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Abstract
In this paper, we consider a system of integral equations and apply the coincidence
and common fixed point theorems for four mappings satisfying a (ψ ,α,β)-weakly
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solution to integral equations. Also we furnish suitable examples to demonstrate the
validity of the hypotheses of our results.
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1 Introduction and preliminary
Fixed point theory has wide and endless applications inmany fields of engineering and sci-
ence. Its core, the Banach contraction principle (see []), has attracted many researchers
who tried to generalize it in different aspects. In particular, Alber and Guerre-Delabriere
[] introduced the concept of weak contractions in Hilbert spaces. Rhoades [] showed
that the result which Alber et al. had proved in Hilbert spaces was also valid in complete
metric spaces. Eshaghi Gordji et al. [] proved a new coupled fixed point theorem related
to the Pata contraction for mappings having the mixed monotone property in partially
ordered metric spaces. Singh et al. [] obtained coincidence and common fixed point the-
orems for a class of Suzuki hybrid contractions involving two pairs of single-valued and
multi-valued maps in a metric space.

Definition . ([]) The function ψ : [, +∞) → [, +∞) is called an altering distance
function if the following properties are satisfied:

(i) ψ is continuous and non-decreasing,
(ii) ψ(t) =  if and only if t = .

Definition . ([]) Let (X,d) be ametric space. Amapping f : X → X is said to be weakly
contractive if

d(fx, fy) ≤ d(x, y) – ϕ
(
d(x, y)

)
for each x, y ∈ X,

where ϕ : [, +∞) → [, +∞) is an altering distance function.
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In [], Rhoades proved that if X is complete, then every weak contraction has a unique
fixed point.
The weak contraction principle, its generalizations and extensions and other fixed point

results for mappings satisfying weak contractive type inequalities have been considered in
a number of recent works.
In , Dutta and Choudhury [] proved the following theorem.

Theorem . ([]) Let (X,d) be a complete metric space and f : X → X be such that

ψ
(
d(fx, fy)

) ≤ ψ
(
d(x, y)

)
– ϕ

(
d(x, y)

)
for each x, y ∈ X,

where ψ ,ϕ : [, +∞) →: [, +∞) are altering distance functions. Then f has a fixed point
in X.

In [], Eslamian and Abkar introduced the concept of (ψ ,α,β)-weak contraction. They
stated the following theorem as a generalization of Theorem ..

Theorem . ([]) Let (X,d) be a complete metric space and f : X → X be a mapping
satisfying

ψ
(
d(fx, fy)

) ≤ α
(
d(x, y)

)
– β

(
d(x, y)

)
for all x, y ∈ X, where ψ ,α,β : [, +∞) → [, +∞) are such that ψ is an altering distance
function, α is continuous, β is lower semi-continuous, and

ψ(t) – α(t) + β(t) >  for each t > ,

and α() = β() = . Then f has a unique fixed point.

Aydi et al. [] proved that Theorem . is a consequence of Theorem .. (Define ϕ :
[, +∞)→ [, +∞) by ϕ(t) =ψ(t) – α(t) + β(t) for all t ≥ .)
It is also known that common fixed point theorems are generalizations of fixed point

theorems. Recently,many researchers have been interested in generalizing fixed point the-
orems to coincidence point theorems and common fixed point theorems.

Definition . ([]) Let X be a non-empty set, N be a natural number such that N ≥ 
and f, f, . . . , fN–, fN : X → X be given self-mappings of X. If w = fx = fx = · · · = fN–x =
fNx for some x ∈ X, then x is called a coincidence point of f, f, . . . , fN– and fN , and w is
called a point of coincidence of f, f, . . . , fN– and fN . If w = x, then x is called a common
fixed point of f, f, . . . , fN– and fN .

On the other hand, compatibility of two mappings introduced by Jungck [, ] is an
important concept in the context of common fixed point problems in metric spaces.

Definition . ([]) Let (X,d) be a metric space and f , g : X → X be given self-mappings
on X. The pair (f , g) is said to be compatible if limn→∞ d(fgxn, gfxn) = , whenever {xn} is a
sequence in X such that limn→∞ fxn = limn→∞ gxn = t, for some t ∈ X.
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Definition . ([]) Two mappings f , g : X → X, where (X,d) is a metric space, are
weakly compatible if they commute at their coincidence points, that is, if ft = gt for some
t ∈ X implies that fgt = gft.

It is clear that if the pair (f , g) is compatible, then (f , g) is weakly compatible.
Recently, fixed point theory has developed rapidly in partially ordered metric spaces

(for example, see [–] and the references therein). Harjani and Sadarangani in [, ]
extended Theorem . in the framework of partially ordered metric spaces in the follow-
ing way. In , Choudhury and Kundu [] established the (ψ ,α,β)-weak contraction
principle to coincidence point and common fixed point results in partially ordered metric
spaces and proved the following fixed point theorem as a generalization of Theorem ..

Theorem . ([]) Let (X,d,�) be a partially ordered complete metric space. Let f , g :
X → X be such that fX ⊆ gX, f is g-non-decreasing, gX is closed and

ψ
(
d(fx, fy)

) ≤ α
(
d(gx, gy)

)
– β

(
d(gx, gy)

)
for all x, y ∈ X such that gx� gy,

where ψ ,α,β : [, +∞) → [, +∞) are such that ψ is continuous and monotone non-
decreasing, α is continuous, β is lower semi-continuous,

ψ(t) – α(t) + β(t) >  for all t > ,

and ψ(t) =  if and only if t =  and α() = β() = . Also, if any non-decreasing sequence
{xn} in X converges to z, then we assume xn � z for all n ∈ N ∪ {}. If there exists x ∈ X
such that gx � fx, then f and g have a coincidence point.

Altun and Simsek [] introduced the concept of weakly increasingmappings as follows.

Definition . Let f , g be two self-maps on a partially ordered set (X,�). A pair (f , g) is
said to be

(i) weakly increasing if fx � g(fx) and gx� f (gx) for all x ∈ X [],
(ii) partially weakly increasing if fx � g(fx) for all x ∈ X [].

Note that a pair (f , g) is weakly increasing if and only if the ordered pairs (f , g) and (g, f )
are partially weakly increasing.
Nashine and Samet [] introducedweakly increasingmappings with respect to another

map as follows.

Definition . ([]) Let (X,�) be a partially ordered set and f , g,h : X → X be given
mappings such that fX ⊆ hX and gX ⊆ hX. We say that f and g are weakly increasing with
respect to h if and only if for all x ∈ X, we have

fx � gy, ∀y ∈ h–(fx)

and

gx� fy, ∀y ∈ h–(gx),

where h–(x) := {u ∈ X | hu = x} for x ∈ X.
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If f = g , we say that f is weakly increasing with respect to h.

If h : X → X is the identity mapping (hx = x for all x ∈ X), then f and g being weakly
increasing with respect to h implies that f and g are weakly increasing mappings.
Nashine et al. [] proved some new coincidence point and common fixed point theo-

rems for a pair of weakly increasing mappings with respect to another map.
In [], Esmaily et al. gave the following definition.

Definition . ([]) Let (X,�) be a partially ordered set and f , g,h : X → X be given
mappings such that fX ⊆ hX. We say that (f , g) is partially weakly increasing with respect
to h if and only if for all x ∈ X, we have

fx � gy, ∀y ∈ h–(fx).

Theorem . ([]) Let (X,d,�) be a partially ordered complete metric space. Let
f , g,S,T : X → X be given mappings satisfying the following:

(i) fX ⊆ TX , gX ⊆ SX ,
(ii) f , g , S and T are continuous,
(iii) the pairs (f ,S) and (g,T) are compatible,
(iv) (f , g) is partially weakly increasing with respect to T and (g, f ) is partially weakly

increasing with respect to S.
Suppose that for every x, y ∈ X such that Sx and Ty are comparable, we have

ψ
(
d(fx, gy)

) ≤ ψ
(
M(x, y)

)
– φ

(
N(x, y)

)
, ()

where

M(x, y) =max

{
d(Sx,Ty),d(Sx, fx),d(Ty, gy),



[
d(Sx, gy) + d(fx,Ty)

]}
,

N(x, y) =max
{
d(Sx,Ty),d(Sx, gy),d(Ty, fx)

}
,

andψ : [, +∞) → [, +∞) is an altering distance function, and φ : [, +∞)→ [, +∞) is a
continuous function with φ(t) =  if only if t = . Then the pairs (f ,S) and (g,T) have a co-
incidence point u ∈ X; that is, fu = Su and gu = Tu.Moreover, if Su and Tu are comparable,
then u ∈ X is a coincidence point f , g , S and T .

Definition . ([]) Let (X,d,�) be an ordered metric space.We say that X is regular if
the following hypothesis holds: if {xn} is a non-decreasing sequence in X with respect to
� such that xn → x ∈ X as n→ ∞, then xn � x for all n ∈N.

Theorem . ([]) Let (X,d,�) be a partially ordered complete metric space such that
X is regular. Let f , g,S,T : X → X be given mappings satisfying the following:

(i) fX ⊆ TX , gX ⊆ SX ,
(ii) SX and TX are closed subsets of (X,d),
(iii) pairs (f ,S) and (g,T) are weakly compatible,
(iv) (f , g) is partially weakly increasing with respect to T and (g, f ) is partially weakly

increasing with respect to S.

http://www.journalofinequalitiesandapplications.com/content/2014/1/517


Lo’lo’ et al. Journal of Inequalities and Applications 2014, 2014:517 Page 5 of 20
http://www.journalofinequalitiesandapplications.com/content/2014/1/517

Suppose that for every x, y ∈ X such that Sx and Ty are comparable, () holds. Then the
pairs (f ,S) and (g,T) have a coincidence point u ∈ X.

In this paper, an attempt is made to derive some coincidence and common fixed point
theorems for four mappings on complete ordered metric spaces, satisfying a (ψ ,α,β)-
weak contractive condition, which generalizes the existing results. Our results are sup-
ported by some examples.

2 Coincidence and common fixed point results
We begin our study with the following result.

Theorem. Let (X,d,�) be a partially ordered completemetric space. Let f , g,S,T : X →
X be given mappings satisfying:

(i) fX ⊆ TX , gX ⊆ SX ,
(ii) f , g , S and T are continuous,
(iii) the pairs (f ,S) and (g,T) are compatible,
(iv) (f , g) is partially weakly increasing with respect to T and (g, f ) is partially weakly

increasing with respect to S.
Suppose that for every x, y ∈ X such that Sx and Ty are comparable, we have

ψ
(
d(fx, gy)

) ≤ α
(
M(x, y)

)
– β

(
N(x, y)

)
, ()

where

M(x, y) =max

{
d(Sx,Ty),d(Sx, fx),d(Ty, gy),



[
d(Sx, gy) + d(fx,Ty)

]}
,

N(x, y) =max
{
d(Sx,Ty),d(Sx, fx),d(Ty, gy)

}
,

and ψ ,α,β : [, +∞) → [, +∞) are such that ψ is a continuous and monotone non-
decreasing function, α is an upper semi-continuous function, β is a lower semi-continuous
function and for all t > ,

ψ(t) – α(t) + β(t) > . ()

Then the pairs (f ,S) and (g,T) have a coincidence point u ∈ X; that is, fu = Su and gu = Tu.
Moreover, if Su and Tu are comparable, then u ∈ X is a coincidence point of f , g , S and T .

Proof Let x be an arbitrary point in X. Since fX ⊆ TX, there exists x ∈ X such that Tx =
fx. Since gX ⊆ SX, there exists x ∈ X such that Sx = gx. Continuing this process, we
can construct sequences {xn} and {yn} in X defined by

yn = fxn = Txn+, yn+ = gxn+ = Sxn+, ∀n ∈N∪ {}. ()

By constructionwe have xn+ ∈ T–(fxn). Then, using the fact that (f , g) is partially weakly
increasing with respect to T , we obtain

Txn+ = fxn � gxn+ = Sxn+, ∀n ∈N∪ {}.

http://www.journalofinequalitiesandapplications.com/content/2014/1/517
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On the other hand, we have xn+ ∈ S–(gxn+). Then, using the fact that (g, f ) is partially
weakly increasing with respect to S, we obtain

Sxn+ = gxn+ � fxn+ = Txn+, ∀n ∈N∪ {}.

Therefore, we can then write

Tx � Sx � Tx � · · · � Txn+ � Sxn+ � Txn+ � · · ·

or

y � y � y � · · · � yn � yn+ � yn+ � · · · . ()

We will prove our result in four steps.
Step .

lim
n→∞d(yn, yn+) = . ()

Since Sxn and Txn+ are comparable, by applying inequality (), we have

ψ
(
d(yn, yn+)

)
= ψ

(
d(fxn, gxn+)

)
≤ α

(
M(xn,xn+)

)
– β

(
N(xn,xn+)

)
, ()

where

M(xn,xn+) = max

{
d(Sxn,Txn+),d(Sxn, fxn),d(Txn+, gxn+),



[
d(Sxn, gxn+) + d(fxn,Txn+)

]}

= max

{
d(yn–, yn),d(yn–, yn),d(yn, yn+),



[
d(yn–, yn+) + d(yn, yn)

]}

= max

{
d(yn–, yn),d(yn, yn+),



d(yn–, yn+)

}
.

Since 
d(yn–, yn+) ≤ 

 [d(yn–, yn) + d(yn, yn+)], it follows that

M(xn,xn+) =max
{
d(yn–, yn),d(yn, yn+)

}
()

and

N(xn,xn+) = max
{
d(Sxn,Txn+),d(Sxn, fxn),d(Txn+, gxn+)

}
= max

{
d(yn–, yn),d(yn–, yn),d(yn, yn+)

}
= max

{
d(yn–, yn),d(yn, yn+)

}
. ()

http://www.journalofinequalitiesandapplications.com/content/2014/1/517
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If d(yn–, yn) < d(yn, yn+), then it follows from () and () that

M(xn,xn+) =N(xn,xn+) = d(yn, yn+).

Therefore, () implies that

ψ
(
d(yn, yn+)

) ≤ α
(
d(yn, yn+)

)
– β

(
d(yn, yn+)

)
. ()

By (), we have d(yn, yn+) = ; that is, yn = yn+, and consequently we obtain

M(xn+,xn+) =N(xn+,xn+) = d(yn+, yn+).

Now, by applying inequality (), we have

ψ
(
d(yn+, yn+)

)
= ψ

(
d(fxn+, gxn+)

) ≤ α
(
M(xn+,xn+)

)
– β

(
N(xn+,xn+)

)
= α

(
d(yn+, yn+)

)
– β

(
d(yn+, yn+)

)
,

and () implies that d(yn+, yn+) = ; that is, yn+ = yn+. Repeating the above process
inductively, one obtains yk = yn for all k ≥ n, which implies that () holds. On the other
hand, if

d(yn, yn+) ≤ d(yn–, yn), ()

by a similar calculation we obtain

d(yn+, yn+) ≤ d(yn, yn+). ()

Thus by () and () we obtain

d(yn+, yn+) ≤ d(yn, yn+),

which implies that the sequence {d(yn, yn+)} is monotonically non-increasing. Hence,
there exists r ≥  such that

lim
n→∞d(yn, yn+) = r.

Taking the upper limit on both sides of () and using (), (), the upper semi-continuity
of α, the lower semi-continuity of β and the continuity of ψ , we obtain ψ(r) ≤ α(r) –β(r),
which by () implies that r = . So equation () holds and the proof of Step  is completed.
Step . We claim that {yn} is a Cauchy sequence in X. By (), it suffices to show that

the subsequence {yn} of {yn} is a Cauchy sequence in X. If not, then there exists ε > 
for which we can find two subsequences {ym(k)} and {yn(k)} of {yn} such that n(k) is the
smallest integer and, for all k > ,

n(k) >m(k) > k, d(ym(k), yn(k)) ≥ ε. ()

http://www.journalofinequalitiesandapplications.com/content/2014/1/517
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This means that

d(ym(k), yn(k)–) < ε. ()

Therefore we use (), () and the triangular inequality to get

ε ≤ d(ym(k), yn(k))≤ d(ym(k), yn(k)–) + d(yn(k)–, yn(k)–) + d(yn(k)–, yn(k))

< ε + d(yn(k)–, yn(k)–) + d(yn(k)–, yn(k)).

Letting k → ∞ in the above inequality and using (), we obtain

lim
k→∞

d(ym(k), yn(k)) = ε. ()

Again, using the triangular inequality, we have

∣∣d(ym(k)–, yn(k)) – d(ym(k), yn(k))
∣∣ ≤ d(ym(k)–, ym(k)).

Letting again k → ∞ in the above inequality and using (), (), we get

lim
k→∞

d(ym(k)–, yn(k)) = ε. ()

On the other hand we have

d(ym(k), yn(k)) ≤ d(ym(k), yn(k)+) + d(yn(k)+, yn(k)).

Thanks to (), (), letting k → ∞, we have from the above inequality that

ε ≤ lim
n→∞d(ym(k), yn(k)+). ()

Also, by the triangular inequality, we have

d(ym(k), yn(k)) ≤ d(ym(k), ym(k)–) + d(ym(k)–, yn(k)+) + d(yn(k)+, yn(k)).

Letting again k → ∞ in the above inequality and using () and (), we obtain

ε ≤ lim
k→∞

d(ym(k)–, yn(k)+).

Similarly, we can show that limk→∞ d(ym(k)–, yn(k)+)≤ ε, so

lim
n→∞d(ym(k)–, yn(k)+) = ε. ()

From () we have

ψ
(
d(ym(k), yn(k)+)

)
= ψ

(
d(fxm(k), gxn(k)+)

)
≤ α

(
M(xm(k),xn(k)+)

)
– β

(
N(xm(k),xn(k)+)

)
, ()

http://www.journalofinequalitiesandapplications.com/content/2014/1/517
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where

M(xm(k),xn(k)+) = max

{
d(Sxm(k),Txn(k)+),d(Sxm(k), fxm(k)),d(Txn(k)+, gxn(k)+),



[
d(Sxm(k), gxn(k)+) + d(fxm(k),Txn(k)+)

]}

= max

{
d(ym(k)–, yn(k)),d(ym(k)–, ym(k)),d(yn(k), yn(k)+),



[
d(ym(k)–, yn(k)+) + d(ym(k), yn(k))

]}

and

N(xm(k),xn(k)+) = max
{
d(Sxm(k),Txn(k)+),d(Sxm(k), fxm(k)),d(Txn(k)+, gxn(k)+)

}
= max

{
d(ym(k)–, yn(k)),d(ym(k)–, ym(k)),d(yn(k), yn(k)+)

}
.

Since ψ is a non-decreasing function, () implies that

ψ(ε)≤ ψ
(
lim
k→∞

d(ym(k), yn(k)+)
)
. ()

Taking the upper limit on both sides of () and using (), (), (), (), () and the
upper semi-continuity of α, the lower semi-continuity of β and the continuity of ψ , we
obtain

ψ(ε)≤ α

(
max

{
ε, , ,



(ε + ε)

})
– β

(
max{ε, , }).

By (), we have ε = , which is a contradiction. Thus {yn} is a Cauchy sequence in X, and
hence {yn} is a Cauchy sequence.
Step . Existence of a coincidence point for (f ,S) and (g,T).
From the completeness of (X,d), there is u ∈ X such that

lim
n→∞ yn = u. ()

From () and (), we obtain

d(Sxn,u) → , d(fxn,u) → ,

d(Sxn+,u) → , d(gxn+,u) → , d(Txn+,u) → .
()

Since the pairs (f ,S) and (g,T) are compatible,

d
(
S(fxn), f (Sxn)

) → , d
(
T(gxn+), g(Txn+)

) → . ()

Using the continuity of f , g , S, T and (), we have

d
(
f (Sxn), fu

) → , d
(
g(Txn+), gu

) → ,

d
(
S(Txn+),Su

) → , d
(
T(Sxn+),Tu

) → .
()

http://www.journalofinequalitiesandapplications.com/content/2014/1/517
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The triangular inequality and () yield

d(Su, fu) ≤ d
(
Su,S(Txn+)

)
+ d

(
S(fxn), f (Sxn)

)
+ d

(
f (Sxn), fu

)
,

d(Tu, gu) ≤ d
(
Tu,T(Sxn+)

)
+ d

(
T(gxn+), g(Txn+)

)
+ d

(
g(Txn+), gu

)
.

Taking n→ ∞ and using () and (), we obtain

d(Su, fu) ≤ , d(Tu, gu) ≤ ,

which means that Su = fu and Tu = gu.
Step . The existence of a coincidence point for f , g , S and T .
Since Su and Tu are comparable, we can apply inequality ()

ψ
(
d(fu, gu)

) ≤ α
(
M(u,u)

)
– β

(
N(u,u)

)
,

where

M(u,u) = max

{
d(Su,Tu),d(Su, fu),d(Tu, gu),



[
d(Su, gu) + d(fu,Tu)

]}

= max

{
d(Su,Tu), , ,



[
d(Su,Tu) + d(Su,Tu)

]}
= d(Su,Tu)

and

N(u,u) = max
{
d(Su,Tu),d(Su, fu),d(Tu, gu)

}
= max

{
d(Su,Tu), , 

}
= d(Su,Tu).

Therefore we have

ψ
(
d(Su,Tu)

) ≤ α
(
d(Su,Tu)

)
– β

(
d(Su,Tu)

)
.

By (), we have d(Su,Tu) = ; that is, Su = Tu. Therefore u is a coincidence point of f , g , S
and T . �

Now, we relax the conditions of Theorem ., the continuity of f , g , S and T and the
compatibility of the pairs (f ,S) and (g,T), and we replace them by other conditions in
order to find the same result. This will be the purpose of the next theorems.

Theorem . Let (X,d,�) be a partially ordered complete metric space such that X is
regular. Let f , g,S,T : X → X be given mappings satisfying:

(i) fX ⊆ TX , gX ⊆ SX ,
(ii) SX and TX are closed subsets of (X,d),
(iii) pairs (f ,S) and (g,T) are weakly compatible,
(iv) (f , g) is partially weakly increasing with respect to T and (g, f ) is partially weakly

increasing with respect to S.
Suppose that for every x, y ∈ X such that Sx and Ty are comparable, () holds.

http://www.journalofinequalitiesandapplications.com/content/2014/1/517
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Then the pairs (f ,S) and (g,T) have a coincidence point u ∈ X; that is, fu = Su and gu =
Tu. Moreover, if Su and Tu are comparable, then u ∈ X is a coincidence point of f , g , S
and T .

Proof We take the same sequences {xn} and {yn} as in the proof of Theorem .. In partic-
ular, {yn} is a Cauchy sequence in (X,d). Hence, there exists v ∈ X such that

lim
n→∞ yn = v. ()

Since SX and TX are closed subsets of (X,d), there exist u,u ∈ X such that

yn = Txn+ → Tu, yn+ = Sxn+ → Su.

Therefore v = Tu = Su.
Since {yn} is a non-decreasing sequence and X is regular, it follows from () that yn � v

for all n ∈N∪ {}. Hence,

Txn+ = yn � v = Su.

Applying inequality (), we have

ψ
(
d(fu, yn+)

)
= ψ

(
d(fu, gxn+)

)
≤ α

(
M(u,xn+)

)
– β

(
N(u,xn+)

)
, ()

where

M(u,xn+) = max

{
d(Su,Txn+),d(Su, fu),d(Txn+, gxn+),



[
d(Su, gxn+) + d(fu,Txn+)

]}

= max

{
d(v, yn),d(v, fu),d(yn, yn+),



[
d(v, yn+) + d(fu, yn)

]}

and

N(u,xn+) = max
{
d(Su,Txn+),d(Su, fu),d(Txn+, gxn+)

}
= max

{
d(v, yn),d(v, fu),d(yn, yn+)

}
.

Letting n → ∞ in () and using (), we obtain

ψ
(
d(fu, v)

) ≤ α

(
max

{
,d(v, fu), ,



[
 + d(fu, v)

]})
– β

(
max

{
,d(v, fu), 

})
or

ψ
(
d(v, fu)

) ≤ α
(
d(v, fu)

)
– β

(
d(v, fu)

)
.
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By (), we have d(v, fu) = , and hence v = fu. Similarly, we have

Sxn = yn– � v = Tu.

Therefore we can apply inequality () to obtain

ψ
(
d(yn, gu)

)
= ψ

(
d(fxn, gu)

)
≤ α

(
M(xn,u)

)
– β

(
N(xn,u)

)
, ()

where

M(xn,u) = max

{
d(Sxn,Tu),d(Sxn, fxn),d(Tu, gu),



[
d(Sxn, gu) + d(fxn,Tu)

]}

= max

{
d(yn–, v),d(yn–, yn),d(v, gu),



[
d(yn–, gu) + d(yn, v)

]}

and

N(xn,u) = max
{
d(Sxn,Tu),d(Sxn, fxn),d(Tu, gu)

}
= max

{
d(yn–, v),d(yn–, yn),d(v, gu)

}
.

Letting n → ∞ in () and using (), we obtain

ψ
(
d(v, gu)

) ≤ α

(
max

{
,,d(v, gu),



[
d(v, gu) + 

]})
– β

(
max

{
,,d(v, gu)

})
or

ψ
(
d(v, gu)

) ≤ α
(
d(v, gu)

)
– β

(
d(v, gu)

)
.

By (), we have d(v, gu) =  and hence v = gu.
Therefore we have obtained

v = Su = fu, v = Tu = gu.

Now, if (f ,S) and (g,T) are weakly compatible, then fv = fSu = Sfu = Sv and gv = gTu =
Tgu = Tv, and v is a coincidence point of (f ,S) and (g,T).
The rest of the conclusion follows as in the proof of Theorem .. �

Definition . ([]) Let (X,d) be a metric space and f , g : X → X be given self-mappings
on X. The pair (f , g) is said to be semi-compatible if the two conditions hold:

(i) ft = gt implies fgt = gft,
(ii) limn→∞ fxn = limn→∞ gxn = t for some t ∈ X , implies limn→∞ fgxn = gt.

Singh and Jain [] observe that (ii) implies (i). Hence, they defined the semi-compati-
bility by condition (ii) only. It is clear that if the pair (f , g) is semi-compatible, then (f , g) is
weakly compatible.

http://www.journalofinequalitiesandapplications.com/content/2014/1/517
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Definition . ([]) Let (X,d) be a metric space and f , g : X → X be given self-
mappings on X. The pair (f , g) is said to be reciprocally continuous if limn→∞ fgxn = ft
and limn→∞ gfxn = gt whenever {xn} is a sequence such that limn→∞ fxn = limn→∞ gxn = t
for some t ∈ X.

Definition . ([]) Let (X,d) be a metric space and f , g : X → X be given self-mappings
on X. The pair (f , g) is said to be f -weak reciprocally continuous if limn→∞ fgxn = ft when-
ever {xn} is a sequence such that limn→∞ fxn = limn→∞ gxn = t for some t ∈ X.

In the next theorem, the concepts of semi-compatibility and f -weakly reciprocal conti-
nuity are used.

Theorem. Let (X,d,�) be a partially ordered completemetric space.Let f , g,S,T : X →
X be given mappings satisfying:

(i) fX ⊆ TX , gX ⊆ SX ,
(ii) the pair (f ,S) is f -weak reciprocally continuous and semi-compatible,
(iii) the pair (g,T) is g-weak reciprocally continuous and semi-compatible,
(iv) (f , g) is partially weakly increasing with respect to T and (g, f ) is partially weakly

increasing with respect to S.
Suppose that for every x, y ∈ X such that Sx and Ty are comparable, () holds.
Then the pairs (f ,S) and (g,T) have a coincidence point u ∈ X; that is, fu = Su and gu =

Tu.Moreover, if Su and Tu are comparable, then u ∈ X is a coincidence point f , g , S and T .

Proof We take the same sequences {xn} and {yn} as in the proof of Theorem .. In partic-
ular, {yn} is a Cauchy sequence in (X,d). Hence, there exists u ∈ X such that

lim
n→∞ yn = u. ()

From () and (), we obtain

d(Sxn,u) →  and d(fxn,u) → .

Hence by (ii) we deduce that

lim
n→∞ fSxn = fu and lim

n→∞ fSxn = Su,

which implies that fu = Su. Similarly, we can apply () and () to obtain

d(gxn+,u) →  and d(Txn+,u) → .

Hence by (iii) we deduce that

lim
n→∞ gTxn+ = gu and lim

n→∞ gTxn+ = Tu,

which implies that gu = Tu. Therefore, we have proved that u is a coincidence point of
(f ,S) and (g,T).
The rest of the conclusion follows as in the proof of Theorem .. �
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Now, we shall prove the existence and uniqueness theorem of a common fixed point.

Theorem . If, in addition to the hypotheses of Theorems ., . and ., we suppose
that Tu with Tu and Su with Su are comparable, where u is a coincidence point of f , g , S
and T , then f , g , S and T have a common fixed point in X .Moreover, if a set of fixed points
of one of the mappings f , g , S and T is totally ordered, then f , g , S and T have a unique
common fixed point.

Proof We set

w := Su = fu = Tu = gu. ()

Since the pair (g,T) is compatible in Theorem ., the pair (g,T) is weakly compatible in
Theorem . and the pair (g,T) is semi-compatible in Theorem ., we have

gw = gTu = Tgu = Tw. ()

Since Tu and TTu are comparable, it follows that Su and Tw are comparable. Applying
inequality () and using () and (), we obtain

ψ
(
d(w, gw)

)
=ψ

(
d(fu, gw)

) ≤ α
(
M(u,w)

)
– β

(
N(u,w)

)
, ()

where

M(u,w) = max

{
d(Su,Tw),d(Su, fu),d(Tw, gw),



[
d(Su, gw) + d(fu,Tw)

]}

= max

{
d(w, gw),d(w,w),d(gw, gw),



[
d(w, gw) + d(w, gw)

]}

= max
{
d(w, gw), , ,d(w, gw)

}
= d(w, gw)

and

N(u,w) = max
{
d(Su,Tw),d(Su, fu),d(Tw, gw)

}
= max

{
d(w, gw),d(w,w),d(gw, gw)

}
= d(w, gw).

Therefore, () implies that

ψ
(
d(w, gw)

) ≤ α
(
d(w, gw)

)
– β

(
d(w, gw)

)
.

By (), we have d(w, gw) = , that is, w = gw. Then, by (), we have

w = gw = Tw. ()

Similarly, we can show that

w = fw = Sw. ()

http://www.journalofinequalitiesandapplications.com/content/2014/1/517
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Hence, by () and (), we deduce that w = fw = gw = Sw = Tw. Therefore w is a common
fixed point of f , g , S and T .
Now, suppose that the set of fixed points of f is totally ordered. Assume on the contrary

that fp = gp = Sp = Tp = p and fq = gq = Sq = Tq but p �= q. Since p and q contain a set of
fixed points of f , we obtain p = Sp and q = Tq are comparable, by inequality (), we have

ψ
(
d(p,q)

)
=ψ

(
d(fp, gq)

) ≤ α
(
M(p,q)

)
– β

(
N(p,q)

)
, ()

where

M(p,q) = max

{
d(Sp,Tq),d(Sp, fp),d(Tq, gq),



[
d(Sp, gq) + d(fp,Tq)

]}

= max

{
d(p,q),d(p,p),d(q,q),



[
d(p,q) + d(p,q)

]}
= d(p,q)

and

N(p,q) = max
{
d(Sp,Tq),d(Sp, fp),d(Tq, gq)

}
= max

{
d(p,q),d(p,p),d(q,q)

}
= d(p,q).

Therefore, () implies that

ψ
(
d(p,q)

) ≤ α
(
d(p,q)

)
– β

(
d(p,q)

)
,

by (), d(p,q) = , a contradiction. Therefore f , g , S and T have a unique common fixed
point. Similarly, the result followswhen the set of fixed points of g , S orT is totally ordered.
This completes the proof of Theorem .. �

3 Some examples
In this section we present some examples which illustrate our results.
Now, we present an example to illustrate the obtained result given by the previous the-

orems.

Example . Let X = [,+∞). We define an order � on X as x � y if and only if x ≥ y
for all x, y ∈ X. We take the usual metric d(x, y) = |x – y| for x, y ∈ X. It is easy to see that
(X,d,�) is a partially ordered complete metric space. Let f , g,S,T : X → X be defined by

fx = ln( + x), gx = ln

(
 +

x


)
, Sx = ex – , Tx = ex – .

Define ψ ,α,β : [, +∞) → [, +∞) by ψ(t) = t,

α(t) =

{

 t if ≤ t < ,

 t +


 if t ≥ 

and β(t) =

{
 if  ≤ t ≤ ,

 if t > .

Then f , g , S, T , ψ , α and β satisfy all the hypotheses of Theorems . and ..
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Proof The proof of (i) and (ii) is clear. To prove (iii), let {xn} be any sequence in X such
that

lim
n→∞ fxn = lim

n→∞Sxn = t

for some t ∈ X. Since fxn = ln( + xn) and Sxn = exn – , we have xn → et –  and xn →

 ln( + t). By the uniqueness of limit, we get that et –  = 

 ln( + t) and hence t = . Thus,
xn →  as n → ∞. Since f and S are continuous, we have fxn → f  =  and Sxn → S = 
as n→ ∞. Therefore,

lim
n→∞d

(
S(fxn), f (Sxn)

)
= d(S, f ) = d(, ) = .

Thus, the pair (f ,S) is compatible. Similarly, one can show that the pair (g,T) is compatible.
To prove that (f , g) is partially weakly increasing with respect to T , let x, y ∈ X be such

that y ∈ T–(fx). Then Ty = fx. By the definition of f and T , we have ln( + x) = ey – . So,
we have y = ln( + ln( + x)). Now, since ex –  ≥ x≥ x ≥ ln( + x), we have

 + x≥  +


ln

(
 + ln( + x)

)
or

fx = ln( + x)≥ ln

(
 +



ln

(
 + ln( + x)

))
= ln

(
 +

y


)
= gy.

Therefore, fx � gy. Thus, we have proved that (f , g) is partially weakly increasing with
respect to T . Similarly, one can show that (g, f ) is partially weakly increasing with respect
to S.
Now, we prove that ψ , α and β do satisfy the inequality of (). If t > , then ψ(t) –α(t) +

β(t) = t – 
 t –


 + 

 = 
 t > ; if t = , then ψ() – α() + β() =  – 

 – 
 = 

 > . And if
 ≤ t < , then ψ(t) – α(t) + β(t) = t – 

 t =

 t > .

In order to show that f , g , S, T , ψ , α and β do satisfy the contractive condition () in
Theorem ., using a mean value theorem, we have, for x, y ∈ X,

|fx – gy| =
∣∣∣∣ln( + x) – ln

(
 +

y


)∣∣∣∣ ≤ 

|x – y| ≤ 


∣∣ex – ey

∣∣ = 

|Sx – Ty| ≤ 


M(x, y).

Then the following cases are possible.
Case I.M(x, y) ≥ .
In this case, we haveN(x, y) >  orN(x, y)≤ . IfN(x, y) > , then α(M(x, y)) = 

M(x, y)+ 


and β(N(x, y)) = 
 . Therefore, we have

ψ
(
d(fx, gy)

)
= |fx – gy| ≤ 


M(x, y) =



M(x, y) +



–


= α

(
M(x, y)

)
– β

(
N(x, y)

)
.

If N(x, y)≤ , then α(M(x, y)) = 
M(x, y) + 

 and β(N(x, y)) = . Therefore, we have

ψ
(
d(fx, gy)

)
= |fx – gy| ≤ 


M(x, y) <



M(x, y) +



–  = α

(
M(x, y)

)
– β

(
N(x, y)

)
.

Therefore in this case () is satisfied.
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Case II.M(x, y) < .
In this case, sinceN(x, y)≤M(x, y), we obtainN(x, y) < . Therefore, we haveα(M(x, y)) =


M(x, y) and β(N(x, y)) = . So, we obtain

ψ
(
d(fx, gy)

)
= |fx – gy| ≤ 


M(x, y) –  = α

(
M(x, y)

)
– β

(
N(x, y)

)
.

Therefore in this case () is satisfied.
Thus, f , g , S, T , ψ and ϕ satisfy all the hypotheses of Theorems .. Therefore, f , g , S

and T have a coincidence point. Moreover, since f , g , S and T satisfy all the hypotheses of
Theorem ., we obtain that f , g , S and T have a unique common fixed point. In fact,  is
the unique common fixed point of f , g , S and T . �

Clearly, the above example satisfies all the hypotheses of Theorem ..

Example . Let X = {, , , }. Let d : X ×X →R be given as

d(x, y) =

{
, x = y,
x + y, x �= y

and �:= {(, ), (, ), (, ), (, ), (, ), (, ), (, )} on X. Clearly, (X,d,�) is a partially or-
dered complete metric space.
Let {xn} be a non-decreasing sequence in X with respect to � such that xn → x. By the

definition ofmetric d, there exists k ∈N such that xn = x for all n≥ k. So (X,d,�) is regular.
Let ψ ,α,β : [,∞)→ [,∞) be defined by ψ(t) = t,

α(t) =

{

 t +


t , t ≥ ,

, t < 
and β(t) =

{

t , t > ,
 + t, t ≤ 

and self-maps f , g , S and T on X be given by

f =

(
   
   

)
, g =

(
   
   

)
,

S =

(
   
   

)
, T =

(
   
   

)
.

It is easy to see that f , g , S and T satisfy all the conditions given in Theorem .. Thus ,
 and  are coincidence points of the pairs (f ,S) and (g,T). Since S =  and T =  are
comparable,  is a coincidence point f , g , S and T . Moreover, since S =  and SS =  are
not comparable, so Theorem . is not applicable for this example. It is observed that  is
not a common fixed point f , g , S and T .

4 Application: existence of a common solution to integral equations
Consider the integral equations:

x(t) =
∫ b

a
K

(
t, s,x(s)

)
ds,

x(t) =
∫ b

a
K

(
t, s,x(s)

)
ds,

()
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where b > a ≥ . The purpose of this section is to give an existence theorem for a solution
of () using Theorem . or ..

Theorem . Consider the integral equations ().
(i) K,K : [a,b]× [a,b]×R→ R are continuous;
(ii) for all t, s ∈ [a,b],

K
(
t, s,x(s)

) ≤ K

(
t, s,

∫ b

a
K

(
s, τ ,x(τ )

)
dτ

)
,

K
(
t, s,x(s)

) ≤ K

(
t, s,

∫ b

a
K

(
s, τ ,x(τ )

)
dτ

)
,

(iii) for all s, t ∈ [a,b] and comparable u, v ∈ R,

∣∣K(t, s,u) –K(t, s, v)
∣∣ ≤ p(t, s) log

(
 + |u – v|),

where p : [a,b]× [a,b]→ [, +∞) is a continuous function satisfying

sup
a≤t≤b

∫ b

a
p(s, t)ds <


b – a

.

Then integral equations () have a solution x ∈ C[a,b].

Proof Let X := C[a,b] (the set of continuous functions defined on C[a,b] and taking value
inR) with the usual supremumnorm, that is, ‖x‖ = supa≤t≤b |x(t)|, for x ∈ C[a,b]. Consider
on X the partial order defined by

x, y ∈ X, x � y ⇐⇒ x(t)≤ y(t), ∀t ∈ [a,b].

Then (X,�) is a partially ordered set and regular. Also (X,‖ · ‖) is a complete metric space.
Define f , g : X → X by

fx(t) =
∫ b

a
K

(
t, s,x(s)

)
ds, ∀t ∈ [a,b]

and

gx(t) =
∫ b

a
K

(
t, s,x(s)

)
ds, ∀t ∈ [a,b].

Now, let x, y ∈ X such that x� y. From condition (iii), for all t ∈ [a,b], we can write

∣∣fx(t) – gy(t)
∣∣ ≤

(∫ b

a

∣∣K
(
t, s,x(s)

)
–K

(
t, s, y(s)

)∣∣ds)

≤
∫ b

a
 ds

∫ b

a

∣∣K
(
t, s,x(s)

)
–K

(
t, s, y(s)

)∣∣ ds
≤ (b – a)

∫ b

a
p(t, s) log

(
 +

∣∣x(s) – y(s)
∣∣)ds
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≤ (b – a)
∫ b

a
p(t, s) log

(
 + d(x, y)

)
ds

= (b – a)
(∫ b

a
p(t, s)ds

)
log

(
 + d(x, y)

)
< log

(
 + d(x, y)

) ≤ log
(
 +M(x, y)

)
=



M(x, y) –

(
M(x, y) – log

(
 +M(x, y)

))
.

Since M(x, y) ≥ N(x, y) and φ(t) = t – log( + t) is a non-decreasing function in [,∞),
we have

(
sup
a≤t≤b

∣∣fx(t) – gy(t)
∣∣) ≤ 


M(x, y) –

(
N(x, y) – log

(
 +N(x, y)

))
.

Put ψ(t) = t, α(t) = 
 t

 and β(t) = t – log( + t), we get

ψ
(
d(fx, gy)

) ≤ α
(
M(x, y)

)
– β

(
N(x, y)

)
,

and ψ(t) – α(t) + β(t) >  for each t > . By taking S = T = IX (the identity mapping on
X), all the required hypotheses of Theorem . (or Theorem .) are satisfied. Then there
exists x ∈ X, a common fixed point of f and g , that is, x is a solution to (). �
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