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Abstract
In this paper, we study the properties of a bilinear multiplier space. We give a
necessary condition for a continuous bounded function to be a bilinear multiplier on
variable exponent Lebesgue spaces, and we prove the localization theorem of
multipliers on variable exponent Lebesgue spaces. Moreover, we present a
Mihlin-Hörmander type theorem for multilinear Fourier multipliers on weighted
variable Lebesgue spaces and give some applications.
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1 Introduction
Given a non-empty open set � ⊂ Rn, we denote by P(�) the set of exponent functions
p(x) such that

≤ p– ≤ p+ < ∞,

where p–(�) := essinf{p(x) : x ∈ �} and p+(�) := esssup{p(x) : x ∈ �}.
Let P(�) be the set of exponent functions p(x) such that

 < p– ≤ p+ <∞.

Given a measurable function f on � for  ≤ p(·) ≤ ∞, we define the modular functional
associated with p(·) by

ρp(·),�(f ) =
∫

�\�∞

∣∣f (x)∣∣p(x) dx + ∥∥f (x)∥∥L∞(�∞),

where �∞ denotes the set of points in � on which p(x) =∞.
The variable exponent Lebesgue space Lp(·)(�) is defined to be the set of Lebesgue mea-

surable functions f on � satisfying ρp(·),�(f /λ) < ∞ for some λ > . The norm of f in the
space is defined by

‖f ‖Lp(·) = inf
{
λ >  : ρp(·),�(f /λ) ≤ 

}
.
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In the case that p(·) ∈P(�), it is defined to be the set of all functions f satisfying |f (x)|p ∈
Lq(·)(�), q(x) = p(x)/p ∈P(�) for some  < p < p– (see []). A quasi-norm in the space is
defined by

‖f ‖p(·),� =
∥∥|f |p∥∥ 

p
q(·),�.

We refer to [] for an introduction to variable exponent Lebesgue spaces.
Similarly, for p(·) ∈ P(�) and a weight function w, the weighted variable exponent

Lebesgue space Lp(·)(�,w) (see []) is defined to be the set of Lebesgue measurable func-
tions f on � that satisfies

‖f ‖Lp(·)(w) := inf

{
λ >  :

∫
�

∣∣f (x)/λ∣∣p(x)w(x)dx ≤ 
}
< ∞.

In this paper, we study some properties of the space of bilinear Fourier multipliers and
theMihlin-Hörmander type theorem formultilinear Fouriermultipliers onweighted vari-
able Lebesgue spaces. Specifically, letm satisfy certain conditions.We discuss theN-linear
Fourier multiplier operator Tm defined by

Tm(f, . . . , fN )(x)

=
∫
RNn

eπ i〈ξ+···+ξN ,x〉m(ξ, . . . , ξN )f̂(ξ), . . . , f̂N (ξN )dξ · · · dξN

for x ∈Rn, f, . . . , fN ∈ S(Rn) [].
The multilinear Fourier multipliers have been studied for a long time. In [], Coifman

and Meyer proved that Tm is bounded from Lp (Rn) × · · · × LpN (Rn) to Lp(Rn) for all  <
p, . . . ,pN ,p < ∞ with 

p
+ · · · + 

pN
= 

p andm ∈ Cs(RNn \ {}) satisfying
∣∣∂α

ξ
· · · ∂αN

ξN
m(ξ, . . . , ξN )

∣∣ ≤ Cα,...,αN
(|ξ| + · · · + |ξN |)–(|α|+···+|αN |) (.)

for all |α| + · · · + |αN | ≤ s, where N ≥  is an integer and s is a sufficiently large integer.
Tomita [] gave a Hörmander type theorem for multilinear multipliers. Specifically, Tm

is bounded from Lp (Rn) × · · · × LpN (Rn) to Lp(Rn) for all  < p, . . . ,pN ,p < ∞ with 
p

+
· · · + 

pN
= 

p and s = Nn
 +  in (.). Furthermore, Grafakos and Si studied the case p≤  in

[]. The boundedness of multilinear Calderón-Zygmund operators with multiple weights
was achieved by Grafakos et al. [].
Under the Hörmander conditions, Fujita and Tomita [] obtained some weighted es-

timates of Tm for classical Ap weights. Then Li et al. [] got some weighted results of
multilinear multipliers by considering the end-point cases, using weighted Carleson mea-
sure theory and employing multilinear interpolation theory. In [], Chen and Lu proved
a Hörmander type multilinear theorem on weighted Lebesgue spaces when the Fourier
multipliers were only assumed with limited smoothness. In [], the boundedness of Tm

withmultiple weights satisfying condition (.) was given by Bui andDuong. In [], Li and
Sun got some weighted estimates of Tm with multiple weights under the Hörmander con-
ditions in terms of the Sobolev regularity. Huang and Xu [] obtained the boundedness
of multilinear Calderón-Zygmund operators on variable exponent Lebesgue spaces.
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In this paper, we study the weighted estimates of Tm with nearly the same conditions as
in [], but on variable exponent Lebesgue spaces.
The theory of bilinear multipliers was first studied by Coifman and Meyer []. They

considered the oneswith smooth symbols. Then,Muscalu et al. achieved somenew results
for non-smooth symbols in [].
The study of bilinear multipliers has experienced a big progress since Lacey and Thiele

[, ] proved that m(ξ ,ν) = sign(ξ + αν) are (p,p,p)-multipliers for each triple
(p,p,p) such that  < p,p ≤ ∞, p > / and each α ∈ R \ {, }. In [], Kulak and
Gürkanlı first studied some properties of the bilinear multiplier space. In [], Fan and
Sato proved the DeLeeuw type theorems for the transference of multilinear operators on
Lebesgue and Hardy spaces fromRn to Tn. In [], Blasco gave the transference theorems
from Rn to Zn. We also refer to [, ] for details.
We first give some definitions.

Definition . ([]) Let p(·),p(·) ∈P(�), p(·) ∈P(�), andm(ξ ,η) be a bounded func-
tion on Rn. Define

Bm(f , g)(x) =
∫
Rn

∫
Rn

f̂ (ξ )ĝ(η)m(ξ ,η)eπ i〈ξ+η,x〉 dξ dη

for all f and g ∈ S(Rn).

We callm a bilinear multiplier onRn of type (p(·),p(·),p(·)) if there exists some C > 
such that ‖Bm(f , g)‖p(·) ≤ C‖f ‖p(·)‖g‖p(·) for all f and g ∈ S(Rn), i.e., Bm extends to a
bounded bilinear operator from Lp(·)(Rn)× Lp(·)(Rn) to Lp(·)(Rn).
We write BM(Rn)(p(·),p(·),p(·)) for the space of bilinear multipliers of type (p(·),

p(·),p(·)). Let ‖m‖(p(·),p(·),p(·)) = ‖Bm‖.
A similar function space is defined in the following.

Definition . Given a functionM on Rn, letm(ξ ,η) =M(ξ – η). We say that

M ∈ B̃M
(
Rn)(p(·),p(·),p(·))

if BM(f , g)(x) =
∫
Rn f̂ (ξ )ĝ(η)M(ξ –η)eπ i〈ξ+η,x〉 dξ dη for all f and g ∈ S(Rn) can be extended

to a bounded bilinear operator from Lp(·)(Rn)× Lp(·)(Rn) to Lp(·)(Rn).

Definition . ([]) A function p :� → R is said to belong to the class LH(�) if

∣∣p(x) – p(y)
∣∣ ≤ C

– ln(|x – y|) , |x – y| ≤ 

, x, y ∈ �,

where C >  is independent of x or y.

We simply write LH instead of LH(Rn) if there is no confusion. We also use C(Rn) to
represent the collection of all continuous functions on Rn. By C etc., we denote various
positive constants which may have different values even in the same line.

http://www.journalofinequalitiesandapplications.com/content/2014/1/510
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2 Some results on the space BM(R2n)(p1(·),p2(·),p3(·))
Some properties of the bilinear multiplier space on variable spaces were given by Kulak
and Gürkanlı []. Here we give some other properties.
First, we introduce the standard singular kernel.

Definition . ([]) Given a function K ∈ Lloc(R
n \ {}), it is called a standard singular

kernel if there exists a constant C >  such that:
. |K (x)| ≤ C

|x|n , x �= ;
. |∇K (x)| ≤ C

|x|n+ , x �= ;
. for  < r < R, | ∫{r<|x|<R} K (x)dx| ≤ C;
. limε→

∫
{ε<|x|<} K (x)dx exists.

Theorem . (Localization) Suppose that

m ∈ BM
(
Rn)(p(·),p(·),p(·)),

Q is a rectangle in Rn and that the Hardy-Littlewood maximal operator M is bounded
on Lpi(·)(Rn), where  < (pi)– ≤ (pi)+ < ∞, i = , . Then

mχQ ∈ BM
(
Rn)(p(·),p(·),p(·))

and ‖mχQ‖p(·),p(·),p(·) ≤ C‖m‖p(·),p(·),p(·), where C is independent of Q.

Let BM(Rn)(p(·),p(·)) denote the space of multipliers which correspond to bounded op-
erators from Lp(·)(Rn) to Lp(·)(Rn).
To prove Theorem ., we need the following results in the theory of variable Lebesgue

spaces.

Lemma . ([, Theorem .]) Let T be a singular integral operator with a standard
singular kernel K . Given p(·) ∈ P(Rn) such that  < p– ≤ p+ < ∞, if the Hardy-Littlewood
maximal operator M is bounded on Lp(·)(Rn), then for all functions f that are bounded
and have compact support, ‖Tf ‖p(·) ≤ C‖f ‖p(·), and T extends to a bounded operator on
Lp(·)(Rn).

Theorem . Suppose that m ∈ BM(Rn)(s(·),p(·)), m ∈ BM(Rn)(s(·),p(·)) and m ∈
BM(Rn)(p(·),p(·),p(·)). Then we have

m(ξ )m(ξ ,η)m(η) ∈ BM
(
Rn)(s(·), s(·),p(·)).

Proof For any f and g ∈ S(Rn), we have

Bmmm (f , g)(x) =
∫
Rn

∫
Rn

f̂ (ξ )ĝ(η)m(ξ )m(ξ ,η)m(η)eπ i〈ξ+η,x〉 dξ dη

=
∫
Rn

∫
Rn

(
(Tm f )

)∧(ξ )
(
(Tmg)

)∧(η)m(ξ ,η)eπ i〈ξ+η,x〉 dξ dη

= Bm(Tm f , Tmg)(x).

http://www.journalofinequalitiesandapplications.com/content/2014/1/510
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Therefore,

∥∥Bmmm (f , g)
∥∥
p(·) ≤ ‖Bm‖‖Tm f ‖p(·)‖Tmg‖p(·)

≤ ‖Bm‖‖m‖s(·),p(·)‖m‖s(·),p(·)‖f ‖s(·)‖g‖s(·).

Then we get the result. �

The following is an explicit example.

Example . Suppose that 
p(·) + 

p(·) = 
p(·) , m ∈ BM(Rn)(p(·),p(·)) and m ∈

BM(Rn)(p(·),p(·)), where p(·),p(·) ∈P(Rn) and p(·) ∈P(Rn). Then

m(ξ ,η) =m(ξ )m(η) ∈ BM
(
Rn)(p(·),p(·),p(·)).

Proof For any f and g ∈ S(Rn), we have

B(f , g)(x) =
∫
Rn

∫
Rn

f̂ (ξ )ĝ(η)eπ i〈ξ+η,x〉 dξ dη

=
∫
Rn

∫
Rn

f̂ (ξ )eπ i〈ξ ,x〉ĝ(η)eπ i〈η,x〉 dξ dη

= f (x)g(x).

By Hölder’s inequality [], we have

∥∥B(f , g)(x)
∥∥
p(·) =

∥∥f (x)g(x)∥∥p(·) ≤ C‖f ‖p(·)‖g‖p(·).

Thus  ∈ BM(Rn)(p(·),p(·),p(·)). By Theorem ., we have

m(ξ ,η) =m(ξ )m(η) ∈ BM
(
Rn)(p(·),p(·),p(·)). �

Proof of Theorem . We only consider the case n = . Other cases can be proved similarly.
Suppose that Q = [a,b]× [c,d]. Then, for any f and g ∈ C∞

c (Rn),

BmχQ (f , g)(x) =
∫
Rn

∫
Rn

f̂ (ξ )ĝ(η)m(ξ ,η)χQ(ξ ,η)eπ i〈ξ+η,x〉 dξ dη

=
∫
Rn

∫
Rn

f̂ (ξ )χ[a,b](ξ )ĝ(η)χ[c,d](η)m(ξ ,η)eπ i〈ξ+η,x〉 dξ dη

= Bm
(
(f̂ χ[a,b])∨, (ĝχ[c,d])∨

)
(x).

Note that by (.) of [], we have (f̂ χ[a,b])∨ = i
 (M

aHM–a –MbHM–b)f , where Ma de-
notes the operatorMaf (x) = eπ iaxf (x) andHdenotes theHilbert transformoperator. Since
the Hilbert transform has a standard singular kernel, by Lemma . we have

∥∥(f̂ χ[a,b])∨
∥∥
p(·) =



∥∥(
MaHM–af –MbHM–bf

)∥∥
p(·)

≤ 

∥∥HM–af

∥∥
p(·) +



∥∥HM–bf

∥∥
p(·)

≤ C‖f ‖p(·).

http://www.journalofinequalitiesandapplications.com/content/2014/1/510
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So

χ[a,b] ∈ BM
(
Rn)(p(·),p(·)).

Similarly we can prove that

χ[c,d] ∈ BM
(
Rn)(p(·),p(·)).

Hence by Theorem ., we get

mχQ ∈ BM
(
Rn)(p(·),p(·),p(·)),

and ‖mχQ‖p(·),p(·),p(·) ≤ C‖m‖p(·),p(·),p(·). �

Next we show that the space B̃M(Rn)(p(·),p(·),p(·)) is invariant under certain oper-
ators.

Theorem . Given p(·) ∈P(Rn), φ ∈ L(Rn), if

M ∈ B̃M
(
Rn)(p(·),p(·),p(·)),

then

φ ∗M ∈ B̃M
(
Rn)(p(·),p(·),p(·)),

and ‖φ ∗M‖p(·),p(·),p(·) ≤ C‖φ‖‖M‖p(·),p(·),p(·).

Proof For any f and g ∈ S(Rn), we have

Bφ∗M(f , g)(x) =
∫
Rn

f̂ (ξ )ĝ(η)
(∫

Rn
M(ξ – η – u)φ(u)du

)
eπ i〈ξ+η,x〉 dξ dη

=
∫
Rn

∫
Rn

M̂–uf (ξ )ĝ(η)M(ξ – η)eπ i〈ξ+η,x〉 dξ dηeπ i〈u,x〉φ(u)du.

By Minkowski’s inequality,

∥∥Bφ∗M(f , g)(x)
∥∥
p(·) ≤ C

∫
Rn

∥∥BM
(
M–uf , g

)
(x)

∥∥
p(·)

∣∣φ(u)∣∣du
≤ C‖M‖p(·),p(·),p(·)‖φ‖‖f ‖p(·)‖g‖p(·). �

Theorem . Suppose that p ≥ ,M ∈ B̃M(Rn)(p(·),p(·),p) and φ ∈ L(Rn). Then

m(ξ ,η) :=M(ξ – η)φ̂(ξ + η)

∈ BM
(
Rn)(p(·),p(·),p),

and ‖m‖p(·),p(·),p ≤ ‖φ‖‖M‖p(·),p(·),p .

http://www.journalofinequalitiesandapplications.com/content/2014/1/510
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Proof For any f and g ∈ S(Rn), we have

Bm(f , g)(x) =
∫
Rn

f̂ (ξ )ĝ(η)M(ξ – η)
(∫

Rn
φ(y)e–π i〈ξ+η,y〉 dy

)
eπ i〈ξ+η,x〉 dξ dη

=
∫
Rn

(∫
Rn

f̂ (ξ )ĝ(η)M(ξ – η)eπ i〈ξ+η,x–y〉 dξ dη

)
φ(y)dy

= φ ∗ BM(f , g)(x).

By Young’s inequality, we have

∥∥Bm(f , g)
∥∥
p

≤ ‖φ‖
∥∥BM(f , g)

∥∥
p

= ‖φ‖‖BM‖‖f ‖p(·)‖g‖p(·).

Thus, we get the conclusion. �

Finally, we consider the necessary condition of this kind ofmultipliers. The bilinear clas-
sical counterpartwas obtained byHörmander [, Theorem.] andBlasco []. Themul-
tilinear classical one was proved by Grafakos and Torres, see [, Proposition ] and [,
Proposition .]. And the one for multipliers on Lorentz spaces was given by Villarroya
[, Proposition .]. Some of their proofs used the translation-invariant property of the
classical spaces, which is, however, no longer valid on Lp(·). In the following, we prove the
variable version of the necessary condition.

Theorem. (Necessary condition) Suppose that there is a non-zero continuous bounded
function M such that M ∈ B̃M(Rn)(p(·),p(·),p(·)). Then


(p)+

≤ 
(p)–

+


(p)–
.

To prove the theorem, we need the following results.

Proposition . ([, Corollary .]) Fix � and  ≤ p(·) ≤ ∞. If ‖f ‖p(·) ≤ , then ρ(f ) ≤
‖f ‖p(·); if ‖f ‖p(·) > , then ρ(f ) ≥ ‖f ‖p(·).

Proposition . ([, Corollary .]) Given � and  ≤ p(·) ≤ ∞, suppose |�∞| = . If
‖f ‖p(·) > , then

ρ(f )/p+ ≤ ‖f ‖p(·) ≤ ρ(f )/p– .

If  < ‖f ‖p(·) ≤ , then

ρ(f )/p– ≤ ‖f ‖p(·) ≤ ρ(f )/p+ .

Lemma . LetM ∈ B̃M(Rn)(p(·),p(·),p(·)). If 
q =


(p)–

+ 
(p)–

– 
(p)+

, then there exists
some C >  such that∣∣∣∣λn

∫
Rn

e–λξM(ξ )dξ

∣∣∣∣ ≤ C‖M‖p(·),p(·),p(·)λ
n
q ,

when λ is sufficiently large.

http://www.journalofinequalitiesandapplications.com/content/2014/1/510
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Proof Let λ > . DefineGλ by Ĝλ(ξ ) = e–λξ . By a simple change of variable, one gets that

BM(Gλ,Gλ)(x) =
∫
Rn

e–λ
ξe–λ

ηM(ξ – η)eπ i〈ξ+η,x〉 dξ dη

=



∫
Rn

e–λνe–λμ
M(ν)eπ i〈μ,x〉 dμdν

=
C
λn e

–π| x
λ
|

∫
Rn

e–λνM(ν)dν, (.)

where we use the fact that Gλ(x) = (e–λξ )∨ = C
λn e

– π
 | x

λ
| [, Example ..].

Observe that

ρpi(·)
(
e–

π
 | x

λ
|) =

∫
Rn

e–
π
 | x

λ
|pi(x) dx = λn

∫
Rn

e–
π
 |u|pi(λu) du

≤ λn
∫
Rn

e–
π
 |u|(pi)– du = C(pi)–λ

n,

where i = , .
Similarly we have

ρpi(·)
(
e–

π
 | x

λ
|) ≥ C(pi)+λ

n, i = , .

By Proposition ., we get ‖e– π
 | x

λ
|‖pi(·) > , when λ is sufficiently large. Thus by Propo-

sition ., we have

ρpi(·)
(
e–

π
 | x

λ
|) 

(pi)+ ≤ ∥∥e– π
 | x

λ
|∥∥

pi(·) ≤ ρpi(·)
(
e–

π
 | x

λ
|) 

(pi)– .

So

C(pi)+λ
n/(pi)+–n ≤ ‖Gλ‖pi(·) ≤ C(pi)–λ

n/(pi)––n, (.)

where i = , .
Similarly we can get

C(p)+λ
n/(p)+–n ≤

∥∥∥∥ 
λn e

–π| x
λ
|
∥∥∥∥
p(·)

≤ C(p)–λ
n/(p)––n. (.)

All the inequalities above are established when the λ is sufficiently large.
By the assumption, we have

∥∥BM(Gλ,Gλ)
∥∥
p(·) ≤ ‖M‖p(·),p(·),p(·)‖Gλ‖p(·)‖Gλ‖p(·). (.)

Now combining (.), (.), (.) and (.), we get

C(p)+λ
n

(p)+
–n

∣∣∣∣
∫
Rn

e–λξM(ξ )dξ

∣∣∣∣ ≤
∥∥∥∥ C
λn e

–π| x
λ
|
∥∥∥∥
p(·)

∣∣∣∣
∫
Rn

e–λνM(ν)dν

∣∣∣∣
≤ ∥∥BM(Gλ,Gλ)

∥∥
p(·)

http://www.journalofinequalitiesandapplications.com/content/2014/1/510
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≤ ‖M‖p(·),p(·),p(·)‖Gλ‖p(·)‖Gλ‖p(·)
≤ C‖M‖p(·),p(·),p(·)λ

n
(p)–

–n
λ

n
(p)–

–n.

Hence∣∣∣∣λn
∫
Rn

e–λξM(ξ )dξ

∣∣∣∣ ≤ C‖M‖p(·),p(·),p(·)λ
n
q ,

when λ is sufficiently large. �

We are now ready to prove Theorem ..

Proof of Theorem . Assume that 
(p)–

+ 
(p)–

< 
(p)+

. By a simple calculation, we obtain
that

BM
(
Myf ,M–yg

)
(x) =

∫
Rn

(
Myf

)∧(ξ )
(
M–yg

)∧(η)M(ξ – η)eπ i〈ξ+η,x〉 dξ dη

=
∫
Rn

Tyf̂ (ξ )T–yĝ(η)M(ξ – η)eπ i〈ξ+η,x〉 dξ dη

=
∫
Rn

f̂ (ξ )ĝ(η)M(ξ – η + y)eπ i〈ξ+η,x〉 dξ dη

= BT–yM(f , g)(x),

where T–yM =M(x+y). Thus T–yM ∈ B̃M(Rn)(p(·),p(·),p(·)). Applying Lemma .
to T–yM, we get

∣∣∣∣λn
∫
Rn

e–λξM(ξ + y)dξ

∣∣∣∣ ≤ C‖M‖p(·),p(·),p(·)λ
n
q .

Observe that 
q =


(p)–

+ 
(p)–

– 
(p)+

<  andM is continuous. By letting λ → ∞, we have

lim
λ→∞

∣∣∣∣λn
∫
Rn

e–λξM(ξ + y)dξ

∣∣∣∣ = π
n
 |M(y)| = .

Since y is arbitrary, we haveM = . This is a contradiction. Thus


(p)+

≤ 
(p)–

+


(p)–
. �

3 TheMihlin-Hörmander type estimate for multilinear multipliers on weighted
variable exponent Lebesgue spaces

Roughly speaking, in the linear case, by adding the condition that the Hardy-Littlewood
maximal operator is bounded on weighted variable spaces, the results of multipliers on
weighted variable spaces can be derived from the weighted multiplier theorem on classi-
cal Lebesgue spaces and the extrapolation theorem on weighted variable spaces. See, for
example, [, Theorem ., Theorem .], [] and [].
However, in the multilinear case, the method faces some challenges. One problem is

that we have no multilinear extrapolation theorem on spaces with variable exponents yet,
though the counterpart on classical Lebesgue spaces appeared early, see [].
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We give another way to get the Mihlin-Hörmander conditions for multilinear Fourier
multipliers on weighted variable spaces.
First we use Q to denote a cube in Rn. Recall that the Hardy-Littlewood maximal oper-

ator is defined by

M(f )(x) = sup
Q�x


|Q|

∫
Q

∣∣f (y)∣∣dy.
And the sharp maximal function is defined by

M#(f )(x) = sup
Q�x

inf
c∈R


|Q|

∫
Q

∣∣f (y) – c
∣∣dy.

For δ > , we also define

Mδ(f ) =M
(|f |δ)/δ and M#

δ (f ) =M#
(|f |δ)/δ .

For �f = (f, . . . , fN ) and p≥ , we define

Mp(�f )(x) = sup
Q�x

N∏
i=

(


|Q|
∫
Q

∣∣fi(yi)∣∣p dyi)/p

.

Definition . ([]) Given �P = (p, . . . ,pN ) with ≤ p, . . . ,pN < ∞ and /p + · · ·+/pN =
/p. Let �w = (w, . . . ,wN ). Set

v�w =
N∏
i=

wp/pi
i .

We say that �w satisfies the A�P condition if

sup
Q

(


|Q|
∫
Q
v�w(x)dx

)/p N∏
i=

(


|Q|
∫
Q
wi(x)–p

′
i dx

)/p′
i
< ∞.

When pi = , then ( 
|Q|

∫
Q wi(x)–p

′
i dx)/p′

i is understood as (infQ wi)–.

We now give a Mihlin-Hörmander type theorem for multilinear Fourier multipliers on
weighted variable exponent Lebesgue spaces.

Theorem . Suppose that Nn/ < s ≤Nn,m ∈ L∞(RNn) and

sup
R>

∥∥m(Rξ )χ{<|ξ |<}
∥∥
Hs(RNn) < ∞.

Set r :=Nn/s, a series of variable indexes p(x), . . . ,pN (x) ∈P(Rn), and p(x) ∈P(Rn), such
that 

p(x)
+ 

p(x)
+ · · · + 

pN (x) =


p(x) , where (pj)– > r, j = , , . . . ,N . Suppose that there are
 < q < p–, r < qj < (pj)– such that the Hardy-Littlewood maximal operatorM is bounded
on Lp̃′(·)((w · · ·wN )–qp̃

′(·)) and Lp̃
′
j(·)(wj

–qjp̃′
j(·)), where p̃(x) = p(x)

q , p̃j(x) =
pj(x)
qj

, j = , , . . . ,N .
Then there exists some C >  such that

∥∥Tm(�f )
∥∥
Lp(·)(wp(·)

 ···wp(·)
N ) ≤ C

N∏
i=

‖fi‖Lpi(·)(wpi(·)
i )

.
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Before proving the theorem, we present some preliminary results. The following in-
equality is a classical result of Fefferman and Stein [].

Proposition . ([]) Let  < δ < p < ∞ and w ∈ A∞. Then there exists some constants
Cn,p,δ,w >  such that∫

Rn
(Mδf )(x)pw(x)dx≤ Cn,p,δ,w

∫
Rn

(
M#

δ f
)
(x)pw(x)dx.

The next result comes from Lemma . in []. For our purpose, we restate it in the
proper way.

Proposition . ([]) Let  < r <min{ s
(s–) ,

s
Nn } such that p := rr < qj, j = , . . . ,N . If  <

δ < p/N , then under the assumption of Theorem ., there exists some C >  such that for
all �f ∈ Lt (Rn)× · · · × LtN (Rn), p ≤ t, . . . , tN < ∞, we have

M#
δ (Tm�f ) ≤ CMp (�f ).

Proposition . ([]) Let X be a metric measure space and � be an open set in X . Assume
that for some p and q satisfying

 < p ≤ q < ∞, p < p– and

p

–

p+

<

q

,

and for every weight w ∈ A(�), there holds the inequality

(∫
�

f q (x)w(x)dμ(x)
) 

q ≤ c
(∫

�

gp (x)
[
w(x)

] p
q dμ(x)

) 
p

for all (f , g) in a given family F . Let the variable exponent q(x) be defined by


q(x)

=


p(x)
–

(

p

–

q

)
.

Let the exponent p(x) and the weight � satisfy that p ∈ P(�) and M is bounded on
Lq̃′(·)(�,�–qq̃′(·)).
Then, for all (f , g) ∈ F with f ∈ Lq(·)(�,�q(·)), the inequality

‖f ‖Lq(·)(�,�q(·)) ≤ C‖g‖Lp(·)(�,�p(·))

is valid with a constant C > .

Remark . Note that the condition p ∈P(�) in the extrapolation theorem of [] can be
released to p ∈P(�) with nearly no modification to the proof.

Proposition . ([, Proposition .]) Let p ≥  and pi > p for i = , . . . ,N and /p +
· · · + /pN = /p. Then the inequality

∥∥Mp
�(f )∥∥Lp(v�w)

≤ C
N∏
i=

‖fi‖Lpi (wi)

holds if and only if �w ∈ A�P/p , where �P/p = (p/p, . . . ,pN /p).
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Remark . WhenN = , the conclusion above is valid. Specifically, let p ≥  and p > p,
then ‖Mp f ‖Lp(w) ≤ C‖f ‖Lp(w) holds if and only if w ∈ Ap/p .

We are now ready to prove Theorem .

Proof of Theorem . For any fj ∈ S(Rn), j = , . . . ,N , and v ∈ A∞, by Proposition . and
Proposition ., we have

∥∥Tm(�f )
∥∥
Lq(v) ≤ ∥∥Mδ

(
Tm(�f )

)∥∥
Lq(v)

≤ Cn,q,δ,v
∥∥M#

δ

(
Tm(�f )

)∥∥
Lq(v)

≤ C
∥∥Mp (�f )

∥∥
Lq(v), (.)

where p is defined as in Proposition ..
Since themaximal operatorM is bounded on Lp̃′(·)((w · · ·wN )–qp̃

′(·)), by Proposition .,
we have

∥∥Tm(�f )
∥∥
Lp(·)(wp(·)

 ···wp(·)
N ) ≤ C

∥∥Mp (�f )
∥∥
Lp(·)(wp(·)

 ···wp(·)
N ). (.)

By Hölder’s inequality,

∥∥Mp (�f )
∥∥
Lp(·)(wp(·)

 ···wp(·)
N ) =

∥∥Mp (�f )w · · ·wN
∥∥
Lp(·) ≤

∥∥∥∥∥
N∏
i=

{
Mp (fi)wi

}∥∥∥∥∥
Lp(·)

≤ C
∥∥Mp (f)w

∥∥
Lp(·) · · ·

∥∥Mp (fN )wN
∥∥
LpN (·) , (.)

where

Mp (fi) := sup
Q�x

(


|Q|
∫
Q

∣∣fi(yi)∣∣p dyi)

p
, i = , . . . ,N .

Since p < qj, we can choose uj >  such that puj = qj. Thus by Proposition ., we get that

∥∥Mp (f )
∥∥
Lqj (w) ≤ C‖f ‖Lqj (w)

is valid for all w ∈ Auj , f ∈ Lqj (w). Using the boundedness ofM again, we see from Propo-
sition . that

∥∥Mp (fj)
∥∥
Lpj(·)(w

pj(·)
j )

≤ C‖fj‖
Lpj(·)(w

pj(·)
j )

, j = , . . . ,N .

It follows from (.) that

∥∥Mp (�f )
∥∥
Lp(·)(wp(·)

 ···wp(·)
N ) ≤ C‖f‖Lp(·)(wp(·)

 )
· · · ‖fN‖

LpN (·)(wpN (·)
N )

.

By (.), we obtain the desired conclusion as follows:

∥∥Tm(�f )
∥∥
Lp(·)(wp(·)

 ···wp(·)
N ) ≤ C‖f‖Lp(·)(wp(·)

 )
· · · ‖fN‖

LpN (·)(wpN (·)
N )

. �
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As an application of Theorem ., we now consider the case when weight functions are
defined by

wj(x) =
[
 + |x – x|

]β
j∞

l∏
k=

|x – xk|β
j
k , j = , . . . ,N , (.)

where xk are fixed points in Rn, k = , . . . , l.

Corollary . Suppose that Nn/ < s≤Nn,m ∈ L∞(RNn) and

sup
R>

∥∥m(Rξ )χ{<|ξ |<}
∥∥
Hs(RNn) < ∞.

Let the variable exponents p(x), . . . ,pN (x) and p(x) satisfy that 
p(x)

+ 
p(x)

+ · · ·+ 
pN (x) =


p(x) ,

where  < p– ≤ p+ < ∞, r := Nn/s < (pj)– ≤ (pj)+ < ∞, and pj ∈ LH(Rn). Suppose that
there exists some R >  and x ∈ Rn such that pj(x) ≡ (pj)∞ = const for x ∈ Rn \ B(x,R),
j = , . . . ,N , and that

–
n

pj(xk)
< β

j
k <min

{
n

p′
j(xk)

,
n

Np′(xk)

}
, k = , . . . , l,

–
n

(pj)∞
< β j

∞ +
l∑

k=

β
j
k <min

{
n

(pj)′∞
,

n
Np′∞

}

for j = , . . . ,N . Then Tm is bounded from Lp(·)(wp(·)
 ) × · · · × LpN (·)(wpN (·)

N ) to Lp(·)(wp(·)
 · · ·

wp(·)
N ).

To prove Corollary ., we need to define a class of weight functions, which is a special
case of [, Definition .].

Definition . ([]) Let p(·) ∈ C(Rn) and there exists R >  and x ∈Rn such that p(x) ≡
p∞ = const for all x ∈Rn \ B(x,R). A weight function w of the form

w =
[
 + |x – x|

]β∞
l∏

k=

|x – xk|βk

is said to belong to the class Vp(·)(Rn,�) if

–
n

p(xk)
< βk <

n
p′(xk)

, k = , . . . , l

and

–
n
p∞

< β∞ +
l∑

k=

βk <
n
p′∞

.

We first give some lemmas that are needed to prove Corollary ..

Lemma . ([, Proposition .]) Given a domain �, if p+ < ∞, then p(·) ∈ LH(�) is
equivalent to assuming r(·) = /p(·) ∈ LH(�).

http://www.journalofinequalitiesandapplications.com/content/2014/1/510
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Lemma . ([, Remark .]) For every p ∈ (,p–), there hold the implications

� ∈ Vp(·)(�,�) �⇒ �–p ∈ V(p̃)′(·)(�,�),

where p̃(·) = p(·)
p

.

Lemma . ([, Theorem .]) Suppose that � is an unbounded open set of Rn. Let
p(·) ∈ LH satisfy  < p– ≤ p+ < ∞, and let there exists some R >  and x ∈ Rn such that
p(x) ≡ p∞ = const for x ∈ � \ B(x,R). If � ∈ Vp(·)(�,�), then M is bounded on the space
Lp(·)(�,�p(·)).

Then we have the following lemma.

Lemma . Let p(·) ∈ LH satisfy  < p– ≤ p+ < ∞. Suppose that there exists some R > 
and x ∈ Rn such that p(x) ≡ p∞ = const for x ∈ Rn \ B(x,R). If � ∈ Vp(·)(Rn,�), then M
is bounded on the space L(p̃)′(·)(�–q(p̃)′(·)) for all q ∈ (,p–), where p̃(·) = p(·)

q
.

Proof If p(·) ∈ LH, then p̃(·) ∈ LH. By Lemma ., we have (p̃)′(·) ∈ LH. And since
� ∈ Vp(·)(Rn,�), by Lemma . we know �–q ∈ V(p̃)′(·)(Rn,�). Then it follows from Lem-
ma . thatM is bounded on L(p̃)′(·)(�–q(p̃)′(·)). �

Now we are ready to prove Corollary ..

Proof of Corollary . Fix some  < q < p–. Let qj, p̃(x) and p̃j(x) be defined as in Theo-
rem .. By the assumption, we have

–
n

pj(xk)
< β

j
k <

n
p′
j(xk)

, k = , . . . , l,

–
n

(pj)∞
< β j

∞ +
l∑

k=

β
j
k <

n
(pj)′∞

.

So wj ∈ Vpj(·)(Rn,�). By Lemma ., M is bounded on L(p̃j)′(·)(w–qj(p̃j)′(·)
j ). Again, by the

assumption, we get

–
N∑
j=

n
pj(xk)

<
N∑
j=

β
j
k <

n
p′(xk)

, k = , . . . , l, (.)

–
N∑
j=

n
(pj)∞

<
N∑
j=

β j
∞ +

l∑
k=

N∑
j=

β
j
k <

n
p′∞

. (.)

Note that the left-hand sides of (.) and (.) are equal to – n
p(xk )

and – n
p∞ , respectively.

So w · · ·wN ∈ Vp(·)(Rn,�).
By Lemma ., we know 

pj(·) ∈ LH. Therefore, 
p(·) =


p(·) + · · ·+ 

pN (·) ∈ LH. Thus p(·) ∈
LH. Now by Lemma ., M is bounded on L(p̃)′(·)((w · · ·wN )–q(p̃)

′(·)). By Theorem .,
there exists some C >  such that

∥∥Tm(�f )
∥∥
Lp(·)(wp(·)

 ···wp(·)
N ) ≤ C

N∏
j=

‖fj‖
Lpj(·)(w

pj(·)
j )

.
�
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