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Abstract
In this paper we prove three power-exponential inequalities for positive real numbers.
In particular, we conclude that this proofs give affirmatively answers to three, until
now, open problems (Conjectures 4.4, 2.1 and 2.2) posed by Cîrtoaje (J. Inequal. Pure
Appl. Math. 10:21, 2009; J. Nonlinear Sci. Appl. 4(2):130-137, 2011). Moreover, we
present a new proof of the inequality ara + brb ≥ arb + bra for all positive real numbers
a and b and r ∈ [0, e]. In addition, three new conjectures are presented.
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1 Introduction
The power-exponential functions have useful applications in mathematical analysis and
in other theories like statistics [], biology [, ], optimization [], ordinary differential
equations [], and probability []. In recent years there has been intensive research in this
area; see for instance [–] and the recent overview on general mathematical inequalities
done by Cerone and Dragomir []. Some problems look like very simple but are difficult.
For instance, we have the following two classical problems: find the solution of the equa-
tion zez = a and the basic problem of comparing ab and ba for all positive real numbers
a and b. The first problem is perhaps one of the most ancient and useful problems con-
cerning to power-exponential functions; see for instance [–]. It was introduced by
Lambert in [] and has been studied by recognized mathematicians like Euler, Pólya,
Szegö, and Knuth; see [–]. The solution to the problem has inspired the definition of
the well-known W -Lambert function; see []. For the solution to the second problem,
see the discussion given in [, ] andmore recently in [].Moreover, in spite of its alge-
braic simplicity, both problems are the central topic of a large number of research papers
in the last years (see [, , ] and references therein). In particular, in this paper, we are
interested in some inequalities conjectured by Cîrtoaje in [, ], which are very close to
the second problem. To be more specific, we start by recalling that in [] was introduced
and probed the following assertion: the inequality aa + bb ≥ ab + ba holds for all positive
real numbers less than or equal to . After that, Cîrtoaje [] introduced, proved and con-
jectured several results about inequalities for power-exponential functions. In particular,
in [], it was established that the inequality

ara + brb ≥ arb + bra (.)
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holds true for r ∈ [, e] and for either a ≥ b ≥ /e or /e ≥ a ≥ b > . However, in [],
Cîrtoaje leaves as an open problem the proof of (.) for  > a > /e > b > . Moreover, in
[] the following conjectures were introduced:

Conjecture .. If a, b, c are positive real numbers, then aa + bb + cc ≥ ab + bc + ca.
Conjecture .. Let r be a positive real number. The inequality

ara + brb + crc ≥ arb + brc + cra (.)

holds true for all positive real numbers a, b, c with a≤ b ≤ c if and only if r ≤ e.
Conjecture .. Let r be a positive real number. The inequality ara + bra ≥  holds for
all nonnegative real numbers a and b if and only if r ≤ .
Conjecture .. If a and b are nonnegative real numbers such that a + b = , then
ab + ba + –(a – b) ≥ .
Conjecture .. If a and b are nonnegative real numbers such that a + b = , then
ab + ba ≤ .

Afterwards, the analysis of (.) was completed by Manyama in []. Thereafter, of the
Cîrtoaje conjectures, the milestones of the history are the works of Coronel and Huancas
[], Matejíčka [], Li [] and Hisasue [] (see also the work of Cîrtoaje []), where they
proved Conjectures ., ., ., and ., respectively. Here, we should be comment that
the proof of Conjecture . is still open. Subsequently, in  Cîrtoaje introduced a new
proof of (.) and presented the following three new conjectures:

Conjecture .. If a,b ∈ ], ] and r ∈ ], e], then 
√
arabrb ≥ arb + bra.

Conjecture .. If a,b, c ∈ ], ], then aabbcc ≥ (abc)a + (abc)b + (abc)c.
Conjecture .. If a, b are nonnegative real numbers satisfying a + b = , and if k ≥ ,
then a(b)k + b(a)k ≤ .

Recently, Miyagi and Nishizawa [] have proved Conjecture .. However, Conjectures .
and . are still open. Thus, the main focus of this paper are the proofs of Conjectures .,
., and ..
The main contribution of the present paper is the development of the proof of the fol-

lowing four theorems:

Theorem . The inequality (.) holds, for all positive real numbers a, b and for all r ∈
[, e].

Theorem . The inequality (.) holds, for all positive real numbers a, b, c and for all
r ∈ [, e].

Theorem . The inequality


√
arabrb ≥ arb + bra (.)

holds, for all positive real numbers a, b and for all r ∈ [, e].

Theorem . Let n ∈N and xi ∈ ], ]n. Then the inequality

n
n∏
i=

xxii ≥
n∑
i=

( n∏
j=

xj

)xi

(.)

holds.
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Note that Conjectures ., ., and . are solved by Theorems ., ., ., respectively.
Moreover, we develop a proof of Theorem . which is an alternative proof of (.) for all
positive real numbers a, b, and r ∈ [, e], which is distinct from the existing proofs given
in [, ].
The rest of the paper is organized in two sections: In Section  we present the proofs of

Theorems ., ., . and . and in Section  we present some remarks and three new
conjectures.

2 Proofs of main results
In this section we present the proofs of Theorems ., ., ., .. Firstly, we recall a result
of []. Then we present the corresponding proofs.

2.1 A preliminary result
For completeness and self-contained structure of the proofs of Theorems . and ., we
need the following result of [].

Proposition . Consider s ∈R
+ with s �= ,m ∈R

+ and f , g :R+ →R defined as follows:

f (t) = ts – t – γ s + γ and g(t) =

⎧⎪⎨
⎪⎩
e– ln(t)/(t–), t /∈ {, },
e–, t = ,
, t = .

Then the following properties are satisfied:
(i) f (γ ) =  and f () = f () = –γ s + γ .
(ii) If s > , f is strictly increasing on ]g(s),∞[ and strictly decreasing on ], g(s)[.
(iii) If s ∈ ], [, f is strictly decreasing on ]g(s),∞[ and strictly increasing on ], g(s)[.
(iv) g is continuous on R

+ ∪ {} and strictly increasing on R
+. Furthermore y =  is a

horizontal asymptote of y = g(t).

2.2 Proof of Theorem 1.1
Without loss of generality, we assume that a > b. Indeed, we find the proof (.) by appli-
cation of Proposition . with t = arb, γ = brb, and s = a/b. Indeed, we distinguish three
cases
(a) Case a > b >  (t > γ >  and s > ). By Proposition .(iv), we note that g(s) < . Then,

by the strictly increasing behavior of f (Proposition .(ii)) we deduce the inequality since:

t > γ >  > g(s), s >  ⇒ f (t) = ara – arb – bra + brb > f (γ ) = .

(b) Case a >  ≥ b (t >  ≥ γ and s > ). For γ ∈ [g(s), ], we conclude the inequality
by almost identical arguments to that used before in (i), since t >  ≥ γ ≥ g(s) and s > .
Otherwise, if γ ∈ [, g(s)], we deduce that

f (t) = ara – arb – bra + brb > f () = f () > f (γ ) = ,

which implies the desired inequality.

http://www.journalofinequalitiesandapplications.com/content/2014/1/509
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(c) Case  > a > b >  ( > t > γ >  and s > ). First, we define h : [, ] → R by the
correspondence rule h(t) = –rt ln t for t >  and h() = . The function h is concave and
has a maximum at (/e, r/e). Thus, we deduce that

–rb lnb < , for all b ∈ [, ] and r ∈ [, e]. (.)

Secondary, by the Napier inequality []

 < b < a ⇒ 
a
<
lna – lnb
a – b

<

b
. (.)

From (.) and (.) we have

–rb lnb ≤ ≤ 
a
<
lna – lnb
a – b

,

which implies γ > g(s). The proof of this case is completed by application of Proposi-
tion .(ii).
Hence, by (a), (b), and (c) we conclude that Theorem . is valid.

2.3 Proof of Theorem 1.2
The proof of this theorem is again developed by application of Proposition .. Firstly, we
recall the notation of []:

R

+ =

{
(a,b, c) ∈R

/a > ,b >  and c > 
}
,

E =
{
(a,b, c) ∈R


+/a = b = c or a = b �= c or a �= b = c

}
,

E
+
a =

{
(a,b, c) ∈R


+/a ≥  and a >max{b, c}},

E
–
a =

{
(a,b, c) ∈ R


+/ > a >max{b, c}},

E
+
b =

{
(a,b, c) ∈R


+/b ≥  and b >max{a, c}},

E
–
b =

{
(a,b, c) ∈ R


+/ > b >max{a, c}},

E
+
c =

{
(a,b, c) ∈R


+/c ≥  and c >max{a,b}} and

E
–
c =

{
(a,b, c) ∈ R


+/ > c >max{a,b}}.

The family {E,E+
a ,E–

a ,E+
b ,E

–
b ,E+

c ,E–
c } is a set partition of R

+. Now, with this notation, we
subdivide the proof in three parts:
(a) Case (a,b, c) ∈ E. This special case is a direct consequence of Theorem ..
(b) Case (a,b, c) ∈ E

+
a ∪ E

+
b ∪ E

+
c . If (a,b, c) ∈ E

+
a , we apply Theorem . and Proposi-

tion . as follows. We select t = arb, γ = crb and s = a/b, the monotonic behavior and
properties of function f , defined on Proposition ., imply that

ara + crb > arb + cra, (.)

since t > γ , t >  and s > . Indeed, the corresponding proof of (.) needs the distinction of
two cases: c≥  and c < . If c ≥ , then γ >  and γ ∈ ]g(s),∞[, so f is strictly increasing and
t > γ implies (.). For c < , we note that γ <  and –γ s+γ ≥  since s >  and  ∈ ]g(s),∞[,

http://www.journalofinequalitiesandapplications.com/content/2014/1/509
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then the assumption t >  implies that f (t) > f () = –γ s + γ ≥  = f (γ ) and (.) is again
true for this subcase. Moreover, for (a,b, c) ∈ E

+
a ⊂ R


+, by Theorem ., we recall that the

inequality

crc + brb > brc + crb (.)

holds true for all r ∈ [, e]. Adding (.) and (.) we deduce (.).
The proof for (a,b, c) ∈ E

+
b ∪E

+
c is similar to the case (a,b, c) ∈ E

+
a andwe omit the details.

However, we comment that for (a,b, c) ∈ E
+
b we choose t = brc, γ = cc, and s = b/c; and for

(a,b, c) ∈ E
+
c we select t = cra, γ = bra, and s = c/a.

(c) Case (a,b, c) ∈ E
–
a ∪E

–
b ∪E

–
c . Without loss of generality, we assume that (a,b, c) ∈ E

–
a

is such that c < b < a, since the proof for b < c < a is similar. We note that � = [, e]× [, ]
can be partitioned in the two sets

� =
{
(r, c) ∈ � : c ∈ [

(r – )r–, 
]}

and

� =
{
(r, c) ∈ � : c ∈ [

, (r – )r–
]}
.

Now, we continue the proof by distinguish the following two subcases: (r, c) ∈ � and
(r, c) ∈ �.
For the subcase (r, c) ∈ �, we apply the function f given on Proposition . with t = brc,

γ = crc, and s = a/c to prove

bra + crc > brc + cra for  < c < b < a <  and (r, c) ∈ �. (.)

Indeed, we firstly note that the functionm : [c, ]→R defined as follows:m(z) = zcrz – crc+

has the following properties:

(ma) m(c) = ;
(mb) m() = cr( – crc+–r) ≥  for all (r, c) ∈ � since c > (r – )/r; and
(mc) m has a maximum at zmax = –/r ln c, since the first and second derivatives of m are

given bym′(z) = crz(+ rz ln c) andm′′(z) = crz(r+ rz ln c) ln c and naturallym′(zmax) =
 and m′′(zmax) < .

Moreover, we notice that zmax ≥ c is equivalent to  > –rc ln c, which is true for r ∈ [, e]
and c ∈ [, ]; see the proof of (.). Then, by (ma)-(mc), it follows that m(z) ≥ , for all
z ∈ [c, ]. In particular, for z = a, we have

acra > crc+, for a ∈ [c, ]⊂ [, ] and r ∈ [, e]. (.)

Now, from (.), we note that

acra > crc+ ⇒ cr(a–c) >
c
a

⇒ rc ln c >
c ln(c/a)
a – c

⇒ crc > e
–c ln(a/c)

a–c ⇒ γ > g(s),
(.)

which implies (.) by application of Proposition .(ii), since t > γ > g(s) and f is increas-
ing on ]g(s),∞[.

http://www.journalofinequalitiesandapplications.com/content/2014/1/509
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For the subcase (r, c) ∈ �, we apply the function f given on Proposition . with t = brc,
γ = crc, and s = a/c to prove

bra + crc > brc + cra for  < c < b < a <  and (r, c) ∈ �. (.)

We note that the inequality crc > cr– holds true for all (r, c) ∈ �. Now, in order to deduce
that γ > g(s) it is sufficient to prove that cr– > g(s). Indeed, the function q : [c, ] → R

defined as q(z) = c(–r)zzc – cc+c(–r) has the following properties:

(qa) q(c) = ;
(qb) q() = c–r( – cc+(c–)(–r)) ≥  for all (r, c) ∈ �, since c ∈ [, (r – )/r]; and
(qc) q is increasing in [c, ].

Then we deduce that q(z) ≥  for all z ∈ [c, ]. In particular, for z = a ∈ [c, ], we deduce
that c(–r)aac – cc+c(–r) ≥ , which implies the following sequence of implications:

c(–r)aac > cc+c(–r) ⇒ c(–r)a

cc(–r)
>
cc

ac
⇒ c–r > g(s).

Thus (.) holds true.
From (.) and (.), we deduce that

bra + crc > brc + cra for  < c < b < a <  and r ∈ [, e]. (.)

Hence, to complete the proof for  < c < b < a < , we add the inequality (.) with ara +
brb > arb + bra for r ∈ [, e], which is true by Theorem ..
For (a,b, c) ∈ E

–
b ∪ E

–
c we can follow line by line the proof of (a,b, c) ∈ E

–
a . However, we

can obtain a direct proof by applying the result obtained for (a,b, c) ∈ E
–
a by interchanging

the role of variables. For instance, if (a,b, c) ∈ E
–
b then (b,a, c) ∈ E

–
a , which implies (.).

Hence, by (a), (b), and (c) we have the complete proof of Theorem ..

2.4 Proof of Theorem 1.3
Given b ∈ ], ], we define the function H : ], ] →R as follows:

H(x) = 
√
xrxbrb – brx – xrb.

Then we prove that H(x) >  for all x ∈ ], ], which naturally implies the inequality

√
arabrb ≥ arb + bra for x = a. Indeed, we prove that the function H has a global mini-

mum at x = b. The fact that in x = b there is a local minimum ofH follows by noticing that
H ′(b) =  and H ′′(b) > , since

H ′(x) = r
[√

xrxbrb(lnx + ) – brx lnb – bxrb–
]

and

H ′′(x) = r
[√

xrxbrb
{
r(lnx + ) + x–

}
– rbrx(lnb) – b(rb – )xrb–

]
.

Meanwhile, the property that b is a global minimum of H can be proved by rewriting H ′

as the difference of two functions and by analyzing the sign of H ′ using some properties

http://www.journalofinequalitiesandapplications.com/content/2014/1/509
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of this new functions. Indeed, to be more specific, we note that H ′(x) = r[K (x) –Q(x)] for
all x ∈ ], ], where the functions K and Q are defined as follows:

K (x) =
√
xrxbrb(lnx + ) and Q(x) = brx lnb + bxrb–.

The functions K and Q have the following properties:
(K) K is strictly increasing on ], ], since K ′(x) =

√
xrxbrb{r(lnx + ) + x–} > , for all

x ∈ ], ].
(K) K (x) → –∞ when x → +, K (/e) = , and K () =

√
brb.

(Q) The derivative of Q is given by Q′(x) = rbrx(lnb) + b(rb – )xrb–, for all x ∈ ], ].
Then, in order to analyze the sign of Q′, we introduce the set � = ], ]× ], e] and a parti-
tion {�,�,�} of �, where

� =
{
(b, r) ∈ � :Q′(x) >  for all x ∈ ], ]

}
,

� =
{
(b, r) ∈ � :Q′(x) <  for all x ∈ ], ]

}
,

� =
{
(b, r) ∈ � : ∃!c ∈ ], ] such that Q has a minimum at x = c

}
.

We note that the sets�i, i = , , , are not empty since for instance ], [×[/b, e]⊂ � for
all b ∈ ], ], {}× ], [⊂ � and ], [×{} ⊂ �. Moreover, we note that rb >  implies
that (b, r) ∈ � and naturally � ∪ � is a subset of ], ]× ], /b[. The uniqueness of c
can be deduced by noticing that the solution of Q′(x) =  is equivalent to the intersection
of the following two monotone functions: S(x) = rbrx(lnb) and J(x) = b( – rb)xrb–.
(Q) Q(x)→ lnb when x→ +, and Q() = br lnb + b.
From (K) and (Q)we deduce the uniqueness of b ∈ ], ] such thatQ(b) = K (b) or equiv-

alently H ′(b) = . Now, from (K) and (Q), we note that Q(+) > K (+) for all (r,b) ∈ �

since K (+) = –∞. Then H ′(x) <  for all x ∈ ],b[. Additionally, from (K) and (Q), we
observe that Q() < K (). This fact is a consequence of the fact that the function F(w, r) =√
wrw–wr ln(w)–w is strictly decreasing in r, since Fr(w, r) = ln(w)((r/)

√
wrw–wr ln(w)) <

. Consequently, for r < e we have F(w, r) > F(w, e) =
√
wew – we ln(w) – w >  for all

w ∈ ], ]. Hence, forw = bwe get F(b, r) >  orQ() < K (), which implies thatH ′(x) >  for
all x ∈ ]b, ]. Thus, b is a global minimum ofH . Therefore,H(x)≥H(b) =  for all x ∈ ], ]
and in particular for x = a.

2.5 Proof of Theorem 1.4
The proof follows by the fact that the function P : ], ]n– → R is defined by the following
correspondence rule:

P(z, . . . , zn–) = nxxnn
n∏
i=

zzii –

(
xn

n–∏
j=

zj

)xn

–
n–∑
i=

(
xn

n–∏
j=

zj

)xi

, xn ∈ ], ],

and it has a global minimum at (z, . . . , zn–) = (xn, . . . ,xn). Indeed, for simplicity of notation
we develop the details of the proof for n =  and with (x,x,x) = (a,b, c). Note that, in this
case for an arbitrary c ∈ ], ], the function P : ], ] →R has the following form:

P(x, y) = xxyycc – (xyc)x – (xyc)y – (xyc)c.

http://www.journalofinequalitiesandapplications.com/content/2014/1/509
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Then we have

Px(x, y) = xxyycc
(
ln(x) + 

)
–

(
ln(xyc) + 

)
(xyc)x –

y
x
(xyc)y –

c
x
(xyc)c,

Py(x, y) = xxyycc
(
ln(y) + 

)
–
x
y
(xyc)x –

(
ln(xyc) + 

)
(xyc)y –

c
y
(xyc)c,

Pxx(x, y) = xxyycc
[

x
+

(
ln(x) + 

)]

–
[

x
+

(
ln(xyc) + 

)](xyc)x – [
y – y
x

]
(xyc)y –

[
c – c
x

]
(xyc)c,

Pyy(x, y) = xxyycc
[

y
+

(
ln(y) + 

)]

–
[
x – x
y

]
(xyc)x –

[

y
+

(
ln(xyc) + 

)](xyc)y – [
c – c
y

]
(xyc)c,

Pxy(x, y) = Pyx(x, y) = xxyycc
(
ln(y) + 

)(
ln(x) + 

)
–

[
x(ln(xyc) + ) + 

y

]
(xyc)x –

[
y(ln(xyc) + ) + 

x

]
(xyc)y –

[
c

xy

]
(xyc)c.

An evaluation at (c, c) implies that

Px(c, c) = Py(c, c) = ,

Pxx(c, c) = Pyy(c, c) = cc–
(
–c

(
ln(c)

) + 
)
,

Pxy(c, c) = Pyx(c, c) = cc–
(
c

(
ln(c)

) – 
)
.

Now, defining P(w) = –w(ln(w)) +  and P(w) = w(lnw) – w(lnw) + , we ob-
serve that Pxx(c, c) = cc–P(c) and Pxx(c, c)Pyy(c, c) – Pxy(c, c)Pxy(c, c) = c(c–)P(c). Then
the Hessian matrix associated to P at (c, c) is positive semidefinite since both functions,
P and P, are positive on ], ] or equivalently the function P has a local minimum at
(c, c). Now, we deduce that (c, c) is the global minimum since we can prove that (c, c) is the
unique solution of (Px,Py) = (, ). Indeed, assuming that there is (x, y) with x �= y �= c such
that Px(x, y) = Py(x, y) = , we can deduce a contradiction. Note that

 =
∣∣Px(x, y) – Py(x, y)

∣∣
≥ ∣∣min

{
xxyycc, (xyc)x, (xyc)y, (xyc)c

}∣∣∣∣∣∣ln
(
x
y

)
–
y
x
–
c
x
+
x
y
+
c
y

∣∣∣∣
≥ ∣∣min

{
xxyycc, (xyc)x, (xyc)y, (xyc)c

}∣∣∣∣∣∣ x +
x + y
xy

+
c
xy

∣∣∣∣|x – y|,

since the inequality ln(r) > (r–)/r holds for all r >  and r �=  (see for instance []). Then
x = y, which is a contradiction with the assumption that x �= y. Thus, we see that (c, c) is a
global minimum of the function P or equivalently P(x, y) ≥ P(c, c) =  for all (x, y) ∈ ], ],
which implies the desired inequality for (x, y) = (a,b).

http://www.journalofinequalitiesandapplications.com/content/2014/1/509
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3 Additional remarks on possible generalizations
In this section we present the possible extensions of Theorems ., ., and . to a se-
quence of positive real numbers. We note that the natural generalizations of (.) and
(.) are given by

n∑
i=

xrxii ≥ xrxn +
n–∑
i=

xrxi+i , (x, . . . ,xn) ∈R
n
+, r ∈ [, e], (.)

n n

√√√√ n∏
i=

xrxii ≥ xrxn +
n–∑
i=

xrxi+i , (x, . . . ,xn) ∈ ], ] n , (.)

respectively. We present a partial proof of (.) (see Lemma ., below) and leave as a
conjecture the proof of (.).

Lemma . The inequality given in (.) holds for all r ∈ [, e], if we restrict (x, . . . ,xn) to
the hypercube [, ]n.

Proof Before we start the proof, we notice that the function ϒ(x, y) = xa/b – x – ya/b + y
defined fromR


+ →R and for a > b is concave andϒ(, ) = ϒ(, ) =ϒ(, ) =ϒ(, ) = .

Then ϒ(x, y) ≥  for all (x, y) ∈ [, ]× [, ]. Similarly, the function ϒs(w, z) = ϒ(z,w) for
a < b is concave andϒs(w, z) ≥  for all (w, z) ∈ [, ]× [, ]. Now, we proceed by induction
on n. Let us assume that the theorem is valid for a sequence of positive numbers (x, . . . ,xk)
for all k < n. We note that

n∑
i=

xrxii – xrxn –
n–∑
i=

xrxi+i =

[ n–∑
i=

xrxii – xrxn– –
n–∑
i=

xrxi+i

]
+

[
xrxnn + xrxn–n– – xrxn–n – xrxnn–

]

+
[
xrxn–n – xrxn – xrxn–n– + xrxn–

]
:=K +K +K. (.)

The terms K and K are positive by the inductive hypothesis. Meanwhile, the term K

is positive by the concavity of the functions ϒ and ϒs. Note that a = xn– and b = xn, and
K = ϒ(xrxn ,xrxn–) or K = ϒs(xrxn–,x

rx
n ), depending if xn– > x or xn– < x, respectively.

Then, by (.), it follows that the lemma is valid. �

Conjecture . Let n ∈ N and n > .Then the inequality (.) holds for all (x, . . . ,xn) ∈R
n
+

and r ∈ [, e].

Conjecture . Let n ∈N and n≥ . Then the inequality (.) holds for all r ∈ [, e].

Conjecture . Let n ∈ N and xi ∈ ], ]n. Then the inequality

n
n∏
i=

xrxii ≥
n∑
i=

( n∏
j=

xj

)rxi

holds for all r ∈ [, e].
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