R. We also de-
note by Cm([,T],R) the product space of C([,T],R) form times. In the sequel, we shall
consider a metric d and a quasi-order ‘�’ on C([,T],R) such that (C([,T],R),d,�) is
monotonically complete or mixed-monotonically complete and preserves the monotone
convergence.
Given continuous functions G : [,T]× [,T] → R+ and g(k) : [,T]×Rm → R for k =

, . . . ,m, we consider the following system of integral equations:

∫ T


G(s, t)

[
g(k)

(
s,w(s)

)
+ λw(k)(s)

]
ds = w(k)(t) ()

for k = , . . . ,m, where λ ≥ . We shall find w∗ ∈ Cm([,T],R) such that the system of
integral equations () are all satisfied, where w(k∗) ∈ C([,T],R) is the kth component of
w∗ for k = , . . . ,m. The solution w∗ will be in the sense of chain-uniqueness.
For the vector-valued function h : [,T] → Rm defined on [,T], the kth component

function of h is denoted by h(k) for k = , . . . ,m. The integral of h on [,T] is defined as the
following vector in Rm:

∫ T


h(s)ds =

(∫ T


h()(s)ds,

∫ T


h()(s)ds, . . . ,

∫ T


h(m)(s)ds

)
∈Rm.
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Now, we define a vector-valued function g : [,T] × Rm → Rm by g = (g(), g(), . . . , g(m)).
Then the system of integral equations as shown in () can be written as the following
vectorial form of integral equation:

∫ T


G(s, t)

[
g
(
s,w(s)

)
+ λw(s)

]
ds =w(t), ()

where λ ≥ . Equivalently, we shall findw∗ ∈ Cm([,T],R) such that () is satisfied, which
also says that w∗ is a solution of ().

Definition . Consider the quasi-ordered metric space (C([,T],R),d,�).
(a) We say that w∗ is a unique solution of the system of integral equations () in the

�-mixed comparable sense if and only if the following conditions are satisfied:
• w∗ is a solution of ();
• if w̄ is another solution of () such that w∗ and w̄ are �-mixed comparable,
then w∗ = w̄.

Given a disjoint pair I and J of {, . . . ,m}, consider the product space (Cm([,T],R),d,�I).
(b) We say that w∗ is a �I-chain-unique solution of the system of integral equations

() if and only if the following conditions are satisfied:
• w∗ is a solution of ();
• if w̄ is another solution of () satisfying w∗ �I w̄ or w̄�I w∗ (i.e., w∗ and w̄ are
comparable with respect to �), then w∗ = w̄.

Theorem. Suppose that the quasi-ordered metric space (C([,T],R),d,�) is monoton-
ically complete and preserves the monotone convergence. Let I and J be a disjoint pair of
{, , . . . ,m}. Define the function F : (Cm([,T],R),d,�I) → (Cm([,T],R),d,�I) by

F(w)(t) =
∫ T


G(s, t)

[
g
(
s,w(s)

)
+ λw(s)

]
ds,

where d is defined in () or (). Suppose that the following conditions are satisfied:
• F is (�I ,�I)-increasing;
• there exist a function ρ : Cm([,T],R)× Cm([,T],R)→R+ and a function of
contractive factor ϕ : [,∞)→ [, ) such that, for any w, w̄ ∈ Cm([,T],R) with
w�I w̄ or w̄�I w, the following inequalities

ρ(w, w̄) ≤
m∑
k=

d
(
w(k), w̄(k)) ()

and

d
(
Fk(w),Fk(w̄)

) ≤ 
m

· ϕ(
ρ(w, w̄)

) · ρ(w, w̄) ()

are satisfied for all k = , . . . ,m;
• there exists w ∈ Cm([,T],R) such that w �I F(w) or w �I F(w).

Then there exists a �I -chain-unique solution of the system of integral equations ().
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Proof Since d is defined in () or (), we immediately have that the metrics d and d are
compatible in the sense of preserving convergence. Using condition (a) and considering
p =  in Theorem ., we see that F has a�I-chain-unique fixed pointw∗ in Cm([,T],R).
In other words, we have

∫ T


G(s, t)

[
g
(
s, f

(
w∗(s)

))
+ λf

(
w∗(s)

)]
ds = F

(
w∗) =w∗,

which says thatw∗ is a�I-chain-unique solution of the vectorial form of integral equation
(). This completes the proof. �

Corollary . Suppose that the quasi-ordered metric space (C([,T],R),d,�) is mono-
tonically complete and preserves the monotone convergence. Let I and J be a disjoint pair
of {, , . . . ,m}. Define the function F : (Cm([,T],R),d,�I) → (Cm([,T],R),d,�I) by

F(w)(t) =
∫ T


G(s, t)

[
g
(
s,w(s)

)
+ λw(s)

]
ds,

where d is defined in () or (). Suppose that the following conditions are satisfied:
• F is (�I ,�I)-increasing;
• there exists a function of contractive factor ϕ : [,∞) → [, ) such that, for any
w, w̄ ∈ Cm([,T],R) with w�I w̄ or w̄�I w, the following inequality

d
(
Fk(w),Fk(w̄)

) ≤ ϕ
(
m ·

(
min

k=,...,m
d
(
w(k), w̄(k))))

·
(
min

k=,...,m
d
(
w(k), w̄(k)))

is satisfied for all k = , . . . ,m;
• there exists w ∈ Cm([,T],R) such that w �I F(w) or w �I F(w).

Then there exists a �I -chain-unique solution of the system of integral equations ().

Proof For a,b ∈ Cm([,T],R), we define the function ρ : Cm([,T],R) × Cm([,T],R) →
R+ by

ρ(a,b) =m ·
(
min

k=,...,m
d
(
a(k),b(k)

)) ≤
m∑
k=

d
(
a(k),b(k)

)
.

Then the desired result follows from Theorem . immediately. �

Remark . We have the following observations.
• The assumptions for inequalities () and () are really weak, since we just assume
that they are satisfied for �I-comparable elements. In other words, if x and y are not
�I-comparable, we do not need to check inequalities () and ().

• In Theorem ., according to Remark ., if the function F is assumed to have the
I-mixed monotone property on Cm([,T],R) instead of assuming it to be
(�I ,�I)-increasing, then the results are still valid.

Lemma . For any a,b ∈ C([,T],R), we define

a �∗ b if and only if a(s)≤ b(s) for all s ∈ [,T]. ()
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Then the quasi-ordered metric space (C([,T],R),d,�∗) preserves the monotone conver-
gence.

Proof Let {an}n∈N be a�-increasing sequence in (C([,T],R),d,�), and let â be the d-limit
of {an}n∈N. Suppose that there exists n ∈ N such that an � â; that is, there exists s ∈
[,T] such that an (s) > â(s). Since an(s) ≤ an+(s) for all s ∈ [,T] and n ∈ N, it follows
that an+(s) ≥ an(s) > â(s) for all n ≥ n, which contradicts the convergence an(s) →
â(s). Therefore, we must have an(s) ≤ â(s) for all s ∈ [,T], i.e., an � â. If {an}n∈N is a
�-decreasing sequence in (C([,T],R),d,�) and converges to â, then we can similarly
show that an  â for all n ∈N. This completes the proof. �

The following result is well known.

Lemma . For any a,b ∈ C([,T],R), we define

d∗(a,b) = sup
s∈[,T]

∣∣a(s) – b(s)
∣∣. ()

Then the quasi-ordered metric space (C([,T],R),d∗,�) is complete.

Given a disjoint pair I and J of {, , . . . ,m}, we can consider a quasi-ordered set
(Rm,�(m)

I ) that depends on I , where, for any x,y ∈Rm,

x�(m)
I y if and only if x(k) ≤ y(k) for k ∈ I and y(k) ≤ x(k) for k ∈ J .

Then we have the following interesting existence.

Theorem . Let (C([,T],R),d∗,�∗) be a quasi-ordered metric space with the metric d∗

and the quasi-order �∗ defined in () and (), respectively. Let I and J be a disjoint pair
of {, , . . . ,m}. Define the function F : (Cm([,T],R),d∗,�∗

I ) → (Cm([,T],R),d∗,�∗
I ) by

F(w)(t) =
∫ T


G(s, t)

[
g
(
s,w(s)

)
+ λw(s)

]
ds,

where �∗
I is defined in () according to �∗, and d∗ is defined in () or () according to d∗.

Suppose that the following conditions are satisfied:
• F is (�∗

I ,�∗
I )-increasing;

• there exists a function ρ : Cm([,T],R)× Cm([,T],R)→R+ such that, for any
a,b ∈ Cm([,T],R) with a�∗

I b or b�∗
I a, the following inequality

ρ(a,b)≤
m∑
k=

d∗(a(k),b(k))

is satisfied;
• there exists a function of contractive factor ϕ : [,∞) → [, ) such that, for any
x,y ∈ Rm with x�(m)

I y or y�(m)
I x, the following inequality

∣∣g(k)(s,x) + λx(k) – g(k)(s,y) – λy(k)
∣∣ ≤ φ̄(x,y) · φ̂(x,y) ()
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is satisfied for k = , . . . ,m, where λ ≥ , and the functions φ̄ :Rm →R+ and
φ̂ :Rm →R+ satisfy the following inequalities: for a,b ∈ Cm([,T],R),

φ̂
(
a(s),b(s)

) ≤ ρ(a,b) for all s ∈ [,T] ()

and

sup
t∈[,T]

∫ T


G(s, t) · φ̄(

a(s),b(s)
)
ds≤ 

m
· ϕ(

ρ(a,b)
)
; ()

• there exists w ∈ Cm([,T],R) such that w �∗
I F(w) or F(w)�∗

I w.
Then there exists a �∗

I -chain-unique solution of the system of integral equations ().

Proof Lemmas . and . say that the quasi-ordered metric space (C([,T],R),d∗,�∗) is
complete and preserves the monotone convergence. For w�∗

I w̄ or w̄�∗
I w, it means, for

each s ∈ [,T],

w(k)(s)≤ w̄(k)(s) for k ∈ I and w̄(k)(s) ≤ w(k)(s) for k ∈ J

or

w(k)(s)≤ w̄(k)(s) for k ∈ I and w̄(k)(s) ≤ w(k)(s) for k ∈ J ,

which also says that

w(s)�(m)
I w̄(s) or w̄(s)�(m)

I w(s) for each s ∈ [,T]. ()

Then we have

d
(
Fk(w),Fk(w̄)

)
= sup

t∈[,T]

∣∣Fk(w)(t) – Fk(w̄)(t)
∣∣

= sup
t∈[,T]

∫ T


G(s, t) · ∣∣g(k)(s,w(s)) + λw(k)(s) – g(k)

(
s, w̄(s)

)
– λw̄(k)(s)

∣∣ds
≤ sup

t∈[,T]

∫ T


G(s, t) · φ̄(

w(s), w̄(s)
) · φ̂(

w(s), w̄(s)
)
ds (by () and ())

≤ sup
t∈[,T]

∫ T


G(s, t) · φ̄(

w(s), w̄(s)
) · ρ(w, w̄)ds (by ())

≤ 
m

· ϕ(
ρ(w, w̄)

) · ρ(w, w̄) (by ()).

Using Theorem ., we complete the proof. �

Corollary . Let (C([,T],R),d∗,�∗) be a quasi-ordered metric space with the metric d∗

and the quasi-order �∗ defined in () and (), respectively. Let I and J be a disjoint pair

http://www.journalofinequalitiesandapplications.com/content/2014/1/518


Wu Journal of Inequalities and Applications 2014, 2014:518 Page 39 of 49
http://www.journalofinequalitiesandapplications.com/content/2014/1/518

of {, , . . . ,m}. Define the function F : (Cm([,T],R),d∗,�∗
I ) → (Cm([,T],R),d∗,�∗

I ) by

F(w)(t) =
∫ T


G(s, t)

[
g
(
s,w(s)

)
+ λw(s)

]
ds,

where �∗
I is defined in () according to �∗, and d∗ is defined in () or () according to d∗.

Suppose that the following conditions are satisfied:
• F is (�∗

I ,�∗
I )-increasing;

• there exists a function of contractive factor ϕ : [,∞) → [, ) such that, for any
x,y ∈ Rm with x�(m)

I y or y�(m)
I x, the following inequality

∣∣g(k)(s,x) + λx(k) – g(k)(s,y) – λy(k)
∣∣ ≤m ·

(
min

k=,...,m

∣∣x(k) – y(k)
∣∣) · φ̄(x,y)

is satisfied for k = , . . . ,m, where λ ≥ , and the function φ̄ :Rm →R+ satisfies the
following inequality

sup
t∈[,T]

∫ T


G(s, t) · φ̄(a,b)ds≤ 

m
· ϕ

(
m ·

(
min

k=,...,m
d∗(a(k),b(k))))

;

• there exists w ∈ Cm([,T],R) such that w �∗
I F(w) or F(w)�∗

I w.
Then there exists a �∗

I -chain-unique solution of the system of integral equations ().

Proof For a,b ∈ Cm([,T],R), we define the function ρ : Cm([,T],R) × Cm([,T],R) →
R+ by

ρ(a,b) =m ·
(
min

k=,...,m
d∗(a(k),b(k))) ≤

m∑
k=

d∗(a(k),b(k)) ()

and the function φ̂ :Rm →R+ by

φ̂(x,y) =m ·
(
min

k=,...,m

∣∣x(k) – y(k)
∣∣).

Since

∣∣a(k)(s) – b(k)(s)
∣∣ ≤ d∗(a(k),b(k)) for all s ∈ [,T],

we have

φ̂
(
a(s),b(s)

)
=m ·

(
min

k=,...,m

∣∣a(k)(s) – b(k)(s)
∣∣) ≤m ·

(
min

k=,...,m
d∗(a(k),b(k))) = ρ(a,b) ()

for s ∈ [,T]. The desired result follows from Theorem . immediately, and the proof is
complete. �

Compared to Corollary ., we consider a different type of inequalities below.

Theorem . Let (C([,T],R),d∗,�∗) be a quasi-ordered metric space with the metric d∗

and the quasi-order �∗ defined in () and (), respectively. Let I and J be a disjoint pair
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of {, , . . . ,m}. Define the function F : (Cm([,T],R),d∗,�∗
I ) → (Cm([,T],R),d∗,�∗

I ) by

F(w)(t) =
∫ T


G(s, t)

[
g
(
s,w(s)

)
+ λw(s)

]
ds,

where �∗
I is defined in () according to �∗, and d∗ is defined in () or () according to d∗.

Suppose that the following conditions are satisfied:
• F is (�∗

I ,�∗
I )-increasing;

• there exists a function of contractive factor ϕ : [,∞) → [, ) such that, for any
x,y ∈ Rm with x�(m)

I y or y�(m)
I x, the following inequality

∣∣g(k)(s,x) + λx(k) – g(k)(s,y) – λy(k)
∣∣ ≤m ·

(
min

k=,...,m

∣∣x(k) – y(k)
∣∣) · φ̄∗(x(k), y(k)) ()

is satisfied for k = , . . . ,m, where λ ≥ , and the function φ̄∗ :R →R+ satisfies the
following inequality: for a,b ∈ Cm([,T],R),

sup
t∈[,T]

∫ T


G(s, t) · φ̄∗(a(k)(s),b(k)(s))ds≤ 

m
· ϕ

(
m ·

(
min

k=,...,m
d∗(a(k),b(k))))

()

for k = , . . . ,m;
• there exists w ∈ Cm([,T],R) such that w �∗

I F(w) or F(w)�∗
I w.

Then there exists a �∗
I -chain-unique solution of the system of integral equations ().

Proof For a,b ∈ Cm([,T],R), we define a function ρ : Cm([,T],R)× Cm([,T],R)→R+

by (). Now, we have

d
(
Fk(w),Fk(w̄)

)
= sup

t∈[,T]

∣∣Fk(w)(t) – Fk(w̄)(t)
∣∣

= sup
t∈[,T]

∫ T


G(s, t) · ∣∣g(k)(s,w(s)) + λw(k)(s) – g(k)

(
s, w̄(s)

)
– λw̄(k)(s)

∣∣ds
≤ sup

t∈[,T]

∫ T


G(s, t) · φ̄∗(w(k)(s), w̄(k)(s)

) ·m ·
(
min

k=,...,m

∣∣w(k)(s) – w̄(k)(s)
∣∣)ds

(by () and ())

≤ sup
t∈[,T]

∫ T


G(s, t) · φ̄∗(w(k)(s), w̄(k)(s)

) · ρ(w, w̄)ds (by ())

≤ 
m

· ϕ(
ρ(w, w̄)

) · ρ(w, w̄) (by () and ()).

Using Theorem ., we complete the proof. �

7 Applications to the system of ordinary differential equations
We consider the quasi-ordered metric space (C([,T],R),d,�) and the following system
of ordinary differential equations:

{
w′
k(t) = g(k)(t,w(t)) for t ∈ [,T],

wk() = wk(T)
for k = , . . . ,m, ()
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where T > , wk ∈ C([,T],R) and g(k) : [,T] × Rm → R are continuous functions for
k = , . . . ,m.

Definition . Consider the quasi-ordered metric space (C([,T],R),d,�) and the prod-
uct space Cm([,T],R).
(a) We say that w∗ is a unique solution of the system of boundary value problem () in

the �-mixed comparable sense if and only if the following conditions are satisfied:
• w∗ is a solution of ();
• if w̄ is another solution of () such that w∗ and w̄ are �-mixed comparable,
then w∗ = w̄.

Let I and J be the disjoint pair of {, . . . ,m}.
(b) We say that w∗ is a �I-chain-unique solution of the system of boundary value

problem () if and only if the following conditions are satisfied:
• w∗ is a solution of ();
• if w̄ is another solution of () satisfying w∗ �I w̄ or w̄�I w∗ (i.e., w∗ and w̄ are
comparable with respect to �), then w∗ = w̄.

Definition . Let (C([,T],R),�) be a quasi-ordered set.
• We say that the quasi-order ‘�’ is compatible with the addition if and only if, for any
a,b ∈ C([,T],R) with a � b, we have a + c� b + c for any c ∈ C([,T],R).

• We say that the quasi-order ‘�’ is compatible with the nonnegative multiplication if
and only if, for any a,b ∈ C([,T],R) with a� b, we have ac� bc for any nonnegative
function c ∈ C([,T],R).

Remark . Suppose that the quasi-order ‘�’ is compatible with the addition. If a � b
and a � b, we want to claim a + a � b + b. By definition, we immediately have

a + a � b + a and b + a � b + b.

The transitivity proves the desired claim.

Remark . Suppose that the quasi-order ‘�’ in C([,T],R) is compatible with the addi-
tion and nonnegative multiplication. Then we have the following observations.
• For w,w, w̄, w̄ ∈ Cm([,T],R). If w �I w, and w̄ �I w̄, then, from Remark .,
we have w + w̄ �I w + w̄.

• If w,w ∈ Cm([,T],R) with w �I w, then c ·w �I c ·w for any nonnegative
function c ∈ C([,T],R) by the compatibility for nonnegative function.

Consider a disjoint pair I and J of {, , . . . ,m}.We say that the function g : [,T]×Rm →
Rm defined by

g =
(
g(), . . . , g(m))

is (�I ,�I)-increasing if and only ifw,w ∈ Cm([,T],R) with w �I w implies g(·,w)�I

g(·,w). By referring toDefinition ., we can similarly define the other kinds ofmonotonic
concepts.
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Definition . Let (C([,T],R),�) be a quasi-ordered set. Consider the function G :
[,T] × [,T] → R such that G(s, ·) ∈ C([,T],R) for any fixed s ∈ [,T] and G(·, t) ∈
C([,T],R) for any fixed t ∈ [,T]. We say that the integral of function G is compatible
with the quasi-order ‘�’ if and only if, for any fixed t ∈ [,T], G(·, t)� G(·, t) implies

∫ T


G(s, t)ds�

∫ T


G(s, t)ds. ()

Example . For any a,b ∈ C([,T],R), we define

a � b if and only if a(t)≤ b(t) for all t ∈ [,T]. ()

If the function G : [,T]× [,T] → R satisfies G(s, ·) ∈ C([,T],R) for any fixed s ∈ [,T]
and G(·, t) ∈ C([,T],R) for any fixed t ∈ [,T], then the integral of function G is compat-
ible with the quasi-order ‘�’. Indeed, for any fixed t ∈ [,T], G(·, t) � G(·, t) means that
G(s, t)≤ G(s, t) for all s ∈ [,T] by (), which also says that, for any t ∈ [,T],

∫ T


G(s, t)ds≤

∫ T


G(s, t)ds.

This shows () by () again.

Theorem . Suppose that the quasi-ordered metric space (C([,T],R),d,�) is monoton-
ically complete and preserves the monotone convergence. Let I and J be a disjoint pair of
{, , . . . ,m}, and let λ > . Define the function G : [,T]× [,T] →R+ by

G(s, t) =

{
eλ(T+s–t)
eλT– if  ≤ s < t ≤ T ,

eλ(s–t)
eλT– if  ≤ t < s≤ T ,

()

and the function F : (Cm([,T],R),d,�I) → (Cm([,T],R),d,�I) by

F(w)(t) =
∫ T


G(s, t)

[
g
(
s,w(s)

)
+ λw(s)

]
ds,

where d is defined in () or (). Suppose that the following conditions are satisfied:
• the quasi-order ‘�’ in C([,T],R) is compatible with the addition and nonnegative
multiplication;

• g is (�I ,�I)-increasing;
• for any w ∈ Cm([,T],R), the integrals of the following functions

Gk(s, t) =G(s, t)
[
g(k)

(
s,w(s)

)
+ λwk(s)

]
()

are compatible with the quasi-order ‘�’ for k = , . . . ,m.
• there exist a function ρ : Cm([,T],R)× Cm([,T],R)→R+ and a function of
contractive factor ϕ : [,∞)→ [, ) such that, for any w, w̄ ∈ Cm([,T],R) with
w�I w̄ or w̄�I w, the following inequalities

ρ(w, w̄) ≤
m∑
k=

d
(
w(k), w̄(k))
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and

d
(
Fk(w),Fk(w̄)

) ≤ 
m

· ϕ(
ρ(w, w̄)

) · ρ(w, w̄)

are satisfied for all k = , . . . ,m;
• there exists w ∈ Cm([,T],R) such that w �I F(w) or w �I F(w).

Then the system of boundary value problem () has a �I -chain-unique solution.

Proof First of all, problem () can be written as follows:

{
w′
k(t) + λwk(t) = g(k)(t,w(t)) + λwk(t) for t ∈ [,T],

wk() = wk(T)
for k = , . . . ,m. ()

We shall rewrite problem () as a system of integral equations. Multiplying eλt on both
sides, we have

eλt ·w′
k(t) + eλt · λwk(t) =

[
g(k)

(
t,w(t)

)
+ λwk(t)

] · eλt ,

which is equivalent to

(
eλt ·wk(t)

)′ =
[
g(k)

(
t,w(t)

)
+ λwk(t)

] · eλt for t ∈ [,T].

By taking integration on both sides, we have

eλt ·wk(t) = wk() +
∫ t



[
g(k)

(
s,w(s)

)
+ λwk(s)

] · eλs ds for t ∈ [,T]. ()

Since wk() = wk(T), we obtain

eλT ·wk() = eλT ·wk(T) = wk() +
∫ T



[
g(k)

(
s,w(s)

)
+ λwk(s)

] · eλs ds,

which implies

wk() =
∫ T



eλs

eλT – 
· [g(k)(s,w(s)) + λwk(s)

]
ds. ()

From () and (), for t ∈ [,T], we have

eλt ·wk(t) =
∫ T



eλs

eλT – 
· [g(k)(s,w(s)) + λwk(s)

]
ds

+
∫ t



[
g(k)

(
s,w(s)

)
+ λwk(s)

] · eλs ds

=
∫ t



eλ(T+s)

eλT – 
· [g(k)(s,w(s)) + λwk(s)

]
ds

+
∫ T

t

eλs

eλT – 
· [g(k)(s,w(s)) + λwk(s)

]
ds.
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Therefore, we obtain the following integral equations:

wk(t) =
∫ T


G(s, t)

[
g(k)

(
s,w(s)

)
+ λwk(s)

]
ds for k = , . . . ,m, ()

where G(s, t) is given in (). We see that if w∗ is a solution of integral equation (),
then w∗ is a solution of problem (), which also says that w∗ is a solution of the original
boundary value problem ().
Since G(s, t) ≥ , the quasi-order ‘�’ is compatible with the addition and nonnegative

multiplication, and g is (�I ,�I)-increasing, it follows that, for each fixed t ∈ [,T], the
functionG(s, t) · [g(s,w(s))+λw(s)] is (�I ,�I)-increasing by Remark .. Since the integrals
of the functions Gk defined in () are compatible with the quasi-order ‘�’ for k = , . . . ,m,
it shows that the function F is (�I ,�I)-increasing. Theorem . says that the system of
integral equations () has a �I-chain-unique solution w∗, which also says that w∗ is a
solution of the original boundary value problem (). However, this�I-chain-uniqueness
is about the system of integral equations (), which is not the�I-chain-uniqueness about
the original boundary value problem (). Now, let ŵ be another solution of the system of
boundary value problem () such that ŵ and w∗ are comparable with respect to ‘�I ’. By
referring to the derivation of (), we can show that ŵ is also a solution of the system of
integral equations (). By the �I-chain-uniqueness given in Theorem ., it follows that
w∗ = ŵ; that is,w∗ is a�I-chain-unique solution of the system of boundary value problem
(). This completes the proof. �

Corollary . Suppose that the quasi-orderedmetric space (C([,T],R),d,�) is monoton-
ically complete and preserves the monotone convergence. Let I and J be a disjoint pair of
{, , . . . ,m}, and let λ > . Define the function G : [,T]× [,T] →R+ by

G(s, t) =

{
eλ(T+s–t)
eλT– if  ≤ s < t ≤ T ,

eλ(s–t)
eλT– if  ≤ t < s≤ T ,

and the function F : (Cm([,T],R),d,�I) → (Cm([,T],R),d,�I) by

F(w)(t) =
∫ T


G(s, t)

[
g
(
s,w(s)

)
+ λw(s)

]
ds,

where d is defined in () or (). Suppose that the following conditions are satisfied:
• the quasi-order ‘�’ in C([,T],R) is compatible with the addition and nonnegative
multiplication;

• g is (�I ,�I)-increasing;
• for any w ∈ Cm([,T],R), the integrals of the following functions

Gk(s, t) =G(s, t)
[
g(k)

(
s,w(s)

)
+ λwk(s)

]
()

are compatible with the quasi-order ‘�’ for k = , . . . ,m.
• there exists a function of contractive factor ϕ : [,∞) → [, ) such that, for any
w, w̄ ∈ Cm([,T],R) with w�I w̄ or w̄�I w, the following inequality

d
(
Fk(w),Fk(w̄)

) ≤ ϕ
(
m ·

(
min

k=,...,m
d
(
w(k), w̄(k))))

·
(
min

k=,...,m
d
(
w(k), w̄(k)))

is satisfied for all k = , . . . ,m;
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• there exists w ∈ Cm([,T],R) such that w �I F(w) or w �I F(w).
Then the system of boundary value problem () has a �I -chain-unique solution.

Proof For a,b ∈ Cm([,T],R), we define the function ρ : Cm([,T],R) × Cm([,T],R) →
R+ by

ρ(a,b) =m ·
(
min

k=,...,m
d
(
a(k),b(k)

)) ≤
m∑
k=

d
(
a(k),b(k)

)
.

Then the desired result follows from Theorem . immediately. �

Theorem . Let (C([,T],R),d∗,�∗) be a quasi-ordered metric space with the metric d∗

and the quasi-order �∗ defined in () and (), respectively. Let I and J be a disjoint pair
of {, , . . . ,m}, and let �∗

I be defined in () according to �∗. Let λ > . Define the function
G : [,T]× [,T]→ R+ by

G(s, t) =

{
eλ(T+s–t)
eλT– if  ≤ s < t ≤ T ,

eλ(s–t)
eλT– if  ≤ t < s≤ T .

()

Suppose that the following conditions are satisfied:
• there exists a function ρ : C([,T],R)× C([,T],R)→ R+ such that, for any
a,b ∈ Cm([,T],R) with a�∗

I b or b�∗
I a, the following inequality

ρ(a,b)≤
m∑
k=

d∗(a(k),b(k))

is satisfied;
• there exists μ >  with μ < λ such that, for any x,y ∈Rm with x�(m)

I y or y�(m)
I x, the

following inequality

∣∣g(k)(s,x) + λx(k) – g(k)(s,y) – λy(k)
∣∣ ≤ μ

m
· φ̂(x,y) ()

is satisfied for k = , . . . ,m, where the function φ̂ :Rm →R+ satisfies the following
inequality: for a,b ∈ Cm([,T],R),

φ̂
(
a(s),b(s)

) ≤ ρ(a,b) for all s ∈ [,T];

• there exists w̄ ∈ Cm([,T],R) such that

w̄�∗
I

∫ T


G(s, t)

[
g
(
s,w(s)

)
+ λw(s)

]
ds

or

∫ T


G(s, t)

[
g
(
s,w(s)

)
+ λw(s)

]
ds�∗

I w̄.

Then the system of boundary value problem () has a �I -chain-unique solution.
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Proof It is easy to see that the quasi-order ‘�∗’ in C([,T],R) is compatible with the addi-
tion and nonnegative multiplication. It follows that g is (�∗

I ,�∗
I )-increasing. According to

Example ., for any w ∈ Cm([,T],R), we see that the integrals of the following functions

Gk(s, t) =G(s, t)
[
g(k)

(
s,w(s)

)
+ λwk(s)

]
are compatible with the quasi-order ‘�∗’ for k = , . . . ,m. Now, we define

F(w)(t) =
∫ T


G(s, t)

[
g
(
s,w(s)

)
+ λw(s)

]
ds.

In order to obtain

d
(
Fk(w),Fk(w̄)

) ≤ 
m

· ϕ(
ρ(w, w̄)

) · ρ(w, w̄), ()

from the proof of Theorem ., we need to check inequalities () and (). Now, we take
φ̄ as a constant function with value μ/m, and ϕ as a constant function with value μ/λ < .
Then ϕ is a function of contractive factor. According to (), we see that inequality () is
satisfied. We also have

sup
t∈[,T]

∫ T


G(s, t)φ̄(a,b)ds

=
μ

m
· sup
t∈[,T]

∫ T


G(s, t)ds

=
μ

m
· sup
t∈[,T]

[


eλT – 
·
(

λ

· eλ(T+s–t)
∣∣∣∣t

+

λ

· eλ(s–t)
∣∣∣∣T
t

)]
(by ())

=
μ

m
· 
eλT – 

· 
λ

· (eλT – 
)

=

m

· μ

λ
=


m

· ϕ(
ρ(a,b)

)
,

which shows that inequality () is satisfied. According to the proof of Theorem ., we
see that () is satisfied. Therefore, the desired result follows from Theorem ., and the
proof is complete. �

Definition . For w ∈ Cm([,T],R), we define some solution concepts as follows.
• We say that w is a sub-solution of problem () if and only if

{
w′
k(t) ≤ g(k)(t,w(t)),

wk() = wk(T)
for k = , . . . ,m.

• We say that w is a sup-solution of problem () if and only if

{
w′
k(t) ≥ g(k)(t,w(t)) for t ∈ [,T],

wk() = wk(T)
for k = , . . . ,m.
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• Let I and J be a disjoint pair of {, , . . . ,m}. We say that w is an (I, J)-mixed solution of
problem () if and only if

⎧⎪⎨
⎪⎩
w′
k(t)≤ g(k)(t,w(t)) for k ∈ I and t ∈ [,T],

w′
k(t)≥ g(k)(t,w(t)) for k ∈ J and t ∈ [,T],

wk() = wk(T) for k = , . . . ,m,

where I is allowed to be a nonempty set.

We have to emphasize that the (I, J)-mixed solution and (J , I)-mixed solution are es-
sentially the same. It is obvious that if I = ∅, then the (I, J)-mixed solution is also a sup-
solution, and if J = ∅, then the (I, J)-mixed solution is also a sub-solution.

Theorem . Let (C([,T],R),d∗,�∗) be a quasi-ordered metric space with the metric
d∗ and the quasi-order �∗ defined in () and (), respectively. Let I and J be a disjoint
pair of {, , . . . ,m}, and let�∗

I be defined in () according to �∗. Suppose that the following
conditions are satisfied:
• there exists a function ρ : C([,T],R)× C([,T],R)→ R+ such that, for any
a,b ∈ Cm([,T],R) with a�∗

I b or b�∗
I a, the following inequality

ρ(a,b)≤
m∑
k=

d∗(a(k),b(k))

is satisfied;
• there exists μ >  with μ < λ such that, for any x,y ∈Rm with x�(m)

I y or y�(m)
I x, the

following inequality

∣∣g(k)(s,x) + λx(k) – g(k)(s,y) – λy(k)
∣∣ ≤ μ

m
· φ̂(x,y)

is satisfied for k = , . . . ,m, where the function φ̂ :Rm →R+ satisfies the following
inequality: for a,b ∈ Cm([,T],R),

φ̂
(
a(s),b(s)

) ≤ ρ(a,b) for all s ∈ [,T];

• there exists an (I, J)-mixed solution of problem ().
Then the system of boundary value problem () has a �I -chain-unique solution.

Proof Let w̄ be an (I, J)-mixed solution of problem (). Then, for k ∈ I , we have

{
w̄′
k(t) ≤ g(k)(t, w̄(t)) for t ∈ [,T],

w̄k() = w̄k(T),

which implies

{
w̄′
k(t) + λw̄k(t)≤ g(k)(t, w̄(t)) + λw̄k(t) for t ∈ [,T],

w̄k() = w̄k(T).
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Multiplying eλt on both sides, we have

eλt · w̄′
k(t) + eλt · λw̄k(t) ≤

[
g(k)

(
t, w̄(t)

)
+ λw̄k(t)

] · eλt ,

which is equivalent to

(
eλt · w̄k(t)

)′ ≤ [
g(k)

(
t, w̄(t)

)
+ λw̄k(t)

] · eλt for t ∈ [,T].

By taking integration on both sides, we have

eλt · w̄k(t)≤ w̄k() +
∫ t



[
g(k)

(
s, w̄(s)

)
+ λw̄k(s)

] · eλs ds for t ∈ [,T]. ()

Since w̄k() = w̄k(T), we obtain

eλT · w̄k()≤ eλT · w̄k(T) = w̄k() +
∫ T



[
g(k)

(
s, w̄(s)

)
+ λw̄k(s)

] · eλs ds,

which implies

w̄k() ≤
∫ T



eλs

eλT – 
· [g(k)(s, w̄(s)) + λw̄k(s)

]
ds. ()

From () and (), for t ∈ [,T], we have

eλt · w̄k(t) ≤
∫ T



eλs

eλT – 
· [g(k)(s, w̄(s)) + λw̄k(s)

]
ds

+
∫ t



[
g(k)

(
s, w̄(s)

)
+ λw̄k(s)

] · eλs ds

=
∫ t



eλ(T+s)

eλT – 
· [g(k)(s, w̄(s)) + λw̄k(s)

]
ds

+
∫ T

t

eλs

eλT – 
· [g(k)(s, w̄(s)) + λw̄k(s)

]
ds.

Therefore, we obtain

w̄k(t) ≤
∫ T


G(s, t)

[
g(k)

(
s, w̄(s)

)
+ λw̄k(s)

]
ds for k ∈ I,

where G(s, t) is given in (). We can similarly show that

w̄k(t) ≥
∫ T


G(s, t)

[
g(k)

(
s, w̄(s)

)
+ λw̄k(s)

]
ds for k ∈ J ,

which says that

w̄�∗
I

∫ T


G(s, t)

[
g
(
s, w̄(s)

)
+ λw̄(s)

]
ds.

Therefore, the desired result follows from Theorem . immediately. �
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The assumption for the existence of (I, J)-mixed solution in Theorem . can be re-
placed by the assumption for the existence of sub-solution or sup-solution in which J or I
is taken to be an empty set, respectively.
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